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Abstract

Hierarchical probabilistic modeling of discrete data has emerged as a powerful
tool for text analysis. Posterior inference in such models is intractable, and prac-
titioners rely on approximate posterior inference methods such as variational in-
ference or Gibbs sampling. There has been much research in designing better
approximations, but there is yet little theoretical understanding of which of the
available techniques are appropriate, and in which data analysis settings. In this
paper we provide the beginnings of such understanding. We analyze the improve-
ment that the recently proposed collapsed variational inference (CVB) provides
over mean field variational inference (VB) in latent Dirichlet allocation. We prove
that the difference in the tightness of the bound on the likelihood of a document
decreases asO(k−1)+

√
logm/m, where k is the number of topics in the model

and m is the number of words in a document. As a consequence, the advantage of
CVB over VB is lost for long documents but increases with the number of topics.
We demonstrate empirically that the theory holds, using simulated text data and
two text corpora. We provide practical guidelines for choosing an approximation.

1 Introduction

Hierarchical probabilistic models of discrete data have emerged as powerful tool for large-scale text
analysis. Based on latent semantic indexing (LSI) [1] and probabilistic latent semantic indexing
(pLSI) [2], hierarchical topic models [3, 4] have been extended and applied to sequential settings [5,
6], authorship [7], email [8], social networks [9, 10], computer vision [11, 12], bioinformatics [5,
13], information retrieval [14], and other application areas [15, 16, 17, 18]. See [19] for a good
review.

A topic model posits a generative probabilistic process of a document collection using a small num-
ber of distributions over words, which are called topics. Conditioned on the observed documents,
the distribution of the underlying latent variables is inferred to probabilistically partition the data ac-
cording to their hidden themes. Research in topic models has involved tailoring the latent structure
to new kinds of data and designing new posterior inference algortihms to infer that latent structure.

In generative models, such as latent Dirichlet allocation (LDA) and its extensions, inferring the
posterior of the latent variables is intractable [3, 4]. (Some topic models, such as LSI and pLSI,
are not fully generative.) Several algorithms have emerged in recent years to approximate such
posteriors, including mean-field variational inference [3], expectation propagation [20], collapsed
Gibbs sampling [19] and, most recently, collapsed variational inference [21]. Choosing from among
the several available algorithms is difficult. There has been some empirical comparison in the topic
modeling literature [4, 19], but little theoretical guidance.
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We provide some of the first theoretical understanding of which of the available techniques is appro-
priate, and in which data analysis settings. We analyze two variational inference algorithms for topic
models, mean field variational inference (VB) [3] and collapsed variational inference (CVB) [21].
“Collapsing,” or marginalizing out, a latent variable is a known technique for speeding up the con-
vergence of Gibbs samplers, and CVB brought this idea to the world of variational algorithms.
Empirically, CVB was more accurate than VB for LDA [21]. The advantage of CVB applied to
Dirichlet process mixtures was less conclusive [22].

Variational algorithms minimize the distance between a simple distribution of the latent variables
and the true posterior. This is equivalent to maximizing a lower bound on the log probability of a
document. We prove that the uncollapsed variational bound on the log probability of a document
approaches the collapsed variational bound as the number of words in the document increases. This
supports the empirical improvement observed for LDA, where documents are relatively short, and
the smaller improvement observed in the DP mixture, which is akin to inference in a single long
document. We also show how the number of topics and the sparsity of those topics affects the
performance of the two algorithms.

We prove that the difference between the two bounds decreases as O(k − 1) +
√

logm/m, where
k is the number of topics in the model, and m is the number of words in the document. Thus,
the advantage of CVB over VB is lost for longer documents. We examine the consequences of the
theory on both simulated and real text data, exploring the relative advantage of CVB under different
document lengths, topic sparsities, and numbers of topics. The consequences of our theory lead to
practical guidelines for choosing an appropriate variational algorithm.

2 Posterior inference for latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a model of an observed corpus of documents. Each document is
a collection of m words x1:m, where each word is from a fixed vocabulary χ of size N . The model
parameters are k topics, β1, . . . , βk, each of which is a distribution on χ, and a k-vector ~α, which is
the parameter to a Dirichlet over the (k− 1)-simplex. The topic matrix β denotes the N × k matrix
whose columns are the topic distributions.

Given the topic matrix and Dirichlet parameters, LDA assumes that each document arises from the
following process. First, choose topic proportions θ ∼ D(~α). Then, for each word choose a topic
assignment zi ∼ θ. Finally, choose the word xi ∼ βzi

. This describes a joint probability distribution
of the observed and latent variables p(~x, ~z, θ|~α, β).

Analyzing data with LDA involves two tasks. In parameter estimation, we find the topics and Dirich-
let parameters that maximize the likelihood of an observed corpus. In posterior inference, we fix the
model and compute the posterior distribution of the latent structure that underlies a particular docu-
ment. Here, we focus on posterior inference. (Parameter estimation crucially depends on posterior
inference via the expectation-maximization algorithm.)

Given a document ~x, the posterior distribution of the latent variables is p(θ, ~z|~x) = p(θ,~z,~x)
p(~x) . This

distribution is infeasible to compute exactly because of the difficulty in computing the normalizing
constant, i.e., the marginal probability of the document,

p(~x) =
Γ(
∑
z αz)∏

z Γ(αz)

∑
~z

∫ (∏
z

θαz−1
z

)(∏
i

βzi,xiθzi

)
dθ.

Approximating the posterior is equivalent to approximating the normalizing constant.

Variational methods approximate an intractable posterior by finding the member of a simpler family
of distributions that is closest to it, where closeness is measured by relative entropy. This is equiv-
alent to minimizing the Jensen’s bound on the negative log probability of the data [23]. We will
analyze two alternative variational methods.

Variational inference for LDA In the variational inference algorithm for LDA introduced in [3]
(VB), the posterior p(θ, ~z|~x) is approximated by a fully-factorized variational distribution

q(θ, ~z|~γ, φ1:m) = q(θ|~γ)
∏
i q(zi|φi).
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Here q(θ|~γ) is a Dirichlet distribution with parameters ~γ, and each q(zi|φi) is a multinomial dis-
tribution on the set of K topic indices. This family does not contain the true posterior. In the true
posterior, the latent variables are dependent; in this family of distributions, they are independent [3].

The algorithm seeks to find the variational parameters that minimize the relative entropy between the
true posterior and the approximation, RE(q(θ, ~z|~γ, φ1:m) ‖ p(θ, ~z|~x)). This is equivalent to finding
the optimal parameters ~γ∗, φ∗1:m as follows:

(~γ∗, φ∗1:m) = arg min
~γ,φ1:m

[
Eq(θ,~z|~γ,φ1:m) log

(
q(θ, ~z|~γ, φ1:m)
p(θ, ~z, ~x)

)]
.

The expression minimized by ~γ∗, φ∗1:m is also known as the variational free energy of (~γ, φ1:m) and
will be denoted by F(~x,~γ, φ1:m). Note that F(~x,~γ∗, φ∗1:m) is the Jensen’s bound on the negative
log probability of ~x. The value of the objective function is a measure of the quality of the VB
approximation. We denote this with

VB(~x) ∆= min
~γ,φ1:m

F(~x,~γ, φ1:m). (1)

Collapsed variational inference for LDA The collapsed variational inference algorithm (CVB)
reformulates the LDA model by marginalizing out the topic proportions θ. This yields a formulation
where the topic assignments z are fully dependent, but where the dimensionality of the latent space
has been reduced.

The variational family in CVB is a fully-factorized product of multinomial distributions,

q(z) =
∏
i

q(zi|φi).

CVB finds the optimal variational parameters φ∗1:m as follows:

φ∗1:m = arg min
φ1:m

[
Eq(~z|φ1:m) log

(
q(~z|φ1:m)
p(~z, ~x)

)]
.

It approximates the negative log probability of ~x with the collapsed variational free energy F(~x,~γ),
which is the expression that φ∗1:m minimizes. Analogous to VB, CVB’s performance is measured by

CVB(~x) ∆= min
φ1:m
F(~x, φ1:m). (2)

Both CVB(~x) and VB(~x) approximate the negative log probability of ~x by Jensen’s inequality. It has
been shown that CVB(~x) will always be a better bound than VB(~x) [21].

Efficiency of the algorithms Both VB and CVB proceed by coordinate ascent to reach a local
minimum of their respective free energies. CVB achieves higher accuracy at the price of increased
computation. Each coordinate update for VB requires in O(mk) time, where m is the length of a
document and k is the number of topics. Each coordinate update for CVB requires O(m2k) time.
The CVB updates are prohibitive for large documents and, moreover, are numerically unstable. Both
shortcomings are overcome in [21] by substituting exact computations with an efficient second-order
Taylor approximation. This approximation, however, does not yield a proper bound.1 It is thus
inappropriate for computing held out probability, a typical measure of quality of a topic model. For
such a quantity, exact CVB implementation takes quadratic time.

3 Relative performance of VB and CVB

We try to obtain a theoretical handle on the size of the advantage of CVB over VB, and how it
is affected by the length of the document, the number of topics, and the structure of those topics.
Our main result states that for sufficiently large documents, the difference in approximation quality
decreases with document length and converges to a constant that depends on the number of topics.

1The first-order Taylor approximation yields an upper-bound, but these turn out to be too inaccurate. Such
an estimate can yield bounds worse than those achieved by VB.
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Theorem 1. Consider any LDA model with k topics, and a document consisting of m words
x1, . . . , xm, where m is sufficiently large. Recall that VB(~x) and CVB(~x), defined in (1) and (2), are
the free energies measured by VB and CVB respectively. Then,

0 ≤ [VB(~x)− CVB(~x)] ≤ O(k − 1) + o(1) (3)

for this model. Here o(1) goes to 0 at least as fast as
√

logm
m .

A strength of Theorem 1 is that it holds for any document, and not necessarily one generated by
an LDA model. In previous work on analyzing mean-field variational inference, [24] analyze the
performance of VB for posterior inference in a Gaussian mixture model. Unlike the assumptions in
Theorem 1, their analysis requires that the data be generated by a specific model.

Topic models are often evaluated and compared by approximation of the per-word log probability.
Concerning this quantity, the following corollary is immediate because the total free energy scales
with the length of the document.
Corollary 1. The per word free energy change, as well as the percentage free energy change, be-
tween VB and CVB goes to zero with the length of the document.

Our results are stated in log-space. The bounds on the difference in free energy is equivalent to a
bound on the ratio of probability obtained by VB and CVB. Since the probability of a document falls
exponentially fast with the number of words, the additive difference in the probability estimates of
VB and CVB is again negligible for large documents.
Corollary 2. For sufficiently long documents, the difference in probability estimates of CVB and VB
decrease as cm−k for some constant c < 1 whose value depends on the model parameters β.

The upper-bound in (3) is nearly tight. When all topics are uniform distributions, the difference in
the free energy estimates is Ω(k) for long documents.

3.1 Proof Sketch

We sketch the proof of Theorem 1. The full proof is in the supporting material. We first introduce
some notation. We denote a vector with an arrow, like ~ν. All vectors have k real coordinates. νj
will denote its coordinates, with j ∈ [k] = {1, . . . , k}. When iterating over indices in [k], we will
use the variable j. To iterate from 1 to m we will use i.

We state three lemmas which are needed to prove (3). The left inequality in (3) follows from the fact
that CVB optimizes over a larger family of distributions [21]. We concentrate on the right inequality.
The first step is to carry out calculations similar to [24] to arrive at the following.
Lemma 1. Suppose q(~z) =

∏
i qi(zi) is the optimal approximation to the posterior p(~z|~x). Then,

VB(~x)− CVB(~x) ≤
∑
z

(
Eq(~z)[log Γ(mj + αj)]− log Γ(γj + αj)

)
(4)

where γj =
∑
i qi(Zi = j),∀j ∈ [k], and mj is the number of occurrences of the topic j in ~z.

Note that to analyze the term Eq(~z)[log Γ(mj + αj)] corresponding to a particular topic j, we need
consider only those positions i where qi(Zi = j) 6= 0; we denote the number of such positions by
Nz . The difficulty in analyzing arbitrary documents lay in working with the right hand side of (4)
without any prior knowledge about the qi’s. This was overcome by the following lemma.
Lemma 2. Suppose Xi is Bernoulli random with probability qi, for i = 1 to m. Let f : R→ R be
convex, and γ ∈ [0,m]. Then the following optimization problem is solved when each qi = γ

m

maxq1,...,qm
E[f(X1 + . . .+Xm)]

s.t. qi ∈ [0, 1]
q1 + . . .+ qm = γ.

As an immediate corollary of the previous two lemmas and the fact that log Γ is convex, we get

VB(~x)− CVB(~x) ≤
∑
j

E[log Γ(mj + αj)]− log Γ(γj + αj).
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(a) Difference in total free energy estimates
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Figure 1: Results on synthetic text data. We sample k topics from a symmetric Dirichlet distribution
with parameter βparam. We sample 10 documents from LDA models with these topics. We consider
prefixes of varying lengths for each document. For each prefix length, the VB and CVB free energies
are averaged over the 10 documents.The curves obtained show how the advantage of CVB over VB
changes with the length of a document, number of topics and sparsity of topics.

where mj is now a Binomial random variable with probability γj

m and number of trials m. The last
piece of the proof is the following concentration lemma.

Lemma 3. Let X be the number of heads in m coin tosses each with probability q. We require
m > q−(2+o(1)). Let a > 0 be constants. Then

0 ≤ E[log Γ(X + a)]− log Γ(E[X + a]) ≤ O(1− q) + o(1) (5)

Here o(1) = O(
√

logm
m ).

The requirement of m > 1/q2+o(1) is necessary, and translates to the condition that document
lengths be greater than (Nj/γj)

2+o(1) for Theorem 1 to hold. This gives an implicit lower bound on
the required length of a document which depends on the sparsity of the topics. (Sparse topics place
their mass on few words, i.e., low entropy, and dense topics spread their mass on more words, i.e.,
high entropy). When the vocabulary is large, dense topics require long documents for the theory to
take effect. This is supported by our simulations.

4 Empirical results

We studied the results of this theory on synthetic and real text data. We implemented the algorithms
described in [3] and [21]. While these algorithms are only guaranteed to find a local optimum of the
objective, we aim to study whether our theorem about the global optimum is borne out in practice.
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Synthetic data The synthetic data was generated as follows. We first sampled k topics β1, . . . , βk
independently from a symmetric Dirichlet distribution with parameter βparam. We then sampled a
corpus of 10 documents, each of length 5000 from an LDA model with these topics and Dirichlet
hyper-parameter 1/k. The vocabulary size was 10000.

For each document, we considered sub-documents of the first m words with lengths as small as 100.
On each sub-document, we ran both VB and CVB initialized from a common point. For every sub-
document length, the average converged values of the free energy was recorded for both algorithms.
Thus, we obtain a trajectory representing how the advantage of CVB over VB changes with the
number of words m.

We repeated this simulation with different values of k to reveal the dependence of this advantage on
the number of topics. Moreover, we investigated the dependence of the advantage on topic sparsity.
We repeat the above experiment, with three different values of the Dirichlet parameter βparam for the
topic matrix. The topics become sparse rapidly as βparam decreases.

The results of this study are in Figure 1. We see similar trends across all data. The advantage
decreases with document length m and increases with the number of topics k. The theory predicts
that the difference in free energy converges to a constant, implying that the percentage advantage
decays as O(1)/m. Figure 1 reveals this phenomenon. Moreover, the constant is estimated to be
on the order of k, implying that the advantage is higher for more topics. Comparing the curves for
different values of k reveals this fact. Finally, for denser topic models the performances of CVB
and VB converge only for very long documents, as was discussed at the end of Section 3.1. When
βparam = 0.1, CVB retains its advantage even for 5000 word long documents.

Real-world corpora We studied the relative performance of the algorithms on two text data sets.
First, we examined 3800 abstracts from the ArXiv, an on-line repository of scientific pre-prints.
We restricted attention to 5000 vocabulary terms, removing very frequent and very infrequent terms.
Second, we examined 1000 full documents from the Yale Law Journal. Again, we used a vocabulary
of 5000 terms. Each data set was split into a training and test corpus. The ArXiv test corpus
contained 2000 short documents. The Yale Law test corpus contained 200 documents of lengths
between a thousand and 10, 000 words.

For each data set, we fit LDA models of different numbers of topics to the training corpus
(k = 5, 10, 25, 50), and then evaluated the model on the held-out test set. In Figure 2, we plot
the percentage difference of the per-word variational free energies achieved by CVB and VB as a
function of document length and number of topics. We also plot the difference in the total free
energy. As for the simulated data, the graphs match our theory; the percent decrease in per word
free energy goes to zero with increasing document length, and the absolute difference approaches a
constant. The difference is more pronounced as the number of topics increases.

The predicted trends occur even for short documents containing around a hundred words. Topics
estimated from real-world data tend to be sparse. The issues seen with dense topics on simulated
data are not relevant for real-world applications.

5 Conclusion

We have provided a theoretical analysis of the relative performance of the two variational inference
algorithms for LDA. We showed that the advantage of CVB decreases as document length increases,
and increases with the number of topics and density of the topic distributions. Our simulations on
synthetic and real-world data empirically confirm our theoretical bounds and their consequences.
Unlike previous analyses of variational methods, our theorem does not require that the observed
data arise from the assumed model.

Since the approximation to the likelihood based on CVB is more expensive to compute than for
VB, this theory can inform our choice of a good variational approximation. Shorter documents and
models with more topics lend themselves to analysis with CVB. Longer documents and models with
fewer topics lend themselves to VB. One might use both, within the same data set, depending on the
length of the document.
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Figure 2: Experiments with the two text data sets described in Section 4. We fit LDA models
with numbers of topics equal to 5, 10, 25, 50, and evaluated the models on a held-out corpus. We
plot the percentage difference of the per-word variational free energies achieved by CVB and VB
as a function of document length. We also plot the difference in the total free energy. The %-age
decrease in per word free energy goes to zero with increasing document length, and the absolute
difference approaches a constant. The difference is higher for larger k.
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(b) Yale Law data-set

In one strain of future work, we will analyze the consequences of the approximate posterior inference
algorithm on parameter estimation. Our results regarding the sparsity of topics indicate that CVB
is a better algorithm early in the EM algorithm, when topics are dense, and that VB will be more
efficient as the fitted topics become more sparse.
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