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ABSTRACT

Biological insights often depend on comparing conditions such as disease and health, yet we lack
effective computational tools for integrating single-cell genomics data across conditions or
characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep
generative model that characterizes derailed cell-state trajectories. Decipher jointly models and
visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data,
revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse
contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.

BACKGROUND

Single-cell genomic technologies have enabled the detailed characterization of cellular states in healthy
and disease contexts, including cancer [1–5], inflammatory bowel disease [6,7], and COVID-19 [8–10].
Single-cell RNA sequencing (scRNA-seq) of single tissue snapshots can characterize cell-state
transitions by applying pseudotime inference approaches that leverage the asynchrony of cell states in
biological samples [11–15]. In particular, reconstructing how cells derail from normal to diseased states
along a pseudotime axis promises to improve our knowledge of early disease stages, identify drivers of
this derailment, and inform early detection and prevention strategies.
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A prime example of derailed development occurs in acute myeloid leukemia (AML), a lethal cancer of
the hematopoietic system. In AML, bone marrow hematopoietic stem and progenitor cells (HSPCs)
acquire genetic and epigenetic abnormalities, leading to the accumulation of HSPC-like leukemic cells
called “blasts” that fail to differentiate terminally. The origin of pre-leukemic and leukemic stem cell
states in AML [5,16] remains poorly characterized, which makes it difficult to target these cells and
prevent disease recurrence [17–19]. Importantly, we do not know how specific mutations lead to distinct
disease trajectories. These trajectories differ across patients[20] and can initiate from healthy states, or
pre-malignant and early malignant states such as clonal hematopoiesis and myelodysplastic
syndromes [21–25]. Numerous other contexts, including disorders of embryonic development,
neurodegenerative diseases, and T-cell exhaustion[26–29], require the accurate reconstruction of
aberrant trajectories to understand their mechanisms.

However, existing methods often fail to faithfully reconstruct the order of events; linear approaches,
such as principal component analysis (PCA), cannot capture biological complexity, while alternatives,
such as neural networks, typically fail to represent the underlying biology and can mix the ordering of
cell states. There is an urgent need for methods to accurately reconstruct the order of transcriptional
events, precisely align trajectories, and compare disparate conditions, such as healthy to disease and
control to genetic or chemical perturbation.

To compare trajectories, it is critical to obtain a faithful joint embedding and accurately visualize the
cellular relationships it represents. Embedding multiple samples, especially from heterogeneous
cancers, is sensitive to minor differences in gene programs between samples, such that they typically
fail to co-embed in a biologically meaningful way. Existing integration methods[30–37] are primarily
designed for batch correction; they assume that samples share similar cell states and attempt to
eliminate differences—including genuine biological differences, particularly for continuous and diverging
trajectories—as technical effects. Moreover, most approaches compress information from thousands of
genes into 10–50 factors that are independent, thereby neglecting dependencies between related
biological processes (ignoring, for example, that divergent differentiation trajectories are related). The
resulting latent spaces help annotate discrete cell states but often do not preserve gene-gene
relationships and the order of cell states [38]. Furthermore, data is usually visualized by projecting
latent embeddings onto two dimensions [39]–[40], which can distort topology and obscure functional
relationships [41]. These limitations highlight the need for approaches that address interpretability,
preserve global geometry in the latent space and enable visualization to better model trajectories
perturbed by mutation, genetic manipulation, drugs, or disease.

In this work, we present Decipher (deep characterization of phenotypic derailment), an interpretable
deep generative model for the simultaneous integration and visualization of single-cell data from
disparate conditions. Decipher is a hierarchical model that learns two representations for each cell from
observed expression: a low-dimensional state (in an ‘intermediate’ latent space of roughly ten
dimensions, similar to existing methods [37,42]), as well as a two-dimensional representation (‘top’
latent space) for visualization. Several design features allow this unifying model to characterize
continuous trajectories more accurately: 1) it connects gene expression and the latent spaces with
simple linear or one-layer neural network transformations to limit distortion, 2) the stacking of two latent
spaces over gene expression space enables flexible capture of nonlinear mechanisms, despite the use
of simple transformations, 3) it learns the dependency structure of cell-state latent factors with the top
latent space embedding (unlike other methods, which assume that latent factors are independent),
enabling the discovery of both shared and unique biological mechanisms from sparse trajectories, and
4) the 2D top latent space provides a direct visualization of the geometry learned by the model.
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The hierarchical structure of Decipher allows for a comprehensive understanding of the relationships
between gene expression, cell states, and their visual representation. We show that it is the only
approach that preserves cell-state organization and continuity in synthetic data and demonstrate its
substantial advantage for deriving insight from three disease contexts of increasing
complexity—published data from a pancreatic ductal adenocarcinoma (PDAC) mouse model with an
oncogenic mutation, new data from heterogeneous AML patient specimens, and a published patient
cohort spanning two subtypes of gastric cancer.

RESULTS

The Decipher method

Aligning trajectories from normal and perturbed contexts requires a joint representation that preserves
the topology and order of cells along both trajectories without forcing artificial overlap. Decipher's key
assumption is that perturbed trajectories maintain shared transcriptional programs with normal
trajectories for common processes, such as cell maturation. To create a joint representation that
captures both biological differences and shared mechanisms, Decipher employs a hierarchical model
featuring two levels of latent representations, each with its own encoder and decoder networks. This
unique architecture allows for correlation between some latent factors, enabling the identification of
shared gene programs that would be missed under the standard requirement for independence.
Decipher uses simple linear transformations and single-layer neural networks to connect all
representations within a unified probabilistic framework, making it sufficiently flexible to learn nonlinear
mechanisms while imposing a rigid inductive bias that prevents arbitrary distortion of the global
geometry.

To enable correlated latent factors, Decipher extends the successful single-cell variational auto-encoder
(VAE) architecture [37,42–44] into a deeper generative model inspired by the deep exponential family
[45,46]. In Decipher, each cell has not one but two complementary latent representations (Fig. 1a,b).
First, we embed cells in a two-dimensional representation that encodes global cell-state dynamics. We
refer to this high-level embedding as the Decipher space and its two dimensions as Decipher
components. Decipher components represent the dominant axes of variation in the data, typically
progression (maturation) and derailment (degree of deviation from a normal process, e.g. in disease).
Then, we generate a higher-dimensional representation conditional on the two Decipher components,
designed to capture more refined cell-state information. We call the space of refined representations
the latent space and refer to its dimensions as latent factors. The latent space is similar in principle to
previous VAEs [37,43,44], except that the design of Decipher, which conditions the latent space on the
Decipher components, enables dependencies between latent factors. Finally, Decipher generates the
denoised gene expression of each cell from its inferred cell state (Fig. 1b and Methods).

This three-step generative process interpolates between different degrees of non-linearity and
generates latent factors whose dependencies are shaped by high-level Decipher components, offering
major advantages for interpretation. Cell representations can be visualized in 2D directly from Decipher
components, eliminating the need for further dimensionality reduction with methods such as
t-distributed stochastic neighbor embedding (tSNE) or uniform manifold approximation and projection
(UMAP), whose usage is a subject of debate [47] (Fig. 1c). Within the Decipher space, derailed
trajectories can be constructed along a joint pseudotime that we call Decipher time.

In addition, Decipher is formulated to give explicit mapping functions between gene space and
Decipher space, enabling a straightforward reconstruction of gene expression anywhere in Decipher
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space (Methods) and the imputation of gene trends along the entire trajectory (Fig. 1d). This is
particularly useful for determining gene expression levels in sparse locations of the Decipher space with
few observed cells. It also enables the reciprocal computation of Decipher components (and
straightforward visualization) for any cell with measured gene expression. In contrast, there is no
explicit mapping between UMAP space and gene expression space. Decipher offers a unique
framework for dimensionality reduction, 2D visualization, trajectory alignment, and characterization of
cell state transitions.

Figure 1. Overview of the Decipher framework. (a) Decipher accepts two single-cell datasets from a normal (reference) and
a perturbed (e.g., disease) condition as input, which its probabilistic model learns to represent in a hierarchical shared latent
space without removing biological differences. The latent space reveals shared cell-state transitions and characterizes
diverging phenotypes. (b) The Decipher generative model has three levels of cell representations (distributions shown at
bottom): 2D Decipher components v, latent factors z, and gene expression x. Decipher components summarize
heterogeneous cell states and are used to directly visualize the latent space. (c) Example of Decipher space visualization,
colored by the dataset of origin (normal or disease) and by manually annotated cell states. Two distinct trajectories (lines and
circles; stars depict start) are computed in the Decipher space. (d) Gene expression patterns are computed along each
trajectory using Decipher’s mapping from v to x and then decomposing into representative patterns (basis). The corresponding
weights are used to compare patterns between the two contexts to pinpoint disrupted and conserved genes.
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Decipher preserves sparse simulated trajectories

To benchmark Decipher against alternative methods, we simulated ground truth continuous cell-state
trajectories by randomly sampling two-dimensional vectors (representing cell states) along a forked
trajectory containing regions of low (0 to 10%) sampling density (Fig. 2a). The sparsely sampled
regions reflect realistic variation in data collected from snapshots of a stepwise differentiation
process[14]. We transformed ground truth cell-states into gene expression using random neural
networks, similar to scVI’s generative process (Methods), then visualized the data using popular
dimensionality approaches (force-directed layout[40], UMAP[40,48], PHATE[49], scVI[37]), and
measured how well they recover the true organization of cell states.

Only Decipher produced visualizations that reflect the two trajectories in the correct order (Fig. 2b).
Errors made by the other tested methods, such as the close proximity of initiating and terminal cells in
the scVI latent space visualized with UMAP, are caused by low cell densities in transitional regions[50].
Although cell-state transitions are common and important in biology, current methods are only designed
to preserve distances in locally continuous data, and thus lose the global geometry of cell states. We
quantitatively evaluated the latent representation using a global preservation metric[41], which
measures the accuracy of cell-state ordering by first computing a nearest-neighbor graph on
ground-truth data clustered into cell states, then determining whether neighbors are retained in the
learned visualization (Methods). Decipher space exhibits much greater global preservation than the
other methods across a realistic range[51] of transitional cell densities, with the most pronounced
improvement in lowly sampled regimes (Fig. 2c).

Figure 2. Comparison of methods on simulated data. (a) Simulated cell states along diverging trajectories with
downsampled (0% to 10% cell density) cell-state transitions. Color gradient represents ground-truth simulated pseudotime. (b)
Latent spaces learned by different methods on ground truth data with cell-state transition density of 0%. Only Decipher
preserves the global order of cell states. (c) Global preservation of five independent random datasets across a range of
cell-state transition densities, by method (Methods; 1 indicates best preservation). Error bars, s.d. Decipher best preserves the
global order of cell states for all cell-state transition densities.
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Decipher improves the interpretation of oncogenic trajectories

We next evaluated whether Decipher can characterize the impact of oncogenic Kras mutation on
pancreas regeneration in mice [52]. Following injury, wild-type epithelial cells undergo physiological
metaplasia and regeneration, whereas Kras-mutated cells enter a premalignant state that begins
expressing oncogenic programs and presages cancer [53] (Fig. 3a). Decipher’s 2D space successfully
separates wild type (‘normal’) from mutant conditions and organizes cells into three smooth visual
trajectories corresponding to two normal conditions and a Kras-mutated condition (Fig. 3b).

Importantly, Decipher 1 is able to capture the well-known process of acinar-to-ductal metaplasia (ADM),
which appears as a smooth progression from acinar (Try4+) to ductal (Krt19+) cells (Figs. 3b and S1a;
Methods). ADM is a normal regenerative response to injury that occurs in both healthy and disease
systems[54],[55], highlighting Decipher’s ability to model shared cellular processes. At the same time,
Decipher 2 delineates the derailed trajectory to Kras-induced premalignant states, separating
trajectories by the degree of deviation from normal, while maintaining their alignment to the shared
ADM process. Decipher correctly identifies that one normal condition is more similar to the
Kras-mutated condition, as supported by the shared expression of important regulators such as AP1,
likely induced by stress which also occurs during normal regeneration(Fig. S1b). By faithfully
representing the global geometry of the data, Decipher thus generates highly interpretable 2D
components (v).

The latent factors (z) learned by Decipher offer further insight into the derailment, by distinguishing key
cell populations (Fig. S1c) and revealing which genes inform these distinctions. We identified the top
factor separating Kras-mutant and normal cells, and found that this factor (z6) highlights the
Kras-mutated population and is strongly driven by Decipher 2 (Fig. 3b,c and Methods). To identify
genes associated with z6, we computed the correlation between the expression of genes across all
cells and latent factor weights. Notably, Kras target genes Dusp6, Dusp4, Spry2 and Spry4 were ranked
significantly higher, by correlation with negative z6, than the ranking distribution of all genes (p = 0.006,
Wilcoxon rank sum test; Fig. 3d and Table 1). Gene set enrichment analysis on factor z6 using these
correlation-based gene rankings identified 42 significantly enriched pathways (FDR q < 0.25; Table 2),
including TNF, TGFB, MYC and p53 pathways associated with tumorigenesis (Fig. 3e). Finally, a Kras
mutational signature derived from bulk data [52] increases along the Decipher 1 axis and is only
enriched in the Kras mutated population of cells, while p53 targets [56] increase along all three
trajectories (Fig. 3d), reflecting p53’s intact status at this premalignant stage. These results support
Decipher’s ability to dissect premalignant states and clearly illustrate the derailment from normal
regeneration caused by a single oncogenic mutation.

Notably, the z factors that most effectively distinguish Kras-mutated from wild-type cells (as determined
by t-test) are also the most correlated with the bulk Kras mutational signature (Fig. 3f), demonstrating
that Decipher decomposes the effects of regeneration and Kras mutation in this process. We found that
the latent space of scVI, though also VAE-based, is less effective at separating normal and
Kras-mutated cells (Figs. 3g and S1d,e). More importantly, the Kras mutational signature is very poorly
correlated with mutational state separation across scVI latent factors, and gene set enrichment analysis
of these factors also fails to find many relevant pathways (Fig. S1f,g).
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Figure 3. Decipher delineates the impact of Kras mutation on pancreatic regeneration. (a) Model of pancreatitis in mice.
Injury drives acinar cells to ductal-like cell states, aiding regeneration in wild type but promoting tumorigenesis in an oncogenic
Kras background. (b) Decipher 2D space colored by Kras mutation status, latent factor z6 loading, or acinar (Try4) or ductal
(Krt19) marker expression. (c) Pearson correlation between Decipher components (v) and latent factors (z). (d) Decipher 2D
space colored by expression of the Kras mutational signature, p53 targets, and Kras targets (Dusp4, Dusp6, Spry2). (e)
Pathways depleted in Decipher z6. (f) Correlation between the absolute value of the t-statistic quantifying the distance
between Kras-mutant and normal cells in each latent factor, and the mean absolute value of each factor’s enrichment in the
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bulk Kras mutational signature. (g) t statistic comparing the distributions of each latent component in Kras-mutated (KrasG12D)
versus normal cells for Decipher and scVI.

Decipher can recover many more pathways associated with the Kras-deviated trajectory since it allows
dependencies between factors, which helps identify shared and distinct features of each sample (Fig.
3c). By simultaneously capturing the shared physiological metaplasia (via Decipher 1) and the distinct
oncogenic derailment (via Decipher 2 and z6), Decipher provides a robust framework for interpreting
both normal and disease trajectories. This dual capability for modeling and visualizing shared and
distinct processes helps elucidate how mutations like Kras alter normal cell-state transitions and initiate
oncogenic programs.

Figure S1. Comparison of latent spaces of scVI and decipher. (a) Expression of ductal marker Krt19 and acinar marker
Try4 over learned Decipher time. (b) Decipher embedding colored by AP-1 factor genes JUN or FOSB. (c) Decipher
embedding colored by latent factors. (d) 2D minimum distortion embedding (MDE) computed from scVI latent factors, colored
by mutational status, gene markers, and the Kras-mutated signature. (e) Correlation between the absolute value of the
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t-statistic quantifying the distance between Kras-mutant and normal cells in each scVI latent factor, and the mean absolute
value of each factor’s enrichment in the bulk Kras mutational signature. (f) Pathways enriched by GSEA for z9 in scVI, which is
the factor with the biggest separation of Kras-mutant and normal cells, show Kras signaling both up- and downregulated.

Leukemic derailment in AML initiates from immature cells

Next, we applied Decipher to investigate the complex and poorly understood derailment of early
leukemic cells in AML. We collected 104,116 single-cell transcriptomes from bone marrow specimens of
a cohort of AML patients bearing TET2 epigenetic mutations (n = 12), with and without NPM1
mutations, as well as a healthy donor as reference (Supplementary Information; Table 3). NPM1 is
among the most commonly mutated genes in AML (20-30% of cases), yet its role in leukemogenesis
[57] is unknown. NPM1mut AML often co-occurs with mutations in the epigenetic modifiers TET2 and
DNMT3A, which are known drivers of clonal hematopoiesis, a condition associated with an elevated
relative risk of progression to myeloid malignancy in older adults [58]. We know that these epigenetic
mutations likely originate in pre-leukemic hematopoietic stem cells (HSCs) [59], facilitating AML
development following NPM1 mutation [60]. However, the transcriptomic consequences of NPM1
mutation and the influence of pre-existing epigenetic abnormalities remain unclear.

Consistent with prior studies [20,61], we found significant inter-patient heterogeneity in leukemic blast
cells (Fig. S2a,b), which is unlikely due to technical effects given that lymphocytes are well mixed.
Surprisingly, we found that the most immature, HSC-like cluster (448 cells; 0.4% of total) is the top
non-lymphoid cluster shared by most patients (Fig. S2a,c). The phenotypic similarity of immature
leukemic or pre-leukemic cells across patients contrasts with the striking heterogeneity of leukemic
cells, motivating the reconstruction of patient-specific trajectories diverging from normal HSPCs (Fig.
4a). However, our samples contained too few HSC-like cells to effectively characterize NPM1-mediated
derailment; thus, we identified two differentially expressed surface markers from our cohort data, CD34
(log fold change: 6.67, adjusted p < 1e-6) and a novel maker, PROM1 (CD133[62]; log fold change =
7.23, adjusted p < 1e-6), and used them to enrich the immature population in NPM1mut patients. Sorting
for cells expressing either marker expanded the target population from 179 to 13,210 cells in patient
AML1 (Figs. 4b), for a total of 29,266 immature cells from AML1–AML3 (Methods). NPM1 mutations
can be detected directly from scRNA-seq data[63] because the vast majority occur at the 3’ end of the
gene[57] in AML (Supplementary Table 1). The expanded HSC-like population revealed cryptic
heterogeneity in both NPM1 mutation status and maturation (Fig. S2d,e). Our data spanning leukemic
progression, especially the rare early stages around NPM1mut-mediated derailment, thus poised us to
ask exactly when and how cells diverge from myeloid differentiation in normal HSPCs.
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Figure 4. Decipher reconstructs derailed myeloid developmental trajectories in AML. (a) AML is characterized by
patient-specific trajectories with similar immature wild-type cells, shared initial states, and divergent trajectories to terminal
states following NPM1 mutation. (b) UMAP projection of AML1 single-cell transcriptomes with (right) and without (left) the
inclusion of sorted CD34+/PROM1+ cells to enrich for HSC-like cells. (c–f) Decipher space embedding of 37,395 sorted cells
from patient AML1 and a healthy donor, colored by the sample of origin (c), cell states (d), key cell markers (e), and
NPM1mut-to-NPM1wt proportion (f) (Methods). Decipher 1 organizes cells along maturation and Decipher 2 along leukemia
initiation axes. Lines and circles represent post-analysis trajectories; stars indicate initiating states. (g,h) Two metrics that
measure a latent space’s interpretability and faithfulness to underlying biology (g; Methods), used to benchmark Decipher
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against dimensionality reduction and harmonization methods (h). (i) Comparison of scVI[37] (left) and Decipher (right) latent
spaces for pairs of the first four latent dimensions (the other latent dimension pairs give similar results). The scVI latent space
collapses biological differences while Decipher preserves them. (j) Decipher space colored by latent factors z1, z10, and z2,
each capturing a different state transition.

Figure S2. Characterization of AML samples and immature cell enrichment. (a) UMAP projection of unsorted bone
marrow transcriptomes from 11 AML patients (AML9 and AML10 are from the same patient). Cell colored by patient ID, cluster
ID, or annotated cell type. (b) Targeted mutation, karyotype, and morphological (FAB) assessments of patient bone marrow
samples (Table 3). D, R denote diagnosis and relapse paired samples, respectively, from the same patient. (c) Left, Pearson
correlations between cluster centroid expression and bulk gene expression data from sorted subsets of healthy HSPCs[64]
(Methods). Right, Shannon Diversity index computed for the distribution of patients in each cluster, controlling for cluster size
(Methods). Higher diversity indicates greater mixing of patients. (d) UMAP projection of AML1 single-cell transcriptomes
including or not including sorted CD34+/PROM1+ cells. Cells are colored by the expression of CD34 and PROM1 and (e)
proportion of NPM1 mutation in their neighborhood (Methods).
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Decipher reconstructs maturation and derailment in AML

We applied Decipher to integrate data from a healthy individual with data from each patient AML1,
AML2 or AML3 separately (Fig. 4c, S3). For each patient, we found that Decipher 1 and 2 faithfully
represent the shared processes of cell maturation and disease derailment, respectively. Specifically,
Decipher 1 captures the stepwise maturation of leukemic cell states from immature to blast 0 through 3
in a leukemic derailment trajectory (Fig. 4d, S3), and loss of stemness and myeloid differentiation, as
determined by loss of CD34 and gain of MPO, in a normal cell-state progression trajectory (Fig. 4e).
Decipher 2, in contrast, represents an axis of leukemic initiation and progression that can be further
interpreted using NPM1 mutation status. We found a subset of pre-leukemic immature NPM1wt cells
close to healthy HSCs, and an NPM1mut progenitor-like population (blast0,1) that lies between NPM1wt

and leukemic cell states resembling myeloid-committed cells (blast2,3) in all three patients (Figs. 4d,f
and S3). The increase in NPM1mut cell fraction and upregulation of PROM1 along Decipher 2 confirm
that it distinguishes leukemic from normal cell states (Fig. 4e,f). Thus, similar to the pancreatitis
example, the Decipher 2D space represents major axes of biological variation and preserves global
relationships between cell states in the complex context of AML, correctly placing NPM1wt leukemic
cells closest to normal (Fig. 4f) and ordering leukemic blasts by maturation (Supplementary
Information).

Indeed, Decipher identifies trajectories with both shared and distinct features for patients AML1 to
AML3, whereas AML2 has a larger gap between NPM1wt and NPM1mut cells in Decipher space
(reinforced by the absence of detected blast0 cells in this patient), and branching in AML3 occurs
during blast1 rather than before blast0, suggesting later derailment in this patient than in AML1 or
AML2 (Fig. S3). Such differences argue for developing personalized AML models based on
patient-specific disease trajectories.

To further characterize early disease processes, we used gene set enrichment analysis (GSEA) on
cells projected onto the Decipher 2 derailment axis and identified TNFa signaling, inflammatory
response, IL6/JAK/STAT3 signaling, IFNg response, and KRAS signaling pathways (Table 4 and
Methods). These findings agree with the well-elucidated role of Tet2 in repressing IL6 transcription [69],
and with the association of Tet2 loss-of-function with the accumulation of inflammatory myeloid cells in
conditions from clonal hematopoiesis-related atherosclerosis [70] to AML [71].

In contrast to Decipher, we found that the visualization approaches tSNE [65], UMAP [40,48] and
force-directed layout (FDL) [40] fail to capture the global data geometry, the expected overlap in
immature cell states, or the order of blast maturation stages. On the other hand, data integration
methods tend to force cell states—including leukemia cells and normal HSPCs—to overlap, and thus
cannot be used to characterize derailed differentiation (Fig. S4). To systematically benchmark the ability
to characterize derailed trajectories, we defined two metrics that evaluate biological faithfulness to AML
derailment (Fig. 4g and Methods). Ordering score evaluates whether each method's latent space
correctly orders cell states by maturation stage. Divergence score assesses the preservation of
biological differences by rewarding immature cell proximity and penalizing terminal state mixing
between normal and disease samples. We applied these metrics to a range of visualization (FDL[40],
UMAP[40,48], tSNE[65], PHATE[49]), dimensionality reduction (PCA), and integration methods
(Seurat[31], scVI[37], Harmony[66]). Decipher components and latent factors scored highest in both
metrics for all three patients, demonstrating that it balances between integrating across conditions and
preserving their unique geometries and cell states (Fig. 4h).
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Figure S3. Application of Decipher to other AML patients. (a,b) Decipher space visualization of cells from the healthy
donor and AML2 (a) or AML3 (b). Cells colored by condition (left), cell type (middle), and proportion of NPM1 mutation
(defined as the number of neighbors with mutation/all neighbors for each cell, using 30 neighbors) (right). Lines define
trajectories for normal and healthy samples (left).

Figure S4. Integration of AML and normal samples with existing methods. (a,b) Projection of 37,395 cells from patient
AML1 and from a healthy donor using different tools (Methods). Each dot represents a cell colored by origin (left) and type
(right). Non-batch-correcting visualization methods tSNE, UMAP, and FDL (a), and batch-correcting methods – UMAP of the
Seurat space, scVI space, and Harmony space (b) – all fail to integrate AML and healthy cells. Lines indicate trajectories paths
inferred on the scVI space (Methods).
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Decipher can represent correlated biological mechanisms

The hierarchical dimensionality reduction in Decipher confers more expressive factors that cannot be
attained by simply increasing the number of latent factors in other methods [45]. Since Decipher’s latent
factors can be correlated (Fig. 4i), they are able to capture overlapping transcriptional programs
between trajectories and shared mechanisms underlying consecutive cell state transitions. For
example, z7 is mainly encoded with Decipher 1 (Fig. S5a) and represents common trends along both
normal and AML trajectories (Fig. S5b).

Latent factors can also highlight features that distinguish normal and perturbed states. For example, the
first two factors (z1, z2) are correlated in immature cells but not in blasts (Fig. 4i), and represent
different transitions along AML derailment—z1 is highest early in blast formation (blast0, 1 and 2), z10
marks an intermediate (from blast1 to 2), and z2 marks the final stage of leukemic maturation (blast3)
(Fig. 4j). GSEA reveals that z1 is enriched for reduction in oxidative phosphorylation, a pathway that is
altered in leukemic stem cells[67], while z10 and z2 are enriched for TNFɑ, IFNg and
inflammation[68,69] (Fig. 4j and Table 4). Indeed, the enrichment of IFNg and inflammation in z2
(Table 4) is expected as it captures most mature myeloid/monoblastic cells [68,69]. Decipher thus
enables a more comprehensive and nuanced understanding of cellular dynamics, especially when
integrating normal and perturbed conditions.

Decipher’s unique ability to model correlated latent factors avoids the requirement for independent
factors, which can remove biological differences between cell states. For example, scVI collapses the
healthy and AML conditions onto each other in every latent dimension (Fig. 4i), deforming the geometry
and disrupting continuous trajectories (Fig. S4b).

Figure S5. Latent factors capture AML cell-state transitions. (a) Absolute value of correlation between Decipher
components and latent factors. (b) Decipher space colored by all latent factors for AML1 (a subset of these are shown in Fig.
4h). Arrows indicate cell-state transitions corresponding to an increase in the latent factor.
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Figure S6. Decipher trajectory inference. Steps involved in trajectory inference, from left to right, based on the inferred
representation from Decipher (Methods).

Gene patterns along Decipher trajectories reveal altered regulation in AML

To uncover gene expression dynamics along cell maturation and disease derailment trajectories
visualized by Decipher (Fig. 4c,d), its decoders can directly transform any cell state in Decipher space,
including sparsely sampled states, to their corresponding gene expression mean and variance.

We constructed paths along trajectories in Decipher space and computed expression along these paths
to obtain gene patterns (Figs. 5a and Methods). Trajectories can be defined manually or obtained with
any trajectory inference method. We chose to implement a simple method that clusters cells in the
latent space, generates a minimum spanning tree to link clusters, and then interpolates between
clusters in Decipher space (Fig. S6 and Methods). The resulting coordinates along those paths define a
pseudotime called Decipher time (Fig. 5a). Importantly, since different conditions are integrated in the
same joint space, the trajectories have comparable Decipher time. The gene patterns inferred by the
Decipher decoder can thus be directly compared ‘out of the box’, without the additional challenging
trajectory alignment required by standard integration methods. The similar patterns of key
developmental markers CD34[70], AVP (stemness), PABPC1 (protein synthesis in HSC differentiation)
and LYZ (myeloid differentiation) in aligned segments of the trajectories confirm that the inferred
pseudotime is comparable between datasets (Fig. 5b).

To shed light on the regulatory mechanisms underlying disease derailment, we used Decipher time to
estimate when transcription factors (TFs) are maximally expressed in each trajectory. By computing this
for all TFs, we found that TFs are upregulated in concert at specific locations along normal
hematopoiesis (Fig. S7a). In contrast, all AML patients display a global loss of TF coordination,
including the peak at blast0, which is lost in AML precisely when NPM1 mutations appear (Fig. S7a,b).
At the level of individual TFs, we confirmed known upregulation of homeobox genes (HOXA9[71],
HOXB2) and their cofactors MEIS1[72] and PBX3[72], and downregulation of GATA1[73] when NPM1
mutations appear (Fig. 5c). However, we also found diverse TF expression dynamics (e.g. LCOR,
AHR), illustrating that summarizing by peak expression is insufficient to capture the complexity of
transcriptional regulation (Fig. 5c). We thus developed a more systematic approach to quantify altered
expression between two trajectories next.
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Figure 5. Reconstructing gene expression patterns and characterizing the regulatory landscape in AML compared to
healthy HSPCs. (a) The Decipher generative model reconstructs gene expression along each trajectory directly from the 2D
Decipher representation. (b) Reconstructed expression of stemness and differentiation markers for each trajectory along
Decipher time. Shaded bands represent the interquartile range of Decipher model uncertainty (Methods). (c) Reconstructed
gene expression dynamics of HOXA9 and MEIS1 (known deregulated TFs) and other disrupted TFs. Solid lines show inferred
mean, shaded areas reflect +/-1 s.d.
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Figure S7. Temporal distribution of genes and TFs. (a) Timing of peak expression of TFs on the Decipher time axis in
normal (top) and AML1 (bottom) samples. Density plots display the local maxima across all TFs in each sample. Distribution of
local density maxima across all TFs along Decipher time in AML2 (b) and AML3 (c).

Basis decomposition reveals specific gene dysregulation in AML

To quantify the differences between gene trends along two trajectories, we devised a probabilistic
framework that assumes the expression of each gene can be approximated by a weighted combination
of a few representative patterns with distinct temporal dynamics, such as ascending, descending, or
peaking in intermediate states (Fig. 6a and Methods). The model further assumes that representative
patterns are shared between normal and perturbed trajectories, but with a different scale parameter and
weights. The representative patterns are mathematically defined as basis functions that are
simultaneously inferred with the decomposition parameters and capture dominant dynamics along
trajectories. The decomposition weights ( ) indicate which patterns are associated with each gene, andβ
the scale parameter ( ) indicates the magnitude of expression (high or low) of the pattern. Specifically,𝑠
we modeled the patterns using Gaussian Processes adapted from ref.[74] and approximated them
using neural networks (Methods).

Using the basis decomposition, we can distinguish changes in the temporal dynamics of genes from
changes in the overall scale of expression. The shape disruption measures the distance between
decomposition weights independent of the scale, while combined disruption considers both weights and
scale (Methods). We computed shape and combined disruption scores for all genes and identified
conserved (unchanged between normal and perturbed) and disrupted (altered) genes in both measures
(Fig. S8a). For instance, homeobox genes HHEX and HOXB2 have a high shape disruption score (Fig.
S8b), while inflammatory genes CXCL3 and CXCL8, as well as KMT2A (which interacts with Menin, a
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target of NPM1-mutated AML clinical trials[75]) have a high combined disruption score, as they are
upregulated in immature AML cells compared to normal, with substantial differences in scale (Fig.
S8a,c).

Many of the genes with highest shape disruption (e.g., HHEX, HOXB2, Fig S8b) arise early in AML,
around the initiation of NPM1 mutation, and subsequently drop to similar expression levels in advanced
blasts, highlighting the importance of enriching our data with early leukemic progenitors to detect such
initial events. Others, such as TNFɑ pathway (CCL4, PHLDA1) and oxidative phosphorylation (ALAS1,
TCIRG1) genes, peak late and offer insight into the final transitions to disease (Fig. S8d,e).

The ability of disruption scores to associate genes with cell-state transitions offers an opportunity to
understand regulatory events underlying derailment in AML. We collated a list of TFs with high
disruption scores and known TFs from the literature, and found that they are transcribed in coordinated
waves in normal hematopoiesis and as a cascade in AML (Fig. 6b,c). The key myelopoiesis regulators
GATA1 and KLF1 are at the top of this cascade, followed by HOXA9 and MEIS1 (known to be altered
specifically in NPM1-mutated AML[72]) at the time NPM1 appears (Fig. 6c). This suggests that TET2
mutation disrupts the function of key hematopoiesis TFs, which propagate to additional TFs in the gene
regulatory network. Interestingly, the upregulation of HOX TFs upon NPM1 mutation coincides with an
increase in Interferon Type 1 signature genes[68][76] including LY6E, FAM46C, ADAR, and TMEM238
(Fig. S9a). This is in contrast to components of Type II Interferon (IFNg) response, including MHC-II
genes that are upregulated most in early immature cells (Fig. S9b), suggesting their link to TET2
mutation. Moreover, we observe that genes in the proinflammatory TNFɑ pathway (Fig. S8c), the
inflammatory cytokine gene IL-1, and AP-1 component FOS (Fig. S9c) are upregulated towards the
end of the trajectory in transformation to blasts.

To determine whether dysregulated TF patterns can generalize, we compared the top disrupted TFs of
all 3 AML patients (Fig. S10), and observed strong similarity in the combined disruption score across
patients, with key TF genes including HOXB3, HOXA3 and GATA1 among the top 20 disrupted TFs in
AML1 and AML2 (Figs. 6c,d and S10a). AML3 presents other disrupted regulators, such as MYC,
which is known to be overexpressed in AML[77] (Fig. S10b). In all 3 patients, we observe a cascading
effect of key disrupted TFs over time (Fig. S10a,b) that is supported by single-cell ATAC-seq data
(Supplementary Information). Our approach thus resolves the timing of TF activity with respect to
significant events such as genetic mutations and signaling pathway activation, guiding further studies of
regulatory relationships.

To evaluate our disruption scores in the context of a larger cohort, we performed differential gene
expression analysis between NPM1mut AML and normal samples using a publicly available cohort of
125 NPM1mut AML samples and 16 HSC-enriched normal subpopulations (see Data Availability;
Methods). Examining the top 20 disrupted TFs in AML1 (combined disruption score), we found that 18
out of 20 are differentially expressed (absolute log2 fold-change > 1.16; p < 6.39e-03) in the larger
cohort. We also find 12 out of the top 20 disrupted TFs in AML2 (absolute log2 fold-change > 1.6; p <
4.06e-03) and 7 out of the top 20 TFs in AML3 (absolute log2 fold-change > 1.52; p < 6.01e-09) to be
differentially expressed in bulk data. Interestingly, TFs that are not detected in the larger cohort (e.g.,
POU2AF1, MAFF; Fig. S8f) exhibit altered expression in early immature cells whose signal would be
diluted in bulk data dominated by blasts. It is noteworthy, however, that TFs disrupted in AML1 that
overlap with the bulk differentially expressed are not the most enriched genes, but rather among the top
26% of genes ranked according to absolute log2 fold-change. For example, six HOX family genes (Fig.
6b,c) have an average rank of 14,376 out of 48,850 genes in the bulk analysis. The most differentially
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expressed genes reflect enrichment in terminal blasts, whereas our profiling of early immature cells and
computational modeling of their dynamic gene expression deciphers regulators of leukemic initiation.

Figure S8. Gene trend analysis using Decipher. (a) Reconstructed expression patterns for top disrupted/conserved genes
that were identified using the shape and combined disruption metrics. (b–e) Reconstructed expression trends and disruption
scores for homeobox genes and cofactors (b), genes upregulated in immature leukemic cells (c), TNFɑ pathway (d), oxidative
phosphorylation (e) in AML1. (f) Reconstructed trends and disruption scores for genes disrupted mainly in early immature
state and thus unidentified in bulk analysis.
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Figure 6. Decipher components unlock transcription factor dynamics. (a) Overview of Decipher’s probabilistic basis
decomposition and disruption quantification method. The neural basis decomposition learns the dominant representative
patterns and decomposes each gene expression pattern onto them; the coefficients on the basis for each gene are compared
between the normal branch and the AML branch to compute the disruption score (Methods). (b,c) Timing of TF expression in
normal (b) and AML1 (c) samples. Heatmaps show log-transformed and z-scored expressions for the top 20 TFs with the
highest combined disruption scores in AML1, combined with known TFs from the literature, sorted by timing of maximum
expression in AML1. The HSPC marker CD34[78][72] is included for calibration. Colorbars correspond to cell type and
proportion of NPM1-mutated cells among the 30 nearest neighbors of each cell in AML1; both are smoothed over the 50
nearest neighbors in the Decipher space. (d) The combined disruption score (Methods) of TFs in three AML patients. Red
points indicate TFs that are among the top 20 disrupted TFs in at least one patient.
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Figure S9. Notable genes co-expressed with aberrant TFs and comparison of TFs across patients. (a) Reconstructed
expression trends for IFN type 1 signature (left) and individual genes (right) found to be co-expressed with HOX TFs under
both normal (green) and AML (purple) conditions. (b,c) Reconstructed expression of genes involved in IFN type 2 (b) and
TNFɑ pathway (c).
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Figure S10. Altered TF dynamics in patients AML2 and AML3. (a,b) Timing of TF expression along Decipher time in AML2
(a) and AML3 (b) samples. Heatmaps show log-transformed and z-scored expressions for the top 20 TFs with the highest
combined disruption scores in each sample, as well as known TFs from literature, sorted by timing of peak expression.
Colorbars correspond to cell type and proportion of NPM1-mutated cells among the 30 nearest neighbors of each cell; both
are smoothed over the 50 nearest neighbors in the Decipher space.

Comparative analysis of early-occurring epigenetic mutations in AML

We applied Decipher to compare derailment mechanisms between TET2mut and DNMT3A-mutated
patients. TET2 and DNMT3A are epigenetic regulators with opposing roles—DNMT3A adds and TET2
removes methyl groups[79]. Mutations in these genes, along with ASXL1, are observed in
pre-leukemic lesions and clonal hematopoiesis, supporting a stepwise mechanism for AML progression
by which normal HSPCs acquire mutations in epigenetic modifiers prior to a transformative event such
as an NPM1 driver mutation[58]. We compared derailment in these epigenetic contexts to investigate
how disease-priming mutations with opposing roles lead to similar vulnerabilities, and to determine
whether they share mechanisms of leukemogenesis.
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We thus profiled unsorted and CD34-sorted bone marrow cells from DNMT3Amut patients (AML13–17),
three of whom also harbor NPM1 mutations (Table 3), and used our original TET2mut cohort to annotate
the maturation stages of clusters in this single-cell data (Methods). In the DNMT3Amut patients,
Decipher also successfully aligns AML maturation and normal HSPC differentiation along the Decipher
1 axis, and resolves disease derailment along Decipher 2 (Fig. S11a–d). We found that in the two
DNMT3Amut NPM1mut patients with sufficient sorted cells (AML14, AML15), PROM1 marks blast0 states
(Fig. S11b,d), and 8 of the top 20 disrupted TFs overlap, including regulators of myeloid lineage
commitment and differentiation (CEBPE, HOXB3, AHR, KLF2, MYBL2), inflammatory response
(JUND), homeobox cofactor (MEIS1) and ZBTB20. Interestingly, the reduction in oxidative
phosphorylation pathway is enriched along Decipher 2 in both DNMT3Amut and TET2mut patients (Table
4).

For a more comprehensive comparison of epigenetic mutations, we identified disrupted TFs according
to both shape and combined disruption (Fig. S11e). Many combined disrupted genes partially overlap;
for example, CEBPE and HOXB3 are disrupted in both TET2mut and DNMT3Amut patients, while
interferon regulator IRF8 shows higher combined disruption in TET2mut and inflammatory response
regulator JUND shows higher shape disruption in DNMT3Amut[80,81]. Decipher thus provides a framework
for the unbiased characterization of patient-specific disease trajectories and for the comparative
analysis of disease mechanisms between patients and genetic backgrounds.
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Figure S11. Decipher characterizes a DNMT3A-mutated AML cohort. (a–d) Decipher space embedding of sorted cells
from two DNMT3Amut AML patients (Table 3), colored by sample of origin and cell type (a,c) and by marker gene expression
(b,d). AML maturation is observed as a decrease in CD34 expression, and normal HSPC differentiation as a decrease in AVP
and increase in MPO. Decipher identifies and aligns myeloid trajectories in AML even when cell states are missing (blast1,3 in
AML13; blast2,3 in AML14). (e) Comparison of disrupted genes in patients bearing NPM1 and DNMT1 mutations, with and
without TET2 mutation, based on combined disruption and shape disruption scores. Red points represent TFs in the 80th
percentile of disruption in at least one category. The dotted lines show the 80th percentile threshold.

Decipher characterizes disease onset in gastric cancer cohorts

In addition to pairwise comparisons, Decipher can be applied to study early and stepwise transitions in
disease cohorts. To illustrate this, we used scRNA-seq data from intestinal (IGC) and diffuse (DGC)
primary gastric tumors and paired adjacent non-malignant tissue from 24 patients[82] (Fig. 7a). Each
type of gastric cancer was previously shown to capture a partial disease trajectory—specifically,
cell-state transitions I1 to I3 in IGC, and D1 to D3 in DGC[82]. However, visualizing the data of all
patients with UMAP suggests alternate cell-state transitions that are incorrect; for example, that
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enteroendocrine (non-malignant) cells transition to I3/D3 states before I2/D2 and I1/D1 (Fig. 7a and
ref.[82]).

We pooled all patients together and used Decipher to derive a more straightforward and interpretable
representation of tumor progression in the two GC types. The Decipher 1 axis correctly aligns cells
along a continuous shared progression, with non-malignant enteroendocrine, I1 and D1 cells at the
start, followed by I2 and D2 intermediate states, and finally I3 and D3 malignant states (Fig. 7b). The
inferred Decipher trajectory (Fig. 7c) reveals the upregulation of malignancy-associated genes at the
correct cell-states, including MUC6 and PGC in normal gland mucous cells, ENO1 in intermediate state
I2 and MUC13 and CEACAM5 in malignant states (Fig. 7d). The alignment of GC types also
illuminates the relative timing of disease progression, predicting that premalignant cells transform to
malignancy in IGC later than in DGC, as I1 extends further than D1 along Decipher 1 and Decipher
time. The Decipher 2 axis, on the other hand, separates the diffuse-like malignant state (D4) in DGC,
illustrating the drastic derailment from D3 upon upregulation of key DGC markers such as COL1A2 in
D4. Finally, fibroblasts and endothelial cell states (I4, D5), which are not a part of the progression of
cancer, are preserved as distinct states, highlighting Decipher’s ability to represent both continuums
and distinct states.

Figure 7. Decipher aligns gastric cancer onset. (a) 2D UMAP projection and trajectory inference with Monocle applied
to scRNA-seq data from 24 gastric cancer (GC) and precancerous lesions[82]. Single-cell data from both intestinal (IGC) and
diffuse (DGC) types were merged to infer a joint tree using Monocle3[83] (in gray line). The order of disease progression
states (I1-I3 in IGC and D1-D3 in DGC) is not captured by the tree. (b-c) Decipher reveals the order of cancer stages, while
still harmonizing the different types of cancer without requiring a batch correction method or a dimensionality reduction method
for visualization. We separately plot D (top) and I (bottom) cells, but Decipher is trained on all cells. Cells in Decipher space
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are colored by cancer progression stages in DGC and IGC (b), and inferred Decipher trajectory and Decipher time on merged
data is shown in (c). (e) Decipher’s reconstructed gene patterns for known markers of progression states along the shared
trajectory.

DISCUSSION

Decipher is a deep generative model designed to learn and visualize joint representations of normal
and perturbed data. Whereas single-cell data analysis approaches carry out latent factorization and 2D
projection as distinct steps, Decipher is unique in merging the two within a single probabilistic,
hierarchical structure. As a result, Decipher not only provides direct 2D visualization, but also captures
more intricate information while remaining interpretable and discovering dependencies between the
underlying latent factors. In addition to visualizing cell states with less distortion than other methods,
Decipher can use the joint representation to infer trajectories of cell-state transitions and identify genes
with disrupted expression patterns using a novel basis decomposition technique. Decipher scales to
large cell numbers due to its VAE model formulation, which allows for stochastic variational
inference[84]. Other approaches deploy VAEs [37,42] or Gaussian process latent variable models
(GP-LVMs) [85,86] for nonlinear dimensionality reduction, but neither are capable of simultaneous 2D
visualization, and GP-LVMs do not scale to large datasets.

In simulated data, Decipher more accurately preserves sparsely sampled cell-state trajectories and
better maintains the geometry of the data than other methods. We anticipate that Decipher will be a
valuable tool for discovering how perturbation or disease initiation derail development. It successfully
separates normal and mutant cell trajectories in a mouse model of PDAC bearing a mutation in the
tumorigenic driver Kras, revealing the activation of distinct molecular pathways in response to
oncogenic stress. Decipher’s broad applicability is also evinced by its successful joint mapping of
transitions from premalignant to malignant cell states in two subtypes of gastric cancer.

The early stages of tumor initiation are understudied in primary AML, and findings from animal models
only partially translate to humans [87]. AML presents significant genomic and transcriptomic
heterogeneity, suggesting multiple vulnerable states and origins of derailment from normal
hematopoiesis [20][88]. Decipher is able to characterize patient-specific divergence from normal
myeloid differentiation, confirmed by NPM1 genotyping, whereas other integration methods distort the
global geometry of trajectories. Our work discovered and characterized a rare subset of PROM1+ cells
in NPM1-mutated samples that likely define a pre-leukemic cell population [89][90]. Decipher also
revealed that NPM1 mutations trigger the upregulation of inflammatory genes and IFN responses,
following loss of coordinated myeloid TF expression due to TET2 mutations. These findings are
consistent with studies linking high HOX expression to mutant NPM1 and its aberrant cytoplasmic
localization in leukemic persistence [91][92].

Recent studies in mice demonstrate that loss of Tet2 induces the expansion of aberrant inflammatory
monocytic populations, by establishing a pro-inflammatory microenvironment[[68][93]. Similarly, we find
the upregulation of IFN type 2 (specifically, MHC-II) genes in early TET2-mutated cells in primary
samples. NPM1 has been reported to regulate IFNg-inducible genes in HeLa cells [94], but the link is
not established in AML. Our pseudotime-resolved characterization of transcriptional dynamics shows
genes involved in IFN type 1 response to be highly expressed, specifically in transition to aberrant
NPM1-mutated progenitor cells, coinciding with the expression of HOX TF genes. In further
transformation to blasts, we observe the upregulation of genes encoding TNFɑ, IL-1, and FOS. The
diverse patterns of chemokines and cytokines along the leukemic transformation trajectory also point to
possible dysregulated interactions among them [95]. Inflammatory cytokines such as IL1 can indeed

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

https://paperpile.com/c/jP4e1f/h83x3
https://paperpile.com/c/jP4e1f/UQCCf+hMsEN
https://paperpile.com/c/jP4e1f/HEqFS+erjd6
https://paperpile.com/c/jP4e1f/bR31a
https://paperpile.com/c/jP4e1f/ah8QL
https://paperpile.com/c/jP4e1f/fiFnY
https://paperpile.com/c/jP4e1f/8aVU7
https://paperpile.com/c/jP4e1f/VR0ja
https://paperpile.com/c/jP4e1f/Y1Atw
https://paperpile.com/c/jP4e1f/TXGgr
https://paperpile.com/c/jP4e1f/LaeEZ
https://paperpile.com/c/jP4e1f/AHHnv
https://paperpile.com/c/jP4e1f/TSsaj
https://paperpile.com/c/jP4e1f/jFoeK
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


regulate hematopoietic stem cells and promote disease progression in models [96]. While our data
does not contain significant non-leukemic myeloid populations and cannot resolve the cellular source of
the IL6 and other cytokines responsible for inducing these programs, their stark upregulation along the
Decipher 2 component supports work in Tet2 murine models [72], suggesting this inflammation drives
cellular plasticity enabling leukemogenesis, rather than merely being coincident to it [71–75].

In addition to its role in shaping the AML microenvironment [93], cell-intrinsic inflammation is induced by
NPM1 perturbation in mice, leading to myelodysplastic syndrome-like phenotypes [97] and driving
progression to AML[98]. These observations motivate future studies on inflammatory response as a
consequence of NPM1 perturbation, compared to epigenetic remodeling in clonal hematopoiesis, and
studies disentangling the role of pre-existing epigenetic mutations in inducing an inflammatory
environment crucial for disease transformation. Extending the application of Decipher to other primary
cancer samples as well as animal models can guide therapeutic strategies for modulating the TME and
cell-intrinsic effects by attenuating the inflammatory response and, in turn, inhibiting cancer progression
or increasing sensitivity to treatments. Decipher could also be extended to characterize multimodal
datasets more effectively.

DECLARATIONS

Ethics approval and consent to participate

The genomic sequencing study used in our Acute Myeloid Leukemia analysis was approved by the
Institutional Review Board/Privacy Board-B of Memorial Sloan-Kettering Cancer Center (Protocol
#17-549) on November 4, 2017.

Consent for publication

Not applicable.

Availability of data and materials

The data discussed in this manuscript will be deposited in the National Center for Biotechnology
Information’s Gene Expression Omnibus (GEO) upon publication. The bulk RNA-seq data for AML
patients is publicly accessible at GEO with accession IDs GSE106272, GSE49642, GSE52656,
GSE62190, GSE66917, and GSE67039. Bulk RNA-seq for normal HSC-enriched subpopulations is
accessible at GEO ID GSE48846.

Decipher is available at https://github.com/azizilab/decipher and has been deposited at DOI:
10.5281/zenodo.10079999. The specific code that produced the results and figures of this manuscript
is available at https://github.com/azizilab/decipher_reproducibility and deposited at DOI:
10.5281/zenodo.14042470. The Decipher model has also been implemented as part of scvi-tools:
https://scvi-tools.org.

Competing interests

D.P. is on the scientific advisory board of Insitro. R.L.L. is on the supervisory board of Qiagen and on
the board of directors of Ajax Therapeutics, for which he receives compensation and equity support. He

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

https://paperpile.com/c/jP4e1f/G5u1D
https://paperpile.com/c/jP4e1f/AHHnv
https://paperpile.com/c/jP4e1f/g6t6f
https://paperpile.com/c/jP4e1f/e6A74
https://github.com/azizilab/decipher
https://doi.org/10.5281/zenodo.10079999
https://doi.org/10.5281/zenodo.10079999
https://github.com/azizilab/decipher_reproducibility
https://doi.org/10.5281/zenodo.14042470
https://doi.org/10.5281/zenodo.14042470
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


is or has recently been a scientific advisor to Imago, Mission Bio, and Syndax. Zentalis, Ajax, Bakx,
Auron, Prelude, C4 Therapeutics, and Isoplexis, for which he receives equity support. He also has
research support from Ajax and AbbVie, consulted for Janssen, and received honoraria from Astra
Zeneca and Kura for invited lectures.

Funding

A.N. acknowledges support from the Eric & Wendy Schmidt Center Ph.D. Fellowship and the Africk
Family Fund. J.L.F. acknowledges support from the Columbia University Van C. Mow fellowship and the
Columbia Avanessians fellowship. V.P.L. received support from a Vanier Canada Graduate Scholarship
and holds a Clinical Research Scholarship from the FRQS. R.L.L. was supported by NCI award
R35CA197594. D.P. is an HHMI investigator and was supported by NCI grant U54 CA209975. Studies
supported by MSK core facilities were supported in part by MSKCC Support Grant/Core Grant
P30CA008748, the Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, and the
Marie-Josée and Henry R. Kravis Center for Molecular Oncology. E.A. was supported by the National
Institute of Health (NIH) NCI grant R00CA230195, Columbia University Data Science Institute, and
Irving Institute for Cancer Dynamics Seed Funding.

Authors' contributions

A.N., J.L.F., D.P., E.A. conceived the study and wrote the manuscript. A.N., J.L.F., D.B., D.P., E.A.
designed and developed Decipher. V.P.L., D.P., and E.A. designed AML experiments and prepared
samples. V.K., I.M., R.L.B., S.E., and R.L.L. performed and assisted with single-cell genomics data
acquisition experiments. A.N., J.L.F., V.P.L., C.B., J.C., J.W., L.S., A.E.C, D.P., E.A. analyzed and
interpreted data.

Acknowledgements

We thank Guy Sauvageau from the Leucegene group and Josée Hébert from the Banque de Cellules
Leucémiques du Québec (BCLQ) for providing clinical samples. The BCLQ is supported by grants from
the Cancer Research Network of the Fonds de recherche du Québec–Santé (FRQS). We are thankful
to Tal Nawy, Benjamin Izar, José McFaline-Figueroa, Manu Setty, Cassandra Burdziak, and Sopho
Kevlishvili for helpful feedback and discussions.

REFERENCES

1. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the
multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.

2. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-Cell Map of
Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell. 2018;174:1293–308.e36.

3. Peng J, Sun B-F, Chen C-Y, Zhou J-Y, Chen Y-S, Chen H, et al. Single-cell RNA-seq highlights
intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res.
2019;29:725–38.

4. Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour heterogeneity and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/doHxR
http://paperpile.com/b/jP4e1f/doHxR
http://paperpile.com/b/jP4e1f/2RQYh
http://paperpile.com/b/jP4e1f/2RQYh
http://paperpile.com/b/jP4e1f/oBkMD
http://paperpile.com/b/jP4e1f/oBkMD
http://paperpile.com/b/jP4e1f/oBkMD
http://paperpile.com/b/jP4e1f/xl65v
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


metastasis at single-cell resolution [Internet]. Nature Cell Biology. 2018. p. 1349–60. Available from:
http://dx.doi.org/10.1038/s41556-018-0236-7

5. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir E-AD, Tadmor MD, et al. Data-Driven
Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell.
2015;162:184–97.

6. Zilbauer M, James KR, Kaur M, Pott S, Li Z, Burger A, et al. A Roadmap for the Human Gut Cell
Atlas. Nat Rev Gastroenterol Hepatol. 2023;20:597–614.

7. Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G, Graham DB, et al. Intra- and
Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell. 2019;178:714–30.e22.

8. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas
of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26:1070–6.

9. Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, et al. A molecular single-cell lung atlas
of lethal COVID-19. Nature. 2021;595:114–9.

10. Muus C, Luecken MD, Eraslan G, Sikkema L, Waghray A, Heimberg G, et al. Single-cell
meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med.
2021;27:546–59.

11. Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, et al. CellRank for directed single-cell
fate mapping. Nat Methods. 2022;19:159–70.

12. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and
pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19:477.

13. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference
methods. Nat Biotechnol. 2019;37:547–54.

14. Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of
differentiation data. Bioinformatics. 2015;31:2989–98.

15. Bendall SC, Davis KL, Amir E-AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory
detection uncovers progression and regulatory coordination in human B cell development. Cell.
2014;157:714–25.

16. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene
expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

17. Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012;22:457–72.

18. Easwaran H, Tsai H-C, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like
states, and drug resistance. Mol Cell. 2014;54:716–27.

19. Kreso A, Dick JE. Evolution of the Cancer Stem Cell Model. Cell Stem Cell. 2014;14:275–91.

20. van Galen P, Hovestadt V, Wadsworth MH Ii, Hughes TK, Griffin GK, Battaglia S, et al. Single-Cell
RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell.
2019;176:1265–81.e24.

21. Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of
acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/xl65v
http://dx.doi.org/10.1038/s41556-018-0236-7
http://paperpile.com/b/jP4e1f/ac268
http://paperpile.com/b/jP4e1f/ac268
http://paperpile.com/b/jP4e1f/ac268
http://paperpile.com/b/jP4e1f/DIDR1
http://paperpile.com/b/jP4e1f/DIDR1
http://paperpile.com/b/jP4e1f/6OFl
http://paperpile.com/b/jP4e1f/6OFl
http://paperpile.com/b/jP4e1f/ARdZ3
http://paperpile.com/b/jP4e1f/ARdZ3
http://paperpile.com/b/jP4e1f/XG8Mw
http://paperpile.com/b/jP4e1f/XG8Mw
http://paperpile.com/b/jP4e1f/xmtV
http://paperpile.com/b/jP4e1f/xmtV
http://paperpile.com/b/jP4e1f/xmtV
http://paperpile.com/b/jP4e1f/Kmf0g
http://paperpile.com/b/jP4e1f/Kmf0g
http://paperpile.com/b/jP4e1f/1pwmM
http://paperpile.com/b/jP4e1f/1pwmM
http://paperpile.com/b/jP4e1f/ciffw
http://paperpile.com/b/jP4e1f/ciffw
http://paperpile.com/b/jP4e1f/gGG6
http://paperpile.com/b/jP4e1f/gGG6
http://paperpile.com/b/jP4e1f/5snQ
http://paperpile.com/b/jP4e1f/5snQ
http://paperpile.com/b/jP4e1f/5snQ
http://paperpile.com/b/jP4e1f/mlBkb
http://paperpile.com/b/jP4e1f/mlBkb
http://paperpile.com/b/jP4e1f/S0Hoc
http://paperpile.com/b/jP4e1f/n9Uve
http://paperpile.com/b/jP4e1f/n9Uve
http://paperpile.com/b/jP4e1f/vkIOF
http://paperpile.com/b/jP4e1f/ah8QL
http://paperpile.com/b/jP4e1f/ah8QL
http://paperpile.com/b/jP4e1f/ah8QL
http://paperpile.com/b/jP4e1f/7z8xW
http://paperpile.com/b/jP4e1f/7z8xW
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic
Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374:2209–21.

23. Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell
mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587:477–82.

24. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med.
2013;368:2059–74.

25. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic
Malignancies. Cell Stem Cell. 2018;22:157–70.

26. Zhang S, Cui Y, Ma X, Yong J, Yan L, Yang M, et al. Single-cell transcriptomics identifies divergent
developmental lineage trajectories during human pituitary development. Nat Commun. 2020;11:5275.

27. Duffy MF, Ding J, Langston RG, Shah SI, Nalls MA, Scholz SW, et al. Divergent patterns of healthy
aging across human brain regions at single-cell resolution reveal links to neurodegenerative disease.
bioRxiv [Internet]. 2023; Available from: http://dx.doi.org/10.1101/2023.07.31.551097

28. Daniel B, Yost KE, Hsiung S, Sandor K, Xia Y, Qi Y, et al. Divergent clonal differentiation trajectories
of T cell exhaustion. Nat Immunol. 2022;23:1614–27.

29. Bachireddy P, Azizi E, Burdziak C, Nguyen VN, Ennis CS, Maurer K, et al. Mapping the evolution of
T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 2021;37:109992.

30. Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using
Scanorama. Nat Biotechnol. 2019;37:685–91.

31. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data
across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

32. Argelaguet R, Cuomo ASE, Stegle O, Marioni JC. Computational principles and challenges in
single-cell data integration. Nat Biotechnol [Internet]. 2021; Available from:
http://dx.doi.org/10.1038/s41587-021-00895-7

33. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-sequencing data
are corrected by matching mutual nearest neighbors. Nat Biotechnol. 2018;36:421–7.

34. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive
integration of single cell data [Internet]. Available from: http://dx.doi.org/10.1101/460147

35. Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, et al. MOFA+: a statistical
framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21:111.

36. Liu J, Gao C, Sodicoff J, Kozareva V, Macosko EZ, Welch JD. Jointly defining cell types from
multiple single-cell datasets using LIGER. Nat Protoc. 2020;15:3632–62.

37. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell
transcriptomics. Nat Methods. 2018;15:1053–8.

38. Persad S, Choo Z-N, Dien C, Sohail N, Masilionis I, Chaligné R, et al. SEACells infers
transcriptional and epigenomic cellular states from single-cell genomics data. Nat Biotechnol [Internet].
2023; Available from: http://dx.doi.org/10.1038/s41587-023-01716-9

39. Cakir B, Prete M, Huang N, van Dongen S, Pir P, Kiselev VY. Comparison of visualization tools for

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/5J5Wy
http://paperpile.com/b/jP4e1f/5J5Wy
http://paperpile.com/b/jP4e1f/xGOxL
http://paperpile.com/b/jP4e1f/xGOxL
http://paperpile.com/b/jP4e1f/4dSgl
http://paperpile.com/b/jP4e1f/4dSgl
http://paperpile.com/b/jP4e1f/4dSgl
http://paperpile.com/b/jP4e1f/kQ5Tr
http://paperpile.com/b/jP4e1f/kQ5Tr
http://paperpile.com/b/jP4e1f/tdA47
http://paperpile.com/b/jP4e1f/tdA47
http://paperpile.com/b/jP4e1f/863IM
http://paperpile.com/b/jP4e1f/863IM
http://paperpile.com/b/jP4e1f/863IM
http://dx.doi.org/10.1101/2023.07.31.551097
http://paperpile.com/b/jP4e1f/H60Up
http://paperpile.com/b/jP4e1f/H60Up
http://paperpile.com/b/jP4e1f/08W8R
http://paperpile.com/b/jP4e1f/08W8R
http://paperpile.com/b/jP4e1f/slc4V
http://paperpile.com/b/jP4e1f/slc4V
http://paperpile.com/b/jP4e1f/x1PfG
http://paperpile.com/b/jP4e1f/x1PfG
http://paperpile.com/b/jP4e1f/V1kiA
http://paperpile.com/b/jP4e1f/V1kiA
http://dx.doi.org/10.1038/s41587-021-00895-7
http://paperpile.com/b/jP4e1f/zwSL
http://paperpile.com/b/jP4e1f/zwSL
http://paperpile.com/b/jP4e1f/3ddvd
http://paperpile.com/b/jP4e1f/3ddvd
http://dx.doi.org/10.1101/460147
http://paperpile.com/b/jP4e1f/3Cw5h
http://paperpile.com/b/jP4e1f/3Cw5h
http://paperpile.com/b/jP4e1f/B5aMB
http://paperpile.com/b/jP4e1f/B5aMB
http://paperpile.com/b/jP4e1f/UQCCf
http://paperpile.com/b/jP4e1f/UQCCf
http://paperpile.com/b/jP4e1f/4Pg5t
http://paperpile.com/b/jP4e1f/4Pg5t
http://paperpile.com/b/jP4e1f/4Pg5t
http://dx.doi.org/10.1038/s41587-023-01716-9
http://paperpile.com/b/jP4e1f/aRcP7
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


single-cell RNAseq data. NAR Genom Bioinform. 2020;2:lqaa052.

40. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm
for handy network visualization designed for the Gephi software. PLoS One. 2014;9:e98679.

41. Chari T, Banerjee J, Pachter L. The Specious Art of Single-Cell Genomics [Internet]. Available from:
http://dx.doi.org/10.1101/2021.08.25.457696

42. Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, Streets A, et al. Joint probabilistic modeling of
single-cell multi-omic data with totalVI. Nat Methods. 2021;18:272–82.

43. Lotfollahi M, Naghipourfar M, Luecken MD, Khajavi M, Büttner M, Wagenstetter M, et al. Mapping
single-cell data to reference atlases by transfer learning. Nat Biotechnol. 2022;40:121–30.

44. Svensson V, Gayoso A, Yosef N, Pachter L. Interpretable factor models of single-cell RNA-seq via
variational autoencoders. Bioinformatics. 2020;36:3418–21.

45. Ranganath R, Tang L, Charlin L, Blei DM. Deep Exponential Families. 2014 [cited 2022 Dec 11];
Available from: http://dx.doi.org/10.48550/arXiv.1411.2581

46. Ferreira PF, Kuipers J, Beerenwinkel N. Deep exponential families for single-cell data analysis
[Internet]. bioRxiv. 2022 [cited 2024 Oct 25]. p. 2022.10.15.512383. Available from:
https://www.biorxiv.org/content/10.1101/2022.10.15.512383v2.abstract

47. Chari T, Pachter L. The specious art of single-cell genomics. PLoS Comput Biol. 2023;19:e1011288.

48. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality reduction for
visualizing single-cell data using UMAP. Nat Biotechnol [Internet]. 2018; Available from:
http://dx.doi.org/10.1038/nbt.4314

49. Kuchroo M, Huang J, Wong P, Grenier J-C, Shung D, Tong A, et al. Multiscale PHATE identifies
multimodal signatures of COVID-19. Nat Biotechnol. 2022;40:681–91.

50. Otto DJ, Jordan C, Dury B, Dien C, Setty M. Quantifying cell-state densities in single-cell
phenotypic landscapes using Mellon. Nat Methods. 2024;21:1185–95.

51. Stassen SV, Yip GGK, Wong KKY, Ho JWK, Tsia KK. Generalized and scalable trajectory inference
in single-cell omics data with VIA. Nat Commun. 2021;12:5528.

52. Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, et al. Epigenetic plasticity
cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science. 2023;380:eadd5327.

53. Alonso-Curbelo D, Ho Y-J, Burdziak C, Maag JLV, Morris JP, Chandwani R, et al. A
gene–environment-induced epigenetic program initiates tumorigenesis. Nature. 2021;590:642–8.

54. Kopp JL, von Figura G, Mayes E, Liu F-F, Dubois CL, Morris JP 4th, et al. Identification of
Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic
ductal adenocarcinoma. Cancer Cell. 2012;22:737–50.

55. Strobel O, Dor Y, Alsina J, Stirman A, Lauwers G, Trainor A, et al. In vivo lineage tracing defines the
role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology.
2007;133:1999–2009.

56. Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–56.

57. Falini B, Brunetti L, Sportoletti P, Martelli MP. NPM1-mutated acute myeloid leukemia: from bench to

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/aRcP7
http://paperpile.com/b/jP4e1f/AZVqL
http://paperpile.com/b/jP4e1f/AZVqL
http://paperpile.com/b/jP4e1f/1U6Is
http://dx.doi.org/10.1101/2021.08.25.457696
http://paperpile.com/b/jP4e1f/hMsEN
http://paperpile.com/b/jP4e1f/hMsEN
http://paperpile.com/b/jP4e1f/zES4y
http://paperpile.com/b/jP4e1f/zES4y
http://paperpile.com/b/jP4e1f/efPId
http://paperpile.com/b/jP4e1f/efPId
http://paperpile.com/b/jP4e1f/fPlt9
http://paperpile.com/b/jP4e1f/fPlt9
http://dx.doi.org/10.48550/arXiv.1411.2581
http://paperpile.com/b/jP4e1f/3mo7
http://paperpile.com/b/jP4e1f/3mo7
https://www.biorxiv.org/content/10.1101/2022.10.15.512383v2.abstract
http://paperpile.com/b/jP4e1f/wSWbJ
http://paperpile.com/b/jP4e1f/McwRV
http://paperpile.com/b/jP4e1f/McwRV
http://dx.doi.org/10.1038/nbt.4314
http://paperpile.com/b/jP4e1f/Vvz09
http://paperpile.com/b/jP4e1f/Vvz09
http://paperpile.com/b/jP4e1f/CYNK
http://paperpile.com/b/jP4e1f/CYNK
http://paperpile.com/b/jP4e1f/EQ93
http://paperpile.com/b/jP4e1f/EQ93
http://paperpile.com/b/jP4e1f/iaCC
http://paperpile.com/b/jP4e1f/iaCC
http://paperpile.com/b/jP4e1f/ZHmB
http://paperpile.com/b/jP4e1f/ZHmB
http://paperpile.com/b/jP4e1f/jnbi
http://paperpile.com/b/jP4e1f/jnbi
http://paperpile.com/b/jP4e1f/jnbi
http://paperpile.com/b/jP4e1f/VQNX
http://paperpile.com/b/jP4e1f/VQNX
http://paperpile.com/b/jP4e1f/VQNX
http://paperpile.com/b/jP4e1f/hrmZ
http://paperpile.com/b/jP4e1f/hHlf7
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


bedside. Blood. 2020;136:1707–21.

58. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent
somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet.
2012;44:1179–81.

59. Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, Gadrey JY, et al. Therapeutic targeting
of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science.
2020;367:586–90.

60. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of
pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

61. Rodriguez-Meira A, Norfo R, Wen S, Chédeville AL, Rahman H, O’Sullivan J, et al. Single-cell
multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet.
2023;55:1531–41.

62. Heo S-K, Noh E-K, Ju LJ, Sung JY, Jeong YK, Cheon J, et al. CD45CD34CD38CD133 cells have
the potential as leukemic stem cells in acute myeloid leukemia. BMC Cancer. 2020;20:285.

63. Petti AA, Williams SR, Miller CA, Fiddes IT, Srivatsan SN, Chen DY, et al. A general approach for
detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun.
2019;10:3660.

64. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, et al. Densely
interconnected transcriptional circuits control cell states in human hematopoiesis. Cell.
2011;144:296–309.

65. Van Der Maaten Laurens GH, Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning
Research. 2008;9:2579–605.

66. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate
integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

67. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, et al. BCAT1 restricts αKG levels in
AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 2017;551:384–8.

68. Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, Loo CE, et al. The Impact of
Inflammation-Induced Tumor Plasticity during Myeloid Transformation. Cancer Discov.
2022;12:2392–413.

69. Corradi G, Bassani B, Simonetti G, Sangaletti S, Vadakekolathu J, Fontana MC, et al. Release of
IFNγ by Acute Myeloid Leukemia Cells Remodels Bone Marrow Immune Microenvironment by Inducing
Regulatory T Cells. Clin Cancer Res. 2022;28:3141–55.

70. Pianigiani G, Rocchio F, Peruzzi S, Andresen V, Bigerna B, Sorcini D, et al. The absent/low
expression of CD34 in NPM1-mutated AML is not related to cytoplasmic dislocation of NPM1 mutant
protein. Leukemia. 2022;36:1931–4.

71. Collins CT, Hess JL. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets.
Oncogene. 2016;35:1090–8.

72. Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, et al. Molecular synergy underlies the
co-occurrence patterns and phenotype of -mutant acute myeloid leukemia. Blood. 2017;130:1911–22.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/hHlf7
http://paperpile.com/b/jP4e1f/SKXCA
http://paperpile.com/b/jP4e1f/SKXCA
http://paperpile.com/b/jP4e1f/SKXCA
http://paperpile.com/b/jP4e1f/aKoWn
http://paperpile.com/b/jP4e1f/aKoWn
http://paperpile.com/b/jP4e1f/aKoWn
http://paperpile.com/b/jP4e1f/8Wf8r
http://paperpile.com/b/jP4e1f/8Wf8r
http://paperpile.com/b/jP4e1f/NeRPg
http://paperpile.com/b/jP4e1f/NeRPg
http://paperpile.com/b/jP4e1f/NeRPg
http://paperpile.com/b/jP4e1f/GqkMX
http://paperpile.com/b/jP4e1f/GqkMX
http://paperpile.com/b/jP4e1f/gXqCM
http://paperpile.com/b/jP4e1f/gXqCM
http://paperpile.com/b/jP4e1f/gXqCM
http://paperpile.com/b/jP4e1f/oP7o3
http://paperpile.com/b/jP4e1f/oP7o3
http://paperpile.com/b/jP4e1f/oP7o3
http://paperpile.com/b/jP4e1f/8RNbU
http://paperpile.com/b/jP4e1f/8RNbU
http://paperpile.com/b/jP4e1f/zMRa9
http://paperpile.com/b/jP4e1f/zMRa9
http://paperpile.com/b/jP4e1f/aPYFE
http://paperpile.com/b/jP4e1f/aPYFE
http://paperpile.com/b/jP4e1f/LaeEZ
http://paperpile.com/b/jP4e1f/LaeEZ
http://paperpile.com/b/jP4e1f/LaeEZ
http://paperpile.com/b/jP4e1f/IeBzs
http://paperpile.com/b/jP4e1f/IeBzs
http://paperpile.com/b/jP4e1f/IeBzs
http://paperpile.com/b/jP4e1f/i9AV
http://paperpile.com/b/jP4e1f/i9AV
http://paperpile.com/b/jP4e1f/i9AV
http://paperpile.com/b/jP4e1f/RIH5G
http://paperpile.com/b/jP4e1f/RIH5G
http://paperpile.com/b/jP4e1f/xXKW6
http://paperpile.com/b/jP4e1f/xXKW6
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


73. Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM. Expression profiling of CD34+
hematopoietic stem/ progenitor cells reveals distinct subtypes of therapy-related acute myeloid
leukemia. Proc Natl Acad Sci U S A. 2002;99:14925–30.

74. Nazaret, Fan, Pe’er, Azizi. Probabilistic basis decomposition for characterizing temporal dynamics
of gene expression. ICML Workshop on Computational Biology [Internet]. 2022. Available from:
https://icml-compbio.github.io/2022/papers/WCBICML2022_paper_33.pdf

75. Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, Arellano M, et al. The menin inhibitor
revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 2023;615:920–4.

76. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol.
2005;5:375–86.

77. Pan X-N, Chen J-J, Wang L-X, Xiao R-Z, Liu L-L, Fang Z-G, et al. Inhibition of c-Myc overcomes
cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation. PLoS One.
2014;9:e105381.

78. Gao Y, Zhou J-F, Mao J-Y, Jiang L, Li X-P. Identification of the Thyrotropin-Releasing Hormone
(TRH) as a Novel Biomarker in the Prognosis for Acute Myeloid Leukemia. Biomolecules [Internet].
2022;12. Available from: http://dx.doi.org/10.3390/biom12101359

79. Zhang X, Su J, Jeong M, Ko M, Huang Y, Park HJ, et al. DNMT3A and TET2 compete and
cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nat Genet.
2016;48:1014–23.

80. Castillo D, Galvez JM, Herrera LJ, Rojas F, Valenzuela O, Caba O, et al. Leukemia multiclass
assessment and classification from Microarray and RNA-seq technologies integration at gene
expression level. PLoS One. 2019;14:e0212127.

81. Shih AH, Jiang Y, Meydan C, Shank K, Pandey S, Barreyro L, et al. Mutational cooperativity linked
to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell. 2015;27:502–15.

82. Kim J, Park C, Kim KH, Kim EH, Kim H, Woo JK, et al. Single-cell analysis of gastric pre-cancerous
and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis Oncol.
2022;6:9.

83. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional
landscape of mammalian organogenesis. Nature. 2019;566:496–502.

84. Hoffman MD, Blei DM, Wang C, Paisley J. Stochastic variational inference. J Mach Learn Res.

85. Lalchand V, Ravuri A, Lawrence ND. Generalised GPLVM with Stochastic Variational Inference.
International Conference on Artificial Intelligence and Statistics. PMLR; 2022. p. 7841–64.

86. Lawrence N. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent
Variable Models. J Mach Learn Res. 2005;6:1783–816.

87. Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci [Internet].
2019;20. Available from: http://dx.doi.org/10.3390/ijms20020453

88. Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, Del Gaudio N, et al. Longitudinal single-cell
transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer.
2022;21:166.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/FJF1z
http://paperpile.com/b/jP4e1f/FJF1z
http://paperpile.com/b/jP4e1f/FJF1z
http://paperpile.com/b/jP4e1f/IODKx
http://paperpile.com/b/jP4e1f/IODKx
https://icml-compbio.github.io/2022/papers/WCBICML2022_paper_33.pdf
http://paperpile.com/b/jP4e1f/Wu7m3
http://paperpile.com/b/jP4e1f/Wu7m3
http://paperpile.com/b/jP4e1f/GJMKe
http://paperpile.com/b/jP4e1f/GJMKe
http://paperpile.com/b/jP4e1f/yQddC
http://paperpile.com/b/jP4e1f/yQddC
http://paperpile.com/b/jP4e1f/yQddC
http://paperpile.com/b/jP4e1f/3bYoB
http://paperpile.com/b/jP4e1f/3bYoB
http://paperpile.com/b/jP4e1f/3bYoB
http://dx.doi.org/10.3390/biom12101359
http://paperpile.com/b/jP4e1f/AvZKR
http://paperpile.com/b/jP4e1f/AvZKR
http://paperpile.com/b/jP4e1f/AvZKR
http://paperpile.com/b/jP4e1f/o3rtG
http://paperpile.com/b/jP4e1f/o3rtG
http://paperpile.com/b/jP4e1f/o3rtG
http://paperpile.com/b/jP4e1f/MjFwn
http://paperpile.com/b/jP4e1f/MjFwn
http://paperpile.com/b/jP4e1f/uX0a2
http://paperpile.com/b/jP4e1f/uX0a2
http://paperpile.com/b/jP4e1f/uX0a2
http://paperpile.com/b/jP4e1f/gwIzW
http://paperpile.com/b/jP4e1f/gwIzW
http://paperpile.com/b/jP4e1f/h83x3
http://paperpile.com/b/jP4e1f/HEqFS
http://paperpile.com/b/jP4e1f/HEqFS
http://paperpile.com/b/jP4e1f/erjd6
http://paperpile.com/b/jP4e1f/erjd6
http://paperpile.com/b/jP4e1f/bR31a
http://paperpile.com/b/jP4e1f/bR31a
http://dx.doi.org/10.3390/ijms20020453
http://paperpile.com/b/jP4e1f/fiFnY
http://paperpile.com/b/jP4e1f/fiFnY
http://paperpile.com/b/jP4e1f/fiFnY
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


89. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel
marker for human hematopoietic stem and progenitor cells. Blood. 1997;90:5002–12.

90. Herrmann H, Sadovnik I, Eisenwort G, Rülicke T, Blatt K, Herndlhofer S, et al. Delineation of target
expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML.
Blood Adv. 2020;4:5118–32.

91. Teimouri H, Kolomeisky AB. Temporal order of mutations influences cancer initiation dynamics.
Phys Biol [Internet]. 2021;18. Available from: http://dx.doi.org/10.1088/1478-3975/ac0b7e

92. Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang Y-H, Ramabadran R, et al. Mutant NPM1
Maintains the Leukemic State through HOX Expression. Cancer Cell. 2018;34:499–512.e9.

93. Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ, et al. An inflammatory state remodels
the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat Cancer.
2023;4:27–42.

94. Abe M, Lin J, Nagata K, Okuwaki M. Selective regulation of type II interferon-inducible genes by
NPM1/nucleophosmin. FEBS Lett. 2018;592:244–55.

95. Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): A
focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.

96. Carey A, Edwards DK 5th, Eide CA, Newell L, Traer E, Medeiros BC, et al. Identification of
Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease
Progression in Acute Myeloid Leukemia. Cell Rep. 2017;18:3204–18.

97. Morganti C, Ito K, Yanase C, Verma A, Teruya-Feldstein J, Ito K. NPM1 ablation induces HSC aging
and inflammation to develop myelodysplastic syndrome exacerbated by p53 loss. EMBO Rep.
2022;23:e54262.

98. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS
pathogenesis. Blood. 2018;132:1553–60.

99. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World
Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic
Neoplasms. Leukemia. 2022;36:1703–19.

100. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the
classification of chronic (mature) B and T lymphoid leukaemias. French-American-British (FAB)
Cooperative Group. J Clin Pathol. 1989;42:567–84.

101. Kühn MWM, Song E, Feng Z, Sinha A, Chen C-W, Deshpande AJ, et al. Targeting Chromatin
Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia. Cancer Discov.
2016;6:1166–81.

102. Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, et al. ArchR is a scalable
software package for integrative single-cell chromatin accessibility analysis. Nat Genet.
2021;53:403–11.

103. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
learning in Python. the Journal of machine Learning research. 2011;12:2825–30.

104. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/8aVU7
http://paperpile.com/b/jP4e1f/8aVU7
http://paperpile.com/b/jP4e1f/VR0ja
http://paperpile.com/b/jP4e1f/VR0ja
http://paperpile.com/b/jP4e1f/VR0ja
http://paperpile.com/b/jP4e1f/Y1Atw
http://paperpile.com/b/jP4e1f/Y1Atw
http://dx.doi.org/10.1088/1478-3975/ac0b7e
http://paperpile.com/b/jP4e1f/TXGgr
http://paperpile.com/b/jP4e1f/TXGgr
http://paperpile.com/b/jP4e1f/AHHnv
http://paperpile.com/b/jP4e1f/AHHnv
http://paperpile.com/b/jP4e1f/AHHnv
http://paperpile.com/b/jP4e1f/TSsaj
http://paperpile.com/b/jP4e1f/TSsaj
http://paperpile.com/b/jP4e1f/jFoeK
http://paperpile.com/b/jP4e1f/jFoeK
http://paperpile.com/b/jP4e1f/G5u1D
http://paperpile.com/b/jP4e1f/G5u1D
http://paperpile.com/b/jP4e1f/G5u1D
http://paperpile.com/b/jP4e1f/g6t6f
http://paperpile.com/b/jP4e1f/g6t6f
http://paperpile.com/b/jP4e1f/g6t6f
http://paperpile.com/b/jP4e1f/e6A74
http://paperpile.com/b/jP4e1f/e6A74
http://paperpile.com/b/jP4e1f/3qDCQ
http://paperpile.com/b/jP4e1f/3qDCQ
http://paperpile.com/b/jP4e1f/3qDCQ
http://paperpile.com/b/jP4e1f/XoTct
http://paperpile.com/b/jP4e1f/XoTct
http://paperpile.com/b/jP4e1f/XoTct
http://paperpile.com/b/jP4e1f/QLQHj
http://paperpile.com/b/jP4e1f/QLQHj
http://paperpile.com/b/jP4e1f/QLQHj
http://paperpile.com/b/jP4e1f/Nzqq
http://paperpile.com/b/jP4e1f/Nzqq
http://paperpile.com/b/jP4e1f/Nzqq
http://paperpile.com/b/jP4e1f/8kfj
http://paperpile.com/b/jP4e1f/8kfj
http://paperpile.com/b/jP4e1f/TRD6
http://paperpile.com/b/jP4e1f/TRD6
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


105. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring
transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods.
2017;14:975–8.

106. Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. JASPAR: an open-access
database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004;32:D91–4.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

http://paperpile.com/b/jP4e1f/3ne9
http://paperpile.com/b/jP4e1f/3ne9
http://paperpile.com/b/jP4e1f/3ne9
http://paperpile.com/b/jP4e1f/ECkB
http://paperpile.com/b/jP4e1f/ECkB
https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS1

The Decipher framework2

Given a dataset of single-cell gene expression (xi,g) of N cells and G genes, Decipher models the expression of genes3

in cells by learning multiple hidden representations of each cell, at increasingly finer detail: the Decipher components v4

gives a high-level two-dimensional representations, and the ten-dimensional Decipher latent factors z are more refined5

representations of cells. To achieve this, Decipher successively combines multiple neural networks in a probabilistic6

framework and successively generates hidden representations with increasing dimensions (Fig. 1b).7

Decipher is a generative model that extends traditional Variational AutoEncoder models (such as scVI and others [24,8

25]) by adding an additional neural network, encoding a higher level two-dimensional latent space on top of their latent9

space. Importantly, this extra layer allows Decipher to model more complex cell state distributions with potentially10

dependent latent space factors; it provides an interpretable decomposition of the latent factors and a ready-to-use11

visualization of the data. Moreover, the top two-dimensional Decipher components enable visualization of the space12

directly from the model without additional dimensionality reduction. To fit Decipher to data from multiple samples,13

the samples are simply concatenated.14

Fitting the probabilistic model defined by Decipher is done with amortized variational inference [5]. In other words,15

the Decipher model and the Decipher inference together form a special kind of Variational Auto-Encoder [21], with16

two nested encoders and two decoders, allowing it to encode and decode from any level of representation to any other17

level of representation (Fig. 1b), which is a novelty of our approach.18

The Python code implementing our method is available at https://github.com/azizilab/decipher. For each method19

presented below, we reference its corresponding Python function. Our Python code follows the architecture of the20

scanpy package [43], with computation functions in a .tl submodule and the plotting functions in a .pl submodule.21

In the code snippets of the methods below, we assume that we have imported the decipher package as follows import22

decipher as dc and that the data of interest is in an AnnData object called adata. For instance, training Decipher is23

done with dc.tl.decipher_train(adata) and plotting the Decipher space colored by cell type is performed with24

dc.pl.decipher(adata, color="cell_type"). The Decipher model is also implemented in the scvi-tools25

package [12].26

The generative model27

Decipher first models each cell i as a two-dimensional standard normal variable vi, termed Decipher components, rep-28

resenting the two largest axes of cell heterogeneity, such as cell type or cancer progression stages. This representation29

(vi) directly enables two-dimensional visualization of the data. A learnable neural network f – a decoder – transforms30

each vi into a distribution over medium-dimensional vectors, a latent space representing cell state.31

Decipher samples a cell state zi conditionally on vi from the distribution induced by f(vi); the zi contains richer32

information about cell i than vi. The zis are medium-dimensional. They are substantially lower dimensional than33

the number of genes but higher than vi and can thus capture more information regarding cell variability (we set the34

dimension to 10 in our experiments). We refer to the medium-dimensional variables zi as Decipher latent factors.35

These are comparable to the latent variables of other VAE-based or matrix-factorization-based methods [23, 25, 31].36

Then, a second neural network h – a second decoder – with a softmax output layer, transforms the state zi into the37

normalized gene expression values (µi,g)1→g→G = h(zi) expressed in cell i. These normalized expressions are finally38

scaled by the (observed) library size of the cell, li, and the observed gene counts xig are sampled from a negative39

Binomial distribution with mean µi,g and dispersion ωg specific to each gene g. This generative process is represented40

in Fig. 1b and is described mathematically as follows:41

1
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ωg ε gene dispersion → R>0

h, f ε decoder neural networks

vi ↑ N (0, I2) ε Decipher components → R2

zi ↑ N (fmean(vi), fvar(vi)) ε Decipher latent factors → RL ↓ R10

µi,g = h(zi)g ε normalized gene expression µi → RG

xi,g ↑ NB(ϑi · µi,g, ωg) ε observed gene expression xi → RG

The mapping functions f and h are neural networks. In practice, Decipher uses a single linear layer for h as suggested42

by Svensson et al. [36]. Meanwhile, f has two linear layers interleaved with ReLU activations. The last layer of f43

produces a vector in R2L that is split to form two outputs: fmean → RL and fvar → RL. The choice of negative binomial44

distribution can be replaced by other distributions if the user believes it is more appropriate for the data at hand.45

High-level summary. The Decipher components vi represent the high-level organization of the cells and form the46

Decipher space. This space provides a ready-to-use 2D representation of the data without requiring further projection47

methods such as UMAP or t-SNE. It offers direct visual access inside the probabilistic model. Then, through the neural48

network f , each vi induces a cell state zi, a more detailed representation of cell i. The space of the zi corresponds to49

the latent space of traditional variational-autoencoders.50

Inference for Decipher’s deep probabilistic model51

Given the observed gene expression data D = (xi,g)
1→i→N
1→g→G and the parameters (ωg)1→g→G f ,h, the Decipher’s prob-52

abilistic model defines a posterior p (v, z | D) over the latent variables v = (vi)1→i→N , z = (zi)1→i→N . We use53

variational inference [5, 17, 41] to approximate this exact posterior with a variational approximation q (v, z).54

The structure of the variational family. We use amortization over the local variables vi, zi in function of the
observations xi, such that the variational family becomes: q(v, z) =

∏N
i=1 q(vi, zi|xi) which always factorizes as

q(v, z) =
N∏

i=1

q(vi|zi, xi)q(zi|xi).

The amortized distributions are set to diagonal Gaussian distributions with parameters (mean and variance) given by
neural networks – the encoders. The first neural network transforms xi to the mean and the variance of the distribution
q(zi|xi), and the second neural network transforms (zi, xi) to the mean and the variance of the distribution q(vi|zi, xi).
We denote them as: d↑z

mean(x), d
↑z
var (x), d

↑v
mean(x, z), and d

↑v
var (x, z), such that:

q(zi|xi) = N (d↑z
mean(xi), d

↑z
var (xi)), and q(vi|zi, xi) = N (d↑v

mean(xi, zi), d
↑v
var (xi, zi))

The variational inference objective. Variational inference seeks to minimize the KL divergence between the vari-
ational posterior q and the exact posterior p( · | D). It is equivalent to maximizing a lower bound of the evidence,
called the ELBO [5]:

ELBO(q) =
N∑

i=1

Eq(vi,zi)

[
∑

g

log p(xi,g|zi, ωg) + log
p(zi|vi)
q(zi|xi)

+ ϖ log
p(vi)

q(vi|zi, xi)

]
,

where ϖ is a scalar controlling the importance of the prior p(vi), between 0 (no prior) and 1 (standard ELBO) [14].55

Because we chose the variational posteriors q to be Gaussian distributions, we can reparametrize the expectations to56

sample unbiased low-variance estimates of the ELBO. To obtain a sample for (zi, vi) from q(vi, zi|xi) = q(vi|zi, xi)q(zi|xi),57

we first sample a reparametrized zi from q(zi|xi) and then sample a reparametrized vi from q(vi|zi, xi) [21].58
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The gradients are then computed using automatic differentiation. To scale up to large datasets of cells, we further59

subsample the outer sum using a minibatch size of 64 observations to perform stochastic variational inference [15].60

We use the Adam optimization algorithm [20] to execute the gradient updates. The code is implemented in Python61

using Pyro [3].62

Because we have little prior on the distribution of the Decipher components v (remember that a limitation of other63

methods is that the prior enforces unrealistic independence between latent variables), we set ϖ to a low value 1e ↔ 164

in our experiments.65

The Decipher model can be fitted using the function dc.tl.decipher_train(adata).66

Generating the Decipher space v and the latent space z. Once the inference is performed, the variational poste-67

riors q(v, z|x) are fitted to the data. The “encoders” d
↑z
mean(x), d

↑z
var (x), d

↑v
mean(x, z), and d

↑v
var (x, z) give the posterior68

expected values of vi and zi given each cell xi. For each cell xi, we compute (as in any auto-encoder architecture):69

ẑi = d
↑z
mean(xi) and v̂i = d

↑v
mean(xi, zi).70

The Decipher space v and latent z are automatically computed when calling dc.tl.decipher_train. They are71

stored in adata.obs["decipher_v"] and adata.obs["decipher_z"].72

Rotating and aligning the Decipher space. Decipher does not use sample or batch IDs when learning the latent73

variables, the encoders and the decoders. However, in a post-processing step, the sample IDs (or other annotations) can74

be optionally used to align Decipher components to represent the most shared and most distinct information between75

the samples (e.g. perturbed and normal conditions), thus facilitating downstream analysis. This is accomplished by76

rotating or flipping the v components. Like most auto-encoder models (e.g., scVI [25]), the axes of the latent spaces77

v and z can be rotated or flipped without changing the likelihood of the data. To automatically rotate and flip the78

Decipher components given the user preferences, the user can specify if some cell labels should be aligned with a79

given component. For example, in our analysis, we choose to align the cells’ sample labels (Healthy and AML) along80

Decipher 2 and the cells’ cell-type labels (ordered from blast0 to blast3) along Decipher 1.81

Given cell labels and their target alignment axis (e.g., ordered cell types along Decipher 1, ordered cell sample IDs82

along Decipher 2), we try 100 rotations (from 0 to 2ϱ) and all possible axis flips (2 for v1, 2 for v2), and pick the83

setting that maximizes the correlations between the cell labels and their target Decipher axis.84

This is accomplished by calling the dc.tl.decipher_rotate_space function.85

Trajectory paths construction86

The Decipher components (vi) organize cells along visual trajectories. For instance, there are two trajectories in the87

joint AML-healthy data: one for healthy maturation and one for AML progression (Fig. 4c). The trajectories could88

hypothetically be traced manually by the user. Still, we propose a simple automated determination of the trajectories89

using, as input, the marker genes for the beginning and the end of the trajectories.90

Given the cell representations (vi) in the Decipher space and (zi) in the latent space, we first cluster cells using the91

Leiden algorithm [37] on the latent representations (zi) – we use the representation (zi) to cluster the cells because they92

contain more detailed information about the cells than the (vi) (Fig. S6a, left). We then compute a minimum spanning93

tree between the clusters’ centroids using the distances in the Decipher space – we use the distance in Decipher space94

because the high-level geometry of the data is better captured by the (vi) (Fig. S6a, middle left). Finally, we use the95

provided marker genes to identify the trajectories’ beginning and end, from which we compute the shortest path in96

the minimum spanning tree (Fig. S6a, middle right). We use linear interpolation to form parameterized trajectories97

ς : t ↗↘ v(t) in the Decipher space (Fig. S6a, right). The time t that parametrizes the trajectories is called the Decipher98

time, and we compute one trajectory per sample in our analysis (ςAML and ςhealthy). If the analysis requires it, more99

trajectories or less could be computed.100
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The procedure is described in Algorithm 1 and is visually represented in Extended Data Fig. 4a. The trajectories are101

computed using the function dc.tl.trajectories.102

Algorithm 1 Trajectory paths construction with Decipher

Input: (vi), (zi), start and end marker genes for each trajectory j: (g(s)j , g
(e)
j ).

Output: Trajectories (ςj : v ↗↘ ςj(v))j
Partition the cells in clusters (Cm) using the Leiden algorithm applied on the (zi).
Compute the centroid of the clusters in the Decipher space: µm = 1

|Cm|
∑

k↓Cm
vk

Compute a minimum spanning tree between the clusters’ centroids (distances computed in Decipher space)
for each trajectory j do

Identify starting and ending cluster expressing the markers:
sj ≃ argmaxm

1
|Cm|

∑
k↓Cm

x
k,g(s)

j

ej ≃ argmaxm
1

|Cm|
∑

k↓Cm
x
k,g(e)

j

Find shortest path from Csj to Cej in the tree.
Create a parametrized curve v ↗↘ ςj(v) linearly interpolating the obtained path.

end for

Trajectory alignment using Decipher time. While trajectory alignment approaches e.g. with dynamic time warp-103

ing [8, 18], can alter the relative lengths of trajectories by locally compressing or stretching them and potentially104

missing rare cell states, our jointly inferred Decipher time obtains a common time axis for both trajectories. Decipher105

assigns a pseudo-time value to each location along the trajectories, called the Decipher time. This is determined by106

calculating the curvilinear coordinate t along each trajectory within the Decipher space. To assign a Decipher time to107

any cell from our data, we project the cells onto the trajectories. That is, we compute for each cell i in each sample j108

(healthy or AML), the closest point ςj(t↔) on the dataset-specific trajectory (ςhealthy or ςAML), and assign the time of109

this trajectory point t↔ to cell i (Fig. 1c). The Decipher time is computed using the function dc.tl.decipher_time.110

Reconstruction of gene expression by Decipher. Given a trajectory ς of Decipher components, we can obtain the111

gene expression along this trajectory using the decoder neural networks in the Decipher probabilistic model. Indeed,112

we recall that the encoders and the decoders in the Decipher model can convert any gene expression into Decipher113

components and vice versa. Mathematically, given some Decipher components on the trajectory v := ς(t), we use114

the decoders to compute the associated expected latent factors z := fmean(v), followed by the expected normalized115

gene expressions µ := h(z), that can further be scaled up to the desired library size by multiplying it by ϑ. Because116

Decipher is a probabilistic model, it is also possible to obtain probabilistic gene expression samples instead of a single117

estimate. This is particularly useful to obtain some model uncertainty around the reconstructed gene expression (Fig.118

5a). To achieve this, we sample multiple latent factors given the Decipher components as zm ↑ N (fmean(v), fvar(v))119

(instead of just fmean(v)) and we compute their expected gene expression µm = h(zm).120

The Decipher gene expression patterns are computed using the function dc.tl.gene_patterns.121

Reconstruction of gene expression by scVI. Like Decipher, scVI [12] has a latent space and a decoder that can122

reconstruct gene expression from a latent representation z. Instead of having a low-dimensional space v that jointly123

represents the healthy and disease sample, scVI is given the label (healthy or disease) as a batch variable. Once124

the model is learned, scVI produces batch-corrected gene expression data for each sample by manually changing125

the batch label from one sample to the other, as described in https://docs.scvi-tools.org/en/stable/api/126

reference/scvi.model.SCVI.html#scvi.model.SCVI.get_normalized_expression (accessed on July 10,127

2023).128
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Basis decomposition129

To quantify the difference in patterns between two trajectories, we need a metric that accounts for the temporal order of130

cells – two genes may have the same mean expression value but opposite patterns, e.g., ascending versus descending131

along trajectories. Existing methods that encode temporal dependencies are limited in modeling assumptions and132

scalability. For instance, tradeSeq [39] performs trajectory-based differential expression; however, approximating gene133

patterns with splines may not be appropriate for complex transcriptional programs, e.g., with cascades of mutations134

leading to cancer. Additionally, relying on built-in denoising limits compatibility with preprocessed data (e.g., from135

VAEs). Methods such as DPGP [27] utilize Gaussian Processes model distributions of all functions over time; however,136

they are computationally expensive. This motivates a metric that not only accounts for the order of cell states and137

uncertainty but is generalizable and scalable to the size of standard single-cell datasets. For this, we develop a method138

that decomposes every gene pattern on a basis of dominant patterns learned with neural networks. Comparing different139

patterns then becomes a comparison of their basis weights.140

The data. The input data for the basis decomposition method is the collection of gene patterns observed over a time141

or pseudotime axis in different conditions, such as normal, disease, or perturbed (Fig. 5a). Similar to the trajectory142

φ : t ↗↘ φ(t) =: v that maps pseudo-time to Decipher components, we define a gene pattern µg,c for a gene g under143

condition c to be the function t ↗↘ µg,c(t) that represents the expected expression of gene g at time t in condition144

c. With Decipher, these can be the gene expression patterns reconstructed from the inferred trajectories. In a more145

general setting, these patterns can be obtained with time-series bulk RNA-seq or trajectory inference methods [34, 38],146

applied in advance to single-cell RNA-seq data, or other dynamic features, such as chromatin accessibility (measured147

with ATAC-seq) or protein expression (CITE-seq).148

The set of all genes is G, and the set of conditions is C. For simplicity of the exposition, we restrict the conditions149

to C = {healthy, disease}. The input data is the collection of functions D = (µg,c)g↓G,c↓C . The data has |G| · |C|150

observations, each of which is a function. In the proposed probabilistic model, each pattern t ↗↘ µg,c(t) is considered151

a single observation.152

The model. In light of commonly used generative models [4], the proposed model is a linear factor model operating153

in function space. For gene g and condition c, the model associates the data point µg,c with a latent scalar sg,c – the154

gene scale – and a latent vector ϖg,c of K dimensions – the gene shape. Each dimension k corresponds to a latent155

basis pattern t ↗↘ bk(t). The ϖg,c,k are coefficients for the function µg,c in this basis. The coefficient sg,c is the156

intrinsic scale of gene c in condition g, which will scale up or down the pattern computed from the bases, which, in157

contrast, are constrained to be between 0 and 1. The observations µg,c and the latent basis bk are functions. The scale158

sg,c and the weights ϖg,c,k combine the latent bases bk to generate the observed function µg,c. That is, informally,159

µg,c ↓ sg,c
∑K

k=1 ϖg,c,kbk. Each basis function bk forms a representative pattern shared by multiple genes.160

The weights ϖg,c,k. To ensure the interpretability of the weights, the model mimics methods like mixture or topic
models [6] and draws positive weights that sum to 1. With this, a non-zero weight ϖg,c,k signifies that gene g in
condition c exhibits the representative pattern k. Specifically, the weights vectors ϖg,c are drawn independently from
a Dirichlet distribution with concentration parameter [↼, ↼, ..., ↼], denoted as Dir(↼), and with density

p(ϖ|↼) = 1

B(↼)

K∏

k=1

ϖ
ω↗1
k ,

where B(↼) = !(↼)K/!(K↼) and ! is the Gamma function. In terms of negative log-likelihood, this prior induces a161

regularization of the coefficients that will lead to sparse ϖk when ↼ < 1 and ϖ closer to 1
K when ↼ > 1. We choose162

↼ < 1 to associate the basis with dominant patterns and thus obtain a better interpretability of the basis.163

The function basis bk. To sample the basis functions bk, we represent them as neural networks and sample each bk

by drawing its neural network parameters. Concretely, each basis function is modeled by a one-dimensional neural
network with two hidden layers of 32 units each, followed by the tanh activation. The neural network bk is of the
form

bk : R ↘ R32 ↘ R32 ↘ R
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and its parameters are denoted φk. Each φk is sampled from a centered diagonal normal distribution, and the variance164

of each of its coordinates is set to the inverse of the input dimension of the linear layer in which it appears. The study165

of infinite neural networks in Neal [28] demonstrates that with wide hidden units (here 32 ⇐ 1) and such a prior on166

the parameters, the induced prior in function space is close to a Gaussian process. Gaussian processes are used in167

other methods [27] but are hardly scalable. Using neural networks for efficient computations solves the problem. The168

induced prior in function space is denoted by ↽. Finally, to design more interpretability for the gene scale sg,c, we169

normalized the sampled basis by their maximum value so that the maximum value reached by a basis is 1.170

The gene scales sg,c. The gene scales sg,c are learned as variational parameters (no variational distributions), as the171

gene scales can greatly vary between genes.172

The observations µg,c. Finally, the gene pattern µg,c is generated from a distribution parameterized by
∑

k ϖg,c,kbk173

and the scale sg,c. More specifically, µg,c is sampled from a Gaussian process1 with mean sg,c ·
∑

k ϖg,c,kbk and with174

a white Gaussian noise kernel (x, x↘) ↗↘ ⇀
2
⇁x,x→ of variance ⇀

2.175

The generative process is represented graphically in Fig. 5a and proceeds as follows:176

1. For each factor dimension k → !1,K", draw a basis function bk from the function prior: bk ↑ ↽(bk) (that is177

draw weights φk according to the prior detailed above)178

2. For each gene g, and condition c do:179

(a) For each factor dimension k, draw the basis weight ϖg,c,k ↑ E(↼)180

(b) Draw the observed function µg,c from µg,c ↑ GP
(
sg,c ·

∑

k

ϖg,c,kbk, (x, x
↘) ↗↘ ⇀

2
⇁x,x→

)
.181

For simplicity of notations, the φk are grouped in parameter φ, and the ϖg,c,k into parameter ϖ.182

The inference. We learn an approximate posterior on the model variables q(bk,ϖk,g,c, sg,c) using variational infer-183

ence implemented in the Python probabilistic modeling library Pyro [3], with automatic guides.184

The basis decomposition is computed using the function dc.tl.basis_decomposition.185

The disruption scores. From the inferred model parameters, we design multiple disruption scores that inform us of186

different types of disruptions for the same gene across two conditions c1 = healthy and c2 = disease.187

• The scale disruption highlights the difference in gene scale between the two conditions, e.g., a gene that is188

up-regulated in one of the conditions. It is defined as | log sg,c1 ↔ log sg,c2 |.189

• The shape disruption highlights the difference in gene shape between the two conditions, e.g., a gene that190

activated later in one of the conditions and earlier in another. It is defined as ||ϖg,c1 ↔ ϖg,c2 ||.191

• The combined disruption is a combination of both disruption scores to capture a general high-level disruption192

score, including both shape and scale. It is defined as || log(sg,c1ϖg,c1)↔ log(sg,c2ϖg,c2)||.193

The disruption scores are computed using the function dc.tl.disruption_scores.194

1Because the Gaussian Process is used here only to define the distribution of the observations, and not to sample an unobserved latent variable,
there is no computational difficulty in using it.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data generation195

Simulated data196

To evaluate Decipher’s ability to identify cell state evolution trajectories within its latent space, we simulate data197

with ground-truth trajectories Fig. 2, fit the Decipher model on this data, and evaluate the quality of the trajectory198

reconstruction.199

We simulate data in several steps:200

1. Sample random locations along the 2d continuous trajectories of Fig. 2a.201

2. Remove some of the locations up to a certain percentage to simulate rare/low-sample cell state transitions: 100%202

in Fig. 2a, 90% and 95% in Fig. b and a varying percentage in Fig. c.203

3. The remaining locations are denoted (zi) and are the ground truth cell states.204

4. In particular, we consider the first coordinate of zi to be the pseudotime of the cell, noted ti = zi,1.205

5. Randomly perturb the ground truth cell states to simulate noise ⇀: z↘i ↑ N (zi,⇀2).206

6. Sample randomly the weights and biases of a neural network f with output dimension of size d (in our exper-207

iments d = 500). The neural network is used as a random function to nonlinearly transform the cell state into208

higher dimensional gene expression.209

7. Use this neural network to map the ground truth cell states to the synthetic gene expression: xi = f(z↘i).210

With this simulation, we obtain random gene expression data (xi) that is organized along an underlying continuous211

trajectory with possible rare transitions.212

Evaluation metric on simulated data213

We evaluate the quality of a latent space (z↘i) using the global preservation metric presented in Chari & Pachter [9].
We present it here briefly. Our simulation provides ground-truth cell states (the zi). We cluster those cell states
into 20 clusters using k-means. We denote Cj the indices of cells in cluster j. Then, the global preservation metric
from Chari & Pachter [9] computes the pairwise distances between each cluster in the ground-truth cell state space
di,j =

∑
(i,j)↓Ci≃Cj

⇒zi ↔ zj⇒, as well as in the new latent space d
↘
i,j =

∑
(i,j)↓Ci≃Cj

⇒z↘i ↔ z
↘
j⇒. The global

preservation metric is then the average Kendall-tau correlation between the distances to each cluster in ground-truth
space vs new space:

1

20

∑

i

τ((di,j)
20
j=1, (d

↘
i,j)

20
j=1).

Higher is better, with a maximum of 1, indicating a perfect correlation of cluster ordering between ground truth and214

new latent space. The results are presented in Figure 2c.215

AML data collection216

The TET2mut AML cohort consists of 12 cryopreserved (DMSO) BM AML samples from the Banque de cellules217

leucémiques du Québec (BCLQ) biobank, with 10 patient specimens collected at the time of diagnosis, and two218

specimens from the same patient, at diagnosis and relapse (Table 3). The DNMT3Amut AML cohort consists of 5219

cryopreserved (DMSO) BM AML patient samples. FAB information for samples was provided by BCLQ (Table 3).220

Karyotyping, as well as mutation (variant) calling, was performed via bulk RNA-sequencing as part of the Leucegene221
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project with data deposited on GEO with accession IDs GSE106272, GSE49642, GSE52656, GSE62190, GSE66917,222

and GSE67039.223

All samples, as well as sorted cells, were profiled using 10X Genomics Chromium Single-cell 3’ for scRNA-seq. For224

scATAC-seq, cells were subjected to 10X Genomics Chromium Single Cell ATAC Reagent Kits User Guide (v1.1225

Chemistry). The resulting nuclei suspension was subjected to a transposition reaction for 60 min at 37°C and then en-226

capsulated in microfluidic droplets using a 10X Chromium instrument following the manufacturer’s instructions with227

a targeted nuclei recovery of approximately 5,000. Barcoded DNA material was cleaned and prepared for sequencing228

according to the Chromium Single Cell ATAC Reagent Kits User Guide (10X Genomics; CG000168 RevA). Purified229

libraries were assessed using a Bioanalyzer High-Sensitivity DNA Analysis kit (Agilent) and sequenced on an Illu-230

mina HiSeq 2500 (High Output) and NovaSeq platform at approximately 100 million reads per sample (around 5,000231

nuclei) at MSKCC’s Integrated Genomics Operation Core.232

Flow cytometry activated cell sorting (FACS). For immature cell enrichment, FACS-purified CD34+ or PROM+233

cells were subjected to single-cell RNA sequencing. Cryopreserved mononuclear cells were thawed into 10ml of234

prewarmed FACS buffer (phosphate-buffered saline (PBS) + 2% fetal bovine serum). Cells were pelleted at 300 ⇑G235

for 5 minutes and washed again with FACS buffer. Cells were then resuspended in FACS buffer containing Human236

TruStain FcX™ (Fc Receptor Blocking Solution; Biolegend #422301) for 15 minutes at 4°C. Antibodies against237

CD34 (Clone 561; FITC Biolegend 343603) and CD133 (clone 7; PE Biolegend 372803) were subsequently added,238

and cells were stained for an additional 15 minutes at 4°C. Cells were then washed twice with 3ml of FACS buffer239

and resuspended in FACS buffer with DAPI. Cell sorting was performed on a Sony SH800.240

Data pre-processing and analysis241

Data pre-processing Quantification of counts was done with SEQC [2], and 10X Genomics Cellranger [44]. Counts242

outputs were loaded into AnnData format using scanpy 1.7.2 [43]. Cells with low library size were filtered out, with243

the filtering threshold being selected by the knee-point of a histogram of the log10 of the total counts per cell. We244

obtained a median of 10,504 cells per sample and a median of 5165 molecules per cell after filtering. Data were245

then normalized by median library size using sc.pp.normalize_per_cell. Doublet detection was performed using246

DoubletDetection [13], with 25 iterations. scATAC FASTQ files for each sample were preprocessed to a cell-by-peak247

count matrix through the CellRanger ATAC pipeline [33] with modifications as described in [1].248

Annotation of AML TET2 cohort All cells from unsorted AML samples were considered (Fig. S2a,b). PhenoGraph249

[22] clustering was run using 100 principal components and 15 nearest neighbors. Annotation of clusters with low250

counts or high mitochondrial reads was performed by visual analysis of boxplots for the log10 of counts per cluster, as251

well as the fraction of reads belonging to mitochondrial genes compared to all genes. We further annotated lymphoid252

and erythroid clusters using scanpy’s dotplot function to visualize key gene markers. We were able to identify these253

clusters by analyzing the fraction of cells in each cluster expressing key marker genes as well as the mean expression.254

Cells forming distinct low-count clusters and additional clusters with high mitochondrial fraction, using Phenograph255

clustering on a per-sample basis, were additionally removed, resulting in a global cohort of 104,116 cells.256

To annotate the maturation stages of leukemic blasts, we computed correlations (scipy.stats.pearsonr) between257

the mean expression of each cluster and bulk gene expression data from sorted HSPCs [29]. The correlation calculation258

was limited to the 5277 most varying genes, 3475 of which overlapped with bulk data. Non-significant values (p >259

0.0005) were removed (Fig. S2c). To control for cluster size, Shannon Diversity (Fig. S2c) was computed for the260

distribution of patient IDs in subsamples of N = 1000 (approximating the median cluster size) cells from each cluster261

and averaged across 20 iterations. Paired diagnosis-relapse samples (AML9, AML10) (Fig. S2c) annotations were262

considered together as they are phenotypically very similar (Fig. S2a). Clusters are ordered within cell-type by263

decreasing diversity (Fig. S2c).264

Mutation identification and metrics265
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We implemented a mutation calling protocol in order to identify mutations in NPM1 and DNMT3A. We first sorted266

and indexed the patient bam files using samtools [10], then reduced the file to the region containing the gene of267

interest. The NPM1 gene was analyzed from chromosome position 5:171387116-171411137, and the DNMT3a gene268

was analyzed from chromosome position 2:25230961-25344590. Files were then merged and indexed, then converted269

to FASTA format. The indexed bam file was then loaded into the Integrative Genomics Viewer [32], and the alignments270

were visually analyzed for the presence of the mutation. If a mutation is present, a range of 5-20 base pairs are selected271

for subsequent single-cell analysis (Supplementary Table 1). For single-cell annotation of mutations, we used the272

previously generated FASTA file and the mutated sequence identified for each patient to search for the presence of the273

mutated sequence in individual cells.274

Because the mutation state may be heterozygous (a cell may have both mutant and wild-type labels), most of our275

subsequent analysis utilizes our defined mutation proportion for each cell. Since our detection of mutation is depen-276

dent on expression, which is affected by dropouts in scRNA-seq, we compute an average mutation proportion in the277

neighborhood of each cell. To compute the mutation proportion, we find the 30 nearest neighbors of each cell on the278

truncated SVD decomposition (100 components) of the normalized data. The mutation proportion for each cell is then279

m/(m + w + 1e↗10), where m = the number of cells bearing the mutated copy of the gene and w = the number of280

cells bearing the wild-type copy of the gene among the 30 neighbors. The heterozygous NPM1 mutation is detected281

in 5-39 % of cells in each of the unsorted samples.282

Verification of immature cell enrichment in sorted samples283

The primary purpose of the cell sorting was to enrich the populations of CD34+ and PROM1+ immature cells in the284

data (Fig. S2d). To verify that this enrichment was achieved, we first performed a visual analysis of the UMAP285

computed on the subset of cells in AML1 originating from the unsorted collection process first, and compared it with286

the UMAP of cells once the sorted cells were included with the unsorted cells. We verified that enrichment of PROM1287

and CD34, along with cells with low NPM1 mutation proportion, was achieved in the UMAP (S2e). We also quantified288

the expression of CD34 and PROM1 in each of four categories: immature and non-immature cells in the unsorted cells289

only and immature and non-immature cells in both sorted and unsorted cells. All visualization was performed using290

scanpy [43].291

Cell type mapping onto the DNMT3A cohort292

To extend the annotations from the TET2 cohort to patients in the DNMT3a cohort, we combined the data for all293

patients in the TET2 cohort, normalizing by median library size and log transforming across the entire cohort. Cells294

were then grouped based on their prior cell type annotations, and 700 differentially expressed genes were identified295

per cell type using the T-test version of scanpy’s [43] rank_genes_groups() function. Mitochondrial and Ribosomal296

genes were excluded from the gene sets. Cells in the DNMT3A cohort were also combined across patients, normalized297

by median library size, and log-transformed. Cells were then split into clusters using PhenoGraph [22], computed298

using 100 principal components and k=5. We then computed the cluster centroids of the PhenoGraph clusters in the299

DNMT3a cohort and the cell types of the TET2 cohort by taking the mean across cells in the cluster, limiting to the300

differentially expressed genes. Pearson correlation (using scipy 1.7.0 [40]) was computed between the centroids of301

the two cohorts, and each DNMT3A cluster was labeled with the cell type of the TET2 cell type cluster to which it302

had the greatest correlation coefficient. We can then apply Decipher on these patients, following our standard analysis303

pipeline (Fig. S11a).304

Benchmarking. We evaluated the performance of Decipher on simulated data. To further benchmark the performances305

of Decipher on real data, we define two metrics based on our prior knowledge of AML and compare Decipher to a306

large spectrum of commonly used methods.307

Since we do not have ground-truth trajectory values for the real data, we build metrics on prior knowledge of AML308

progression, AML marker genes, and our independently curated cell state annotations: immature, blast0, blast1, blast2,309

and blast3. Among the healthy immature cells, we further use the markers CD34 and MPO to distinguish early cells310

(CD34+), late cells (MPO+), and intermediary cells. Our metrics are based on the distances between annotated cell311

states.312

• Ordering score: We expect the cell states in a latent space to be spatially ordered along the known cell matu-
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ration trajectories. For instance, blast1 should be between blast0 and blast2. Given the orders o1 = [immature,
blast0, blast1, blast2, blast3] and o2 = [early, intermediary, late], we want the total distances between consec-
utive cell states to be smaller than the distances between non-consecutive cell states. The triangular inequality
guarantees that the ratio of these two quantities (the second over the first one) is maximized when the clusters
are perfectly aligned in the right order.

orderj =

∑
|i1↗i2|>1 distance(oj [i1], oj [i2])∑
|i1↗i2|=1 distance(oj [i1], oj [i2])

.

• Divergence score: We expect the AML trajectory to diverge from the healthy trajectory. That is, the immature
cells of the AML sample are close to the early immature cells of the healthy sample. But then, the blast3 cells
of the AML sample are far from the late immature cells of the healthy sample.

divergencej =
∑

c1↓o1
c1 ⇐=immature

∑

c2↓o2
c2 ⇐=early

distance(c1, c2)↔ 2 ⇓ distance(immature(AML),immature early (healthy)).

This metric is higher when non-immature AML cells and non-early healthy cells are far from each other and313

when the immature AML cells and early healthy cells are close to each other.314

These metrics attempt to capture our high-level prior knowledge of AML. They summarize the latent space of each315

method in two numbers: the ordering score and the divergence score. For further details of each method, one can also316

directly analyze the visualization of the latent space of each method (Fig. S3).317

Below are the benchmarked methods, the implementation we used, the hyperparameters, and which latent space we318

used to compute the metrics:319

• PCA.320

– We run PCA with 50 components (default) using scanpy.321

– sc.tl.pca(adata)322

– The latent space is the space of 50 PCA components (comparable to our decipher z space).323

– latent = adata.obsm["X_pca"]324

• TSNE..325

– We run TSNE on the 50-dimensional PCA space using scanpy using a knn-graph with k = 10.326

– sc.pp.neighbors(adata, n_neighbors=10); sc.tl.tsne(adata)327

– The latent space is the 2d TSNE space (comparable to our decipher v space).328

– latent = adata.obsm["X_tsne"]329

• UMAP.330

– We run UMAP on the 50-dimensional PCA space using scanpy using a knn-graph with k = 10.331

– sc.pp.neighbors(adata, n_neighbors=10); sc.tl.umap(adata)332

– The latent space is the 2d UMAP space (comparable to our decipher v space).333

– latent = adata.obsm["X_umap"]334

• Force Atlas.335

– We run Force Atlas in scanpy using a knn-graph with k = 10.336

– sc.pp.neighbors(adata, n_neighbors=10); sc.tl.draw_graph(adata)337

– The latent space is the 2d force-directed layout space (comparable to our decipher v space).338

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


– latent = adata.obsm["X_draw_graph_fa"]339

• scVI with batch correction.340

– We run scVI with two layers, a latent space of dimension 10, and batch correction on the origin label341

(AML vs Healthy), using scvi-tools.342

– scvi.data.setup_anndata(adata, batch_key="origin"); vae = scvi.model.SCVI(adata,343

n_layers=2, n_latent=10); vae.train()344

– The latent space is the 10-dimensional latent space (comparable to our decipher z space).345

– latent = vae.get_latent_representation()346

• scVI without batch correction.347

– We run scVI with two layers, a latent space of dimension 10, and without batch correction, using348

scvi-tools.349

– scvi.data.setup_anndata(adata); vae = scvi.model.SCVI(adata, n_layers=2, n_latent=10);350

vae.train()351

– The latent space is the 10-dimensional latent space (comparable to our decipher z space).352

– latent = vae.get_latent_representation()353

• Phate.354

– We run Phate using the phate Python package.355

– phate_ = phate.PHATE()356

– The latent space is the 2-dimensional latent space (comparable to our decipher v space).357

– latent = phate_.fit_transform(adata)358

• Harmony.359

– We run Harmony using scanpy on the PCA with 50 components.360

– sc.tl.pca(adata); sce.pp.harmony_integrate(adata, ’origin’)361

– The latent space is the 50-dimensional PCA-corrected latent space (comparable to our decipher z space).362

– latent = adata.obs["X_pca_harmony]363

• Seurat.364

– We run Seurat using Seurat R package.365

– adata <- FindVariableFeatures(data); adata.list <- SplitObject(adata, split.by =366

"origin"); features <- SelectIntegrationFeatures(object.list = adata.list); adata.anchors367

<- FindIntegrationAnchors(object.list = adata.list, , anchor.features = features);adata.combined368

<- IntegrateData(anchorset = adata.anchors); adata.combined <- ScaleData(adata.combined,369

verbose = FALSE)370

– The latent space is the PCA-corrected latent space (comparable to our decipher z space).371

Application of Decipher to PDAC data372

We applied Decipher to data collected by Burdziak, et al.[7], consisting of PDAC samples from mouse models with373

and without KRAS mutation. We subsetted the data to cells undergoing acinar-to-ductal metaplasia (ADM), from374

three conditions: normal stress, normal, and KRAS-mutated. For our results in Fig. 3, we used 10 latent dimensions375

(z), 2 Decipher components (v), and ϖ = 0.1. All other parameters were default, and the model was run with early376

stopping. We rotated the resulting Decipher embedding such that the Decipher 1 axis aligned with acinar-to-ductal377

maturation. Since the desired path of trajectories was previously known, we manually defined trajectories the normal378
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and KRAS-mutated conditions by specifying the order of the clusters.379

380

To interpret the latent dimensions, we selected the latent z component that yielded the greatest separation between381

KRAS-mutated and non-mutated cells. Degree of separation was quantified by T-testing the distribution of a factor382

over the KRAS-mutated population and the non-mutated population; the absolute value of the T-statistic was used for383

selecting the best separating component. We also computed the correlation across cells between each latent dimension384

and each gene Table 1. This resulted in a list of genes ranked by correlation values for each latent dimension that385

may be analyzed either individually, or using Gene Set Enrichment Analysis (GSEA) Fig. 3e, Table 2. For individual386

gene analysis, we looked at genes from the Kras-mutated signature from [7], as well as p53 targets from [11]. To387

demonstrate that a small set of genes (such as the Kras targets) are ranked significantly higher compared to the ranking388

distribution of all genes, we applied a Wilcoxon rank-sum test between the set of genes and all genes. Finally, we389

show the relationship between latent components (z) and Decipher components (v) through visualization the correla-390

tion between each v and z Fig. 3c391

392

We repeat the above process using scVI as a comparison. ScVI was run with the same data, using 2 layers and 10393

latent layers, with the gene likelihood parameter set to "nb". The two-dimensional visualization of scVI was obtained394

using the built-in MDE representation utility Fig. S1d. We repeat the same analyses as above on the scVI latent395

components, identifying the best separating latent component and running GSEA to compare the interpretability of396

the two methods. We demonstrate that the T-statistics quantifying the degree of separation between KRAS-mutated397

and non-mutated cells in Decipher’s latent components is significantly higher than in scVI’s latent components (T-test398

between the Decipher and scVI latent component T-statistics) Fig. 3g.399

To compare the interpretability of latent factors from the lens of known gene signatures, we utilized the KRAS-mutated400

signature from [7]. For each Decipher and scVI latent factor, we computed the correlation across cells between each401

factor and each gene in the signature. We then take the mean of the absolute value of the correlation across genes.402

We then quantified the separation between KRAS-mutated and non-mutated populations using the T-test, as described403

above. We plotted the KRAS-signature correlation against the T-statistics to analyze the interpretability of latent404

factors in each of scVI and Decipher Fig. 3f, S1f405

Application of Decipher to AML patient data406

Before applying Decipher to the AML patient data, we first performed a gene filtering step to include the most im-407

portant genes representative of all cell types. For each patient, we performed PhenoGraph [22] clustering using 40408

principal components and 30 neighbors. Then, using scanpy’s [43] rank_genes_groups() function, we performed a T-409

test to identify the top 400 most differentially expressed genes for each cluster. This list of genes was pooled with a list410

of known marker genes to produce the final set of genes on which the model was run. We also removed erythrocytes411

and lymphocytes from the data, as they were not relevant for the analysis of AML derailment.412

We obtained:413

• 3130 genes for the joint dataset AML1 and normal,414

• 3264 genes for the joint dataset AML2 and normal,415

• 3258 genes for the joint dataset AML3 and normal,416

• 2863 genes for the joint dataset AML13 and normal,417

• 2532 genes for the joint dataset AML14 and normal,418

• 3291 genes for the joint dataset AML15 and normal,419

• 2944 genes for the joint dataset AML16 and normal,420

• 2664 genes for the joint dataset AML17 and normal.421
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Aside from these filtering steps, we emphasize that no other pre-processing or normalization was performed, as the422

model is always run on raw counts data. For our results (Fig. 4), we use latent factors z of dimension 10, Decipher423

components v of dimension 2, a neural network decoder from v to z with one hidden layer of dimension 64, a linear424

decoder from z to x, a neural network decoder from x to z with one hidden layer of dimension 128 and another neural425

network decoder from (z, x) to v with one hidden layer of dimension 128. BatchNorm was applied after each hidden426

layer in the neural networks, followed by a ReLU activation. We set ϖ = 0.1 and a batch size of 64. The code to427

reproduce the results in this manuscript is available at https://github.com/azizilab/decipher_reproducibility.428

Interpretation of Decipher components, latent dimensions, and basis429

To identify pathways associated with the latent components of Decipher, we computed the covariance of each gene430

with each of the Decipher components, the latent dimensions, and the results from basis decomposition (Supplemen-431

tary Table 2). Precisely, we computed for each gene g the covariance over cells between xg and each variable v1, v2432

and zj for j → [10]. We then ran Gene Set Enrichment Analysis (GSEA) [35], with genes preranked by covariance433

with each latent component. Next, to interpret the learned basis functions, we ranked genes by their weights in each434

basis to identify pathways most associated with each basis. For all use cases, GSEA was run on the pre-ranked setting435

against the Hallmarks Database, with 1000 permutations and no collapse (Table 4). To select genes for visualization in436

Fig. S7a, we selected a top pathway for each component/basis function with known biological importance and found437

the top disrupted genes belonging to that pathway.438

We highlight the usage of Decipher in reconstructing gene patterns over a temporal dimension. These analyses ne-439

cessitated the translation of cell-level metadata to the temporal dimension. In order to analyze observations such as440

cell type, mutation proportions, etc., along the temporal dimension, we applied the projection method outlined in the441

trajectory inference section to obtain a cell-level Decipher time. This transformation allowed for observations to be di-442

rectly studied along the temporal axis. For discrete observations such as cell type, we first performed nearest-neighbor443

smoothing using Scikit-learn 0.24.0 [30], with 50 neighbors and a radius of 0.2. A smoothed label was obtained for444

each cell by taking the mode of the labels among its neighbors. We then visualized the observations along a temporal445

axis by producing a scatterplot of cell observations, where the x-axis is the computed pseudotime of each cell and the446

color corresponds to the smoothed label (Fig. S8).447

A key feature of Decipher is its ability to produce Decipher components that can be rotated to align with axes of448

disease maturation and development. We extended our analyses of the NPM1 mutational status of cells to examine its449

correlation with Decipher component 2 in AML1, 2, and 3. Specifically, we specified a cutoff threshold of 0.4 for the450

mutation proportion and classified cells with proportions greater than that as belonging to the mutated class and cells451

with proportions less than as being wild-type. We then binned cells by their pseudotime projections (with a bin size452

of 0.5 and a sliding window of 0.05). We then counted the number of cells classified into mutated and wild-type by453

our threshold in each bin and smoothed the resulting counts by time curves using a 1d Gaussian kernel (using scipy454

[40]) with a standard deviation of 2. We visualized the results as distributions along the Decipher component 2 axis to455

emphasize the shift in NPM1 mutational status (Fig. 4f, Fig. S3a).456

Comparison of Disrupted Genes Across Patients To determine if disrupted mechanisms between healthy and AML457

disruption were shared across patients, we first obtained combined disruption scores for each patient as detailed above.458

We limited our analysis to transcription factors, and identified the top disrupted transcription factors in each patient459

in order to identify top shared disrupted gene programs. We also visualized disruption scores between patients as a460

3D scatterplot of individual patients (Fig. 6d), or by taking the mean of patients with similar mutational statuses (Fig.461

S11e).462

Distribution of TF peak expression over time463

To study the patterns of TF expression over time, we directly utilized the gene patterns produced by Decipher that464

showed the expression values of each gene over the learned Decipher time axis. For each TF present in the data,465

expression patterns were first smoothed using a 1d Gaussian filter (using scipy [40]) with the standard deviation of466

the Gaussian kernel set to 3. This smoothing is performed only for detecting peak expression and is not applied to467

expression plots. Local maxima of expression were then identified by searching for points at which the first derivative468

of the curve switches from positive to negative. We furthermore filter points by using the midrange of expression469

(defined as the mean of the minimum and the maximum expression) as a threshold: local maxima whose expression470
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values were less than this value. We additionally included the starting point as a maxima if the expression value was471

greater than the threshold and the first derivative was negative or if the maximum value of the expression was at the472

start; we included the ending point as a maxima if the maximum value of expression was at the end. For visualization,473

we plotted the kernel density estimation (with a bin width of 0.05) of all TF maxima along the Decipher time axis to474

show the points in time where overall TF activity is concentrated (Fig. S8). Kernel density estimation was performed475

using seaborn [42], and plotting was done using matplotlib [16].476

Analysis of temporal TF co-regulation477

In conjunction with the visualization of the timing of TF activity, we also sought to determine if families of similar478

TFs demonstrated coordinated activation times and if these temporal dynamics could be utilized to derive insight into479

regulatory wiring. We focused our analyses on the top 20 most disrupted TFs by the combined disruption metric, as480

well as the known disrupted TFs from the literature. The Decipher gene pattern for each TF was visualized as rows in a481

heatmap, with the horizontal axis representing the pseudotime axis and the color representing the z-scored expression482

value. The rows were sorted based on the time at which the maximum peak occurred, and the TFs were labeled with483

colors based on their biological function (Fig. 6b,c; Fig. S10a,b).484

Estimation of uncertainty in expression patterns485

Because Decipher is a probabilistic model, it learns the uncertainty about the gene expression induced by a cell
representation v. Given a location v in the Decipher space, the distribution of the expected gene expression µg(v) of
gene g in a cell with representation v is given by,

µg|v ↑ h(z)g|v

where z|v ↑ N (fmean(v), fvar(v)).486

To compute this uncertainty for each v, we sample 100 values for z from z|v ↑ N (fmean(v), fvar(v)) and compute487

µg = h(z)g for each of them. In Fig. 5b, the shaded bands represent the interquartile range (25-75) of the 100488

samples.489

Analysis of bulk AML data490

We applied DeSeq2 [26] to obtain metrics characterizing the AML data at the cohort level. Using the resulting L2FC491

and p-values, we were able to confirm whether or not expected genes, as well as our newly identified disrupted genes,492

were also differentially detected in the bulk data. For both sets of genes, we selected genes whose absolute L2FC was493

greater than 1 and reported the maximum p-value.494

Application to gastric cancer evolution. We applied Decipher on the gastric cancer data from Kim et al. [19]. We495

pooled the data from the 24 patients in the study, each with pre-malignant cells and cancerous cells. 9 of these patients496

have intestinal cancer and the other 15 patients have diffuse-like cancer. The resulting data has 12,612 cells and 8,705497

genes. We ran Decipher with its default hyperparameters: z of dimension 10, v of dimension 2, and for 30 epochs (Fig.498

7b-d).499

In sum, Decipher on the gastric data was applied on500

• 12614 cells,501

• 8705 genes,502

• from 24 patients,503

• with 2 major types of cells (pre-malignant, cancerous)504

• with 2 types of cancer (diffuse-like or intestinal),505

• with different stages of cancer.506
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SUPPLEMENTARY INFORMATION

Semi-synthetic simulation

To further complement our validation of Decipher’s performances, we created semi-synthetic
data that is more realistic than purely simulated data, by leveraging the AML data. We used the
Decipher model trained on real data (normal HSPCs and sorted cells from AML1) to obtain realistic
values for the probabilistic model. Then we simulated new data by (i) forming two divergent
ground-truth trajectories in the Decipher component space (Methods), (ii) generating synthetic cells by
sampling their Decipher components uniformly along these trajectories, and (iii) generating synthetic
gene expression values for these simulated cells using our probabilistic model (Fig. 1d; Fig. SI1a,b).
Then, we fitted a new Decipher instance to this simulated dataset that is realistic and for which we have
ground truth. Decipher successfully learned a latent space in which cell-state transitions from immature
to blast0–3, and both normal and AML trajectories are correctly aligned along the Decipher 1
component (Fig. SI1c). The derailment in the AML condition is captured by the Decipher 2 component,
which precisely locates the bifurcation point. We assessed the recovery of cell order by evaluating the
correlation between the inferred Decipher time and the ground-truth trajectory. To confirm the
robustness of these results, we repeated the entire Decipher pipeline across five simulated datasets
and consistently observed a correlation above 0.94. Finally, we examined robustness in the context of
rare or poorly represented cell states, similar to the fully synthetic experiments. We removed 90% of
cells from two intermediary cell states (Fig. SI1c) and fitted Decipher on this new simulated data. Even
with a non-uniform sampling of cell states, Decipher successfully preserved the order of cell states (Fig.
SI1d), as found in the fully synthetic experiments.

Figure SI1. (a) UMAP visualization of semi-synthetic data (18,000 cells) simulating an AML patient and a healthy reference
(Methods) along simulated trajectories. Each dot represents a cell colored by sample (left), cell type (middle), and ground truth
time (right). (b) UMAP visualization of the data simulating rare cell types. Similar to (a) but removing 90% of blast0 (blue) and
blast2 (green). Each dot represents a cell colored by sample (left), cell type (middle), and ground truth time (right). (c) Example
of Decipher applied to the data in (a). It preserves the order of cell states and shows the shared maturation (Decipher1) as well
as the divergence of mature leukemic blast cells (blast2,3) in AML (Decipher2). Each dot represents a cell colored by sample
(left), cell type (middle), and inferred Decipher time (right). (d) Decipher applied to data shown in (b) can still learn meaningful
representation and trajectories.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2024. ; https://doi.org/10.1101/2023.11.11.566719doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.11.566719
http://creativecommons.org/licenses/by-nc-nd/4.0/


Design of AML Experiment

To characterize the impact of NPM1mut while minimizing confounding effects, we focused on
patients bearing TET2 epigenetic mutations (n = 12), with and without NPM1 mutations. We used
scRNA-seq to profile 104,116 AML bone marrow cells (Fig. S2a and Table 3). Assuming that leukemic
cells preserve a subset of normal hematopoietic differentiation programs, we used well-characterized
normal references [64] to achieve cluster-level annotation of the maturation stage (Fig. S2b; Methods).
This analysis revealed a broad spectrum of leukemic cell states that partially recapitulates the diverse
morphological subtypes in our cohort [99,100] (Fig. S2c); differentiated (M1) samples were mostly
populated by immature blasts, myelomonocytic (M4) and monoblastic (M5) samples by cells with
greater maturation. However, most samples contained many cell types .

Comparison of pre-leukemic cell and normal HSC phenotypes consistently returned PROM1 as
a marker for the immature population in human NPM1mut AML samples. This analysis also identified
consistent underexpression of HSC genes such as CD34 and AVP in NPM1mut cells (Fig. S2d,e),
concordant with the demonstrated ability for NPM1 mutations to induce HOX genes in vitro [101] and
confer self-renewal properties to myeloid progenitors in mice [59]. Overall, this approach provides an
expanded map of both frequent and rare cellular populations that exist in each patient and
unambiguously delineates NPM1 mutation status.

Analysis of single-cell ATAC-seq

To further study altered TF activity in AML, we performed an integrated analysis of gene
expression and chromatin accessibility patterns via single-cell Assay for Transposase-Accessible
Chromatin (scATAC-seq; Methods). Using scATAC data, we explored possible regulatory relationships
between disrupted TFs expressed in early immature cells and those expressed later in AML
progression that could explain the observed cascades of TF activity (Fig. 6d; Fig. SI2). Specifically, we
identified the top 50 disrupted TFs for each patient, and split them into those expressed before and
after NPM1 mutation, labeled as ‘early TFs’ and ‘late TFs’ respectively. We then investigated putative
regulatory relationships between the two groups of TFs by computing a motif enrichment score for each
early TF detected within accessible regions in the vicinity of late TFs as targets. Then, using
bootstrapping analysis, we compared the motif scores to a null distribution generated from same-size
random sets of target TFs that are expressed in at least 1% of cells (Methods). In all three patients, we
found significant motif enrichment in HOX TFs, including HOXB4 (p < 0.0458) and HOXB6 (p < 0.032),
and FOSL1 (p < 0.0057), suggesting their putative role in regulating TFs driving AML transformation. In
two out of three patients, we found significant motif enrichments in GATA2, MYC, NR4A2, MAFF, ATF3,
NFKB2, RELB, KLF2, ZNF274 (p < 0.05; Methods).

We then examined the dynamic accessibility of the TFs themselves during AML progression
through the integration of scRNA- and scATAC-seq data using LIGER[36] (Fig. SI3a,b, Methods).
Through this process, we are able to project scATAC data into the 2D Decipher space inferred from
scRNA (Fig. SI2c), finding that the patterns of chromatin accessibility mirror gene expression dynamics
for regulators with enriched motifs (Fig. SI2d). We find that the significantly enriched motifs (GATA2,
MYC, NR4A2, MAFF, ATF3, NFKB2, RELB, KLF2, ZNF274) show altered expression in immature cells
in two out of three patients (Fig. SI3).

Interestingly, motif enrichment analysis using scATAC data further showed enrichment of motifs
for known interferon-induced TFs such as STAT1 (MA0137.1,p<0.0357) and IRF1
(MA0050.1,p<0.0057; MA0050.2,p<0.0216) among the top disrupted TFs in AML1 and AML3. Our
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approach thus resolves the timing of TF activity with respect to significant events such as genetic
mutations and activated signaling pathways, guiding further studies of regulatory relationships.

Figure SI2. Integration of scRNA and scATAC data (a) UMAP embedding of cells from scATAC and scRNA-seq in the
LIGER integrated space in three AML patients. (b) UMAP projection of cells colored by cell types in ATAC-seq in the LIGER
Integrated space in three AML patients. (c) Projection of cells in scATAC data in 2D decipher space colored by cell type. (d)
scRNA and scATAC-seq of key marker genes in AML1. Scatterplots show expression (top) and accessibility (bottom) in the
Decipher space (Methods).
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Figure SI3. TFs with enriched motifs in all patients. scRNA and scATAC-seq of TFs found to have enriched motifs in the
vicinity of late TFs (expressed after NPM1 mutation) in two out of three AML patients (Methods). Scatterplots show expression
(top) and accessibility (bottom) in the Decipher space for AML1 (a), AML2 (b), and AML3 (c).

Analysis of single-cell ATAC-seq

We utilized ArchR[102] for pre-processing of scATAC-seq data. In order to analyze accessibility
trajectories from immature cell states to mature blast cells, we combined each patient AML sample with
scATAC-seq data collected from a healthy bone marrow sample. ArchR was run using default
parameters and the HG38 genome for peak alignment. UMAP visualization was run using ArchR's
implementation with iterative LSI in order to provide a preliminary visualization of the distribution of cells
in the ATAC space. The peak counts and gene scores were then exported and stored in an AnnData
object for downstream use in Scanpy.
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Integration of scATAC and scRNA

To integrate the scATAC data with the scRNA data, we applied LIGER[36], using the gene scores from
ArchR and the counts from the scRNA data as the two inputs. We applied a log2(x+1) transformation to
the gene scores (where x=gene scores) to improve the signal. Running with standard parameters
yielded an integrated space that could be visualized using UMAP (Fig. SI2a,b) to confirm the
overlapping of modalities and improved separation of cell types. From this step, we exported the matrix
of normalized cell factors, H, that represents the LIGER shared factors across modalities that can be
subsequently analyzed to compare cells from the scATAC data to cells in the scRNA data.

Projection of Accessibility scores in Decipher space

The first step of this analysis was to project cells in scATAC-seq to the Decipher space by finding the
most similar cells in the RNA-seq to each cell in the ATAC-seq, with the goal of obtaining sharing
metadata and Decipher values from the RNA-seq to the ATAC-seq. To achieve this, we applied a
nearest neighbors algorithm using Scikit-learn [103] to accomplish the projection as follows: we first
trained a neighbors classifier on the H matrix obtained from LIGER for RNA alone, HRNA, (with the
number of neighbors set to 3). Then, for each cell in scATAC-seq, we applied the classifier to the
corresponding row HATAC. The classifier subsequently returned the 3 nearest cells in RNA for each cell
in ATAC-seq. We then compute the projections by taking the mean Decipher v component value for
each cell, as well as the mean projected value onto the trajectory (Decipher time). The annotation for a
given cell was simply taken to be the mode cell type of the neighbors (Fig. SI2c).

Because this projection step may be a noisy process, we also implemented a filtering step wherein we
computed the maximum pairwise Euclidean distance using Scipy [104] of the Decipher space
coordinates in each set of 3 nearest neighbors. The cells with distances greater than a selected
threshold were removed. This step was particularly important for those Decipher embeddings that take
on a curved or horseshoe shape, where a cell from ATAC-seq may be assigned to cells originating from
two opposing regions.

Finally, to obtain a better signal for visualizations, we again implemented a nearest-neighbors
smoothing. We first built a nearest neighbors graph (k=50) on the ATAC peaks matrix. Then, the
accessibility values for a given cell are obtained by taking the mean gene score for each gene across
all neighbors (Fig. SI2d)

Comparison of scRNA-seq and scATAC-seq in the Decipher space

For key transcription factors and marker genes, we sought to compare the patterns in their expression
and their accessibility. For the expression plots, we combined the original unfiltered scRNA data for
each patient's AML sample as well as the healthy bone marrow sample. We normalized these samples
together by median library size and applied a natural log transformation. It was necessary to return to
the unfiltered data for this task since the highly variable gene filter was applied before Decipher
removed some genes of interest. We then subsetted the cells to match those that were run through
Decipher previously and plotted the expression of the selected genes (from the unfiltered set) in the
previously obtained Decipher space. Scanpy plotting was utilized, with the colorbar range set to the
.02-.09 percentiles of the data. For the scATAC-seq data, we created an AnnData object from the
smoothed gene scores as described above and plotted using the projected Decipher coordinates (Fig.
SI3).
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Motif Analysis in scATAC-seq

To obtain the set of TFs for motif analysis, we examined the time of maximum expression in each of the
top 50 disrupted TFs (according to the combined disruption metric). If the time of maximum expression
was before the estimated time of NPM1 mutation (e.g., at pseudotime 50 for AML1), we designated the
TF to be "early peaking." We then investigated whether the early peaking TFs could be putative
regulators of other disrupted TFs, explaining the propagation of dysregulated mechanisms leading to
the altered transcriptional landscape (Fig. 6b,c). Potential targets were thus defined as the set of
remaining TFs (peaking after NPM1 mutation). Motif searching was performed using motifmatchR
[105], with the JASPAR2020 [106] database of motifs and the Hg38 genome.

For each patient, we identified clusters obtained from the ArchR Iterative LSI analysis that
corresponded to either blast 0 (AML1,3) or blast 1 (AML2). The ArchR reproducible peak set for that
cluster, containing pseudo-bulked peak data, was used as the input to motifmatchR. To transform the
result into a matrix of motifs by targets, we grouped motif scores by the target's nearest gene and
calculated the mean score for all scores belonging to the same gene.

To evaluate the significance of motif enrichment, we defined a background (null) set of TFs as follows:
for each patient scRNA-seq data, we filtered out genes expressed in fewer than 1 percent of cells. This
threshold was selected based on the proportion of PROM1-expressing cells in the patient samples,
e.g., 125 out of 13834 cells in AML3, since we expected PROM1 to be a good example of a gene
expressed in the rare immature cells of interest.

We then limited the null set to TFs that were not among the target set. P-values were computed by
bootstrapping: we sampled the null set 10,000 times for a subset of TFs that were the same size as the
target set. We then computed the mean motif score for all TFs in the null set to create the null
distribution. The p-value was obtained by counting the number of samples in the null set whose score
was greater than the mean motif score of our target set of TFs. We reported the p-values for the TFs
that were significantly enriched in either all three patients (in which case the maximum p-value was
reported) or significantly enriched in two out of three patients (in which case the maximum among the
two significant p-values was reported).

In all three patients, we found significant motif enrichment in HOX TFs, including HOXB4 (motif
JASPAR ID MA1499.1, p < 0.0458) and HOXB6 (MA1500.1, p < 0.032) and FOSL1 (MA0477.1, p <
0.0057; MA0477.2 0.0086), suggesting their putative role in regulating TFs driving AML transformation
(\textbf{Fig. 6d}).

In two out of three patients, we found significant motif enrichments in GATA2 (MA0036.1, p < 0.0115;
MA0036.2, p < 0.0423; MA0036.3, p < 0.0309), MYC (MA0147.3, p < 0.045), NR4A2 (MA0160.1, p <
0.0272), MAFF (MA0495.1, p < 0.0365), ATF3 (MA0605.2, p < 0.0316), NFKB2 (MA0778.1, p <
0.0292), RELB (MA1117.1, p < 0.0109), KLF2 (MA1515.1, p < 0.0468), ZNF274 (MA1592.1, p < 0.009)
(Fig. SI3).
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