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Abstract

Bayesian phylogenetic inference is often con-
ducted via local or sequential search over topolo-
gies and branch lengths using algorithms such as
random-walk Markov chain Monte Carlo (MCMC)
or Combinatorial Sequential Monte Carlo (CSMC).
However, when MCMC is used for evolutionary pa-
rameter learning, convergence requires long runs
with inefficient exploration of the state space. We
introduce Variational Combinatorial Sequential
Monte Carlo (VCSMC), a powerful framework that
establishes variational sequential search to learn
distributions over intricate combinatorial struc-
tures. We then develop nested CSMC, an efficient
proposal distribution for CSMC and prove that
nested CSMC is an exact approximation to the (in-
tractable) locally optimal proposal. We use nested
CsMC to define a second objective, VNCSMC
which yields tighter lower bounds than VcsSMcC.
We show that VcSMC and VNCSMC are compu-
tationally efficient and explore higher probability
spaces than existing methods on a range of tasks.

1 INTRODUCTION

What is the origin of SARS-COV-II and how can we an-
alyze the progression of its genetic variants? How do an-
tibodies evolve and develop in response to infection and
vaccination? Bayesian phylogenetic inference is a power-
ful statistical tool to address these and other questions of
central importance in molecular evolutionary biology and
epidemiology [Dhar et al., 2020, Boni et al., 2020]. Given an
evolutionary model and an alignment of observed molecular
sequences (DNA, RNA, PROTEIN), Bayesian methods sam-
ple latent bifurcating trees to uncover genetic history, quan-
tify uncertainty and incorporate prior information [Huelsen-
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beck and Ronquist, 2001]. Phylogenetic modeling involves
three distinct challenges: (7) sampling from a discrete distri-
bution to approximate an intractable summation over tree
topologies, (i7) for each tree, integrating over the continuous
branch lengths that govern the stochastic process for genetic
mutations, and (¢4¢) performing parameter optimization or
model learning. The marginalization of tree topologies and
branch lengths is typically accomplished via local search
algorithms such as random-walk Markov chain Monte Carlo
(McwMmc) [Huelsenbeck and Ronquist, 2001] or sequential
search algorithms such as Combinatorial Sequential Monte
Carlo (CsMmc) [Bouchard-Coté et al., 2012]. Sophisticated
proposal methods based on Hamiltonian Monte Carlo or par-
ticle MCMC have been suggested to simultaneously sample
from composite spaces and optimize evolutionary parame-
ters [Dinh et al., 2017a, Wang et al., 2015, Wang and Wang,
2020]. However, these methods are often difficult to imple-
ment, slow to converge requiring days or weeks of CPU
time, and heavily dependent upon heuristics.

Variational Inference (V1) is a computationally efficient al-
ternative to MCMC. VT posits an approximate posterior and
then recovers parameters of both the model and approximate
posterior by maximizing a lower bound to the log-marginal
likelihood. One approach to learning variational distribu-
tions on phylogenetic trees is to parameterize the tree as a
sequence of subsplits, or ordered partitions on clades, and
to recast the problem as a Bayesian network [Zhang and
Matsen IV, 2018]. The drawback of this setup is that the
support of the conditional probability tables scales exponen-
tially with the number of taxa [Zhang and Matsen IV, 2019].
A body of recent work has established connections between
VI and sequential search by defining a variational family of
distributions on hidden Markov models, where Sequential
Monte Carlo (SMC) is used as the marginal likelihood esti-
mator [Maddison et al., 2017, Le et al., 2018, Naesseth et al.,
2018, Lawson et al., 2018, Moretti et al., 2019a,b, Naesseth
et al., 2020, Moretti et al., 2020a,b, Moretti, 2021]. We
extend these approaches by developing variational sequen-
tial search methods that learn distributions over complex
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combinatorial structures. Our contributions are as follows:

* We develop Variational Combinatorial Sequential
Monte Carlo (VCSMC), a novel variational objective
and structured approximate posterior defined on the
space of phylogenetic trees. VCSMC blends CSMC and
V1, providing the user with a flexible and powerful
approximate inference algorithm.

¢ We further extend CSMC with nested SMC [Naesseth
et al., 2015, 2019a], introducing a new efficient pro-
posal distribution for CSMC. We prove that this pro-
posal is an exact approximation to the (intractable)
locally optimal proposal for CSMC. We use NCSMC
to define a second objective, VNCSMC which yields
tighter lower bounds than VCsMC.

* In empirical studies, we demonstrate the advantage
of VcsMmc and VNCcsMC. First, we analyze a stan-
dard dataset of primate mitochondrial DNA, then the
complete genomes of 17 Betacoronavirus species over
36,889 sites, and finally 7 benchmark datasets (DS1-
DS7) ranging from 27 to 64 taxa. VCSMC and VNC-
SMC are compared to existing benchmarks and shown
to perform favorably across a range of tasks.

Related Work. Bayesian phylogenetics is often approxi-
mated using local search algorithms such as random-walk
McMmc [Huelsenbeck and Ronquist, 2001] or sequential
search algorithms such as CSMC [Bouchard-Coté et al.,
2012]. McMC methods can also be used for model learning,
jointly estimating the phylogenetic trees and evolutionary
parameters. Probabilistic path Hamiltonian Monte Carlo
(ppH M C') [Dinh et al., 2017a] is one such method that ex-
tends Hamiltonian Monte Carlo by defining a Markov chain
on the orthant complex of phylogenetic tree space. It is often
the case that the likelihood term in the MCMC acceptance
ratio is difficult to evaluate. The idea of Particle MCMC al-
gorithms (PMCMC) is to use SMC as an unbiased estimate of
the marginal likelihood to define a proposal for MCMC [An-
drieu et al., 2010]. A PMcMC algorithm for evolutionary
parameter learning was introduced in [Wang et al., 2015],
and improved upon using a particle Gibbs sampler in [Wang
and Wang, 2020]. In contrast to these methods, the proposed
approach leverages VI for inference and introduces a new
efficient proposal distribution for CSMC.

One approach to VI for phylogenetic trees is to parame-
terize a tree as a sequence of subsplits, or ordered parti-
tions on clades and to recast the problem as a Bayesian
network [Zhang and Matsen IV, 2018]. A drawback of this
setup is that the support of the conditional probability ta-
bles scales exponentially with the number of taxa [Zhang
and Matsen IV, 2019]. In subsequent work, the authors in-
troduce two Variational Bayesian Phylogenetic Inference
frameworks (VBPI and VBPI-NF) by using pre-computed
topologies to define the support of the conditional proba-
bility tables for the approximation [Zhang and Matsen IV,

2019, Zhang, 2020]. In contrast, VCSMC does not restrict the
support of the tree topologies and instead leverages CSMC
to compute a lower bound.

2 BACKGROUND

Phylogenetic Trees. We wish to infer a latent bifurcating
tree that describes the evolutionary relationships among a
set of observed molecular sequences. A phylogeny is de-
fined by a tree topology 7 and a set of branch lengths B.
A tree topology is defined as a connected acyclic graph
(V, E) where V is a set of vertices and F is a set of edges.
Leaf nodes denote vertices of degree 1 and correspond to
observed taxa. Internal nodes designate vertices of degree
3 (one parent and two children) and represent unobserved
taxa (e.g. DNA bases of ancestral species). The root node
is of degree 2 (two children) and represents the common
evolutionary ancestor of all taxa.

For each edge e € F, we associate a branch length, denoted
b(e) € Rsg, and B = {b(e)}ccr. The branch length cap-
tures the intensity of the evolutionary changes between two
vertices. An ultrametric tree is one with constant evolution-
ary rate along all paths from v to its descendants. Nonclock
trees are general trees that do not require ultrametric as-
sumptions. In this work we focus on phylogenetic inference
methods for nonclock trees as these are most pertinent to
biologists.

Bayesian Phylogenetic Inference. Let the matrix Y =
{Y1,--,Ys} € QN5 denote the observed molecular se-
quences with characters in €2 of length S over N species.
Bayesian inference requires specifying the prior density
and likelihood function over tree topology 7, branch length
set B and generative model parameters 6 to write the joint
posterior,

Pu(B. ) = S

ey

The prior is uniform over topologies and a product of inde-
pendent exponential distributions over branch lengths with
rate \y;. The evolution of each site is modeled independently
using a continuous time Markov chain with rate matrix Q.
Let ¢, s denote the state of genome for species v at site s
and define the evolutionary model along branch b(v — v’):

P@(Cv’,s - j|<v,s - Z) = eXp (b(e)Qz,j) . (2)

The likelihood of a given phylogeny Py(Y|r,B) =
S

11 Ps(Y;i|7, B) can be evaluated in linear time using the
i=1

sum-product or Felsenstein’s pruning algorithm [Felsen-
stein, 1981] via the formula:

S
P@(Y|T’ B) = H Z n(a;)) H exXp (_bu,ani,ai) ;

=1 q? (u,v)€E(T)
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Figure 1: Overview of the CSMC framework. K partial states are maintained as forests over the set of taxa. Each iteration of
Algorithm 2 involves three steps: (1) resample partial states according to their importance weights, (2) propose an extension
of each partial state to a new partial state by connecting two trees in the forest, and (3) compute weights for each new partial
state by using Felsenstein’s pruning algorithm. In the above, three samples are shown over four taxa A, B, C, D.

where p is the root node, a!, is the assigned character of
node u, F(7) represents the set of edges in 7 and 7 is the
prior or stationary distribution of the Markov chain. The
normalization constant Py(Y) requires marginalizing the
(2N — 3)!! distinct topologies which is intractable [Semple
and Steel, 2003].

Computational Challenges. We distinguish the two com-
putational tasks required for phylogenetic inference. First,
inference involves computing the normalization constant
Py(Y) by marginalizing the (2N — 3)!! distinct topologies:

R =Y [ noYInBm(r. BB, @)

TET

A common approach used for approximating Eq. 3 is to
sample tree topologies T and branch lengths B via Monte
Carlo methods, such as CSMC, given that 6 is known.

Second, learning (optimization) refers to finding the set of
parameters § = (Q, {)\l}iill € 0O) that maximize the data

log-likelihood obtained by marginalizing Eq. 3:

0* = argmax log Py(Y). (€))
Q.OHE

Sampling algorithms can also be used by assigning a prior
to 0, then performing a local search for the parameters via
McMcC methods, given that the data likelihood is available.

Variational Inference. VI is a technique for approximat-
ing the posterior Py(B,7|Y) when marginalization of la-
tent variables is not analytically feasible. By introducing a
tractable distribution Q4(5, 7|Y) it is possible to form a

lower bound to the log-likelihood:

log PQ(Y) 2 EELBO(aa ¢a Y) = IC% 1

og P, 0 (Yv B ) T)
Qs(B,7Y) |

&)
Auto Encoding Variational Bayes [Kingma and Welling,
2013] (AEVB) simultaneously trains Q4(B,7|Y) and
Py(Y, B, 7). The expectation in Eq. 5 is approximated by
averaging Monte Carlo samples from Q4 (5, 7|'Y) which
are reparameterized by evaluating a deterministic func-
tion of a ¢-independent random variable. When the ratio
Py(Y,B,7)/Qs(B,7|Y) is concentrated around its mean,
Jensen’s inequality produces a tighter bound.

Deriving a tractable approximation Q4 (B, 7|'Y) for the phy-
logenetic tree model can be challenging so we turn to CSMC.

Combinatorial Sequential Monte Carlo. CsMC is de-
signed for inference in phylogenetic tree models. CSMC
approximates a sequence of target distributions 7, on in-
creasing probability spaces such that the final target coin-
cides with Eq. 1 [Wang et al., 2015]. The (unnormalized)
target distribution 7 and its normalization constant ||7|| cor-
responding to the numerator and denominator in Eq. 1 are
approximated by sequential importance resampling in R
steps. Unlike standard SMC methods, the target 7 is defined
on a combinatorial set (the space of tree topologies) and
the continuous branch lengths. This requires defining an
intermediate object referred to as a partial state.

Definition 1 (Partial State). A partial state of rank r denoted
s = {(ti, X;)} is a collection of rooted trees that satisfies
the following three conditions: (i) the set of partial states
of different ranks are disjoint, Vr # 5, S, NSy = 0 ; (ii)



the set of partial states of smallest rank has a single element
So = {L}; and (ii) the set of partial states at the final rank
R corresponds to the target space X

CsSMC operates by sampling K partial states (or particles)
{sk¥1K € S, at each rank r which are used to form a
distribution,

VseS,  (6)

1K
T = |71l > whde(s)
k=1

where 6 is the Dirac measure and w?” are the importance
weights. Resampling ensures that particles remain in areas

of high probability mass. Each resampled state sr !, where
ab_, € {1,..., K} is the resampled 1ndex of rank 7 — 1
is then extended to a state of rank r, s¥, by simulating

Ic
from a proposal distribution ¢(-|s,." ') : & — [0,1]. The
importance weights are computed as follows:

k k — (g1
k ar_1 k 7(s;) v (s,"1)
Wy = w(sr—llvsr) - k,r - k ’ (7)
ar_1 klo%r—1
ﬂ-(sr—l ) q Sr|sr—1 )
where v~ is a probability density over S correcting an over-

counting problem [Wang et al., 2015]. An overview of the
procedure is given in Fig. 1. An unbiased estimate for the
marginal likelihood can be constructed from the weights
which converges in L2 norm,

R

K

N R 1

Zeswe = |7rl =[] (KZwa> =l ®
k=1

r=1

VcsMc melds VI and CSMC to approximate the posterior
as well as the model parameters.

3 VARIATIONAL COMBINATORIAL
SEQUENTIAL MONTE CARLO

Variational Objective. The idea of VCSMC is to simul-
taneously learn the model parameters and proposal param-
eters by maximizing a lower bound to the data marginal
log-likelihood, using CSMC as an unbiased estimator of the
marginal likelihood.

We begin by defining a structured approximate posterior
which factorizes over rank events. Each state (or rank event)
s, is specified by a topology, a forest of trees, and their corre-

8

sponding set of branch lengths. The proposal g4,y (sk |8: )

is the probability of state s* given the resampled state at
k

the previous rank s '. Subscripts ¢ and 1) denote dis-
crete and continuous proposal parameters respectively. The

approximate posterior is (written explicitly in Eq. 16):

Qo (s17> 1R 1) = ©)

k
H%wﬁ XHH — %w( |:k1)
r=2 k=1 Ell

At the final rank event R = N — 1, an unbiased approxi-
mation to the likelihood is formed by averaging over im-
portance weights, which, in turn represent the sample phy-
logenies that are constructed iteratively. A multi-sample
variational objective is formed via the lower bound:

Losmc izg {log ZACSMC} : (10)

The presence of the discrete distribution over partial states
presents a challenge for variational reparameterization. Un-
like standard variational SMC methods [Naesseth et al.,
2018], states are formed by sampling from a large combi-
natorial set. We take two approaches, the first is to drop
discrete terms from the gradient estimates. The second is
to reparameterize these terms as Gumbel-Softmax random
variables forming a differentiable approximation through a
convex relaxation over the simplex. Continuous proposal
terms are drawn by evaluating a deterministic function of a
1-independent random variable.

Implementation Details. Constructing the objective
Lcsame is done iteratively in three steps. The proposal
procedure, ¢(s,|s,-—1), requires selecting two trees to co-
alesce by sampling without replacement. This is accom-
plished by defining Gumbel-Softmax random variables.
The uniform log-probability for each index is perturbed by
adding independent Gumbel distributed noise, after which
the largest two elements are returned. For example let
U ~ UNIFORM(0, 1), we then form G = v — log(—log U)
so that G can be reparameterized as G’ = G + ~. The RE-
SAMPLE procedure can also be reparameterized similarly
by defining Gumbel-Softmax random variables.

Extending the Target Measure. The WEIGHTING step
requires some care. In order to compute importance weights,
the likelihood of a partial state must be evaluated using
Felsenstein’s pruning algorithm, however the likelihood of
Eq. 3 and the probability measure 7 are defined on the target
space of trees Sg, and not the larger sample space of partial
states S« r, which are defined on forests (trees disjoint
from each other). The pruning algorithm yields a maximum
likelihood estimate for an evolutionary tree, but partial states
are defined as collections of disjoint trees or leaf nodes. One
extension of the target measure 7 into a measure on S, < g is
to treat all elements of the jump chain as trees [Wang et al.,
2015]. The contribution of each of the trees to the likelihood
is multiplied by taking the inner product of each distribution
over characters with 7.
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(a) State space model representation of CSMC. Latent
variables consist of internal nodes and branch lengths
with Markovian dependencies whereas observations are
the recorded molecular sequences.
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(b) Overview of the natural forest extension of the target
measure. Partial state s* = {Pap, C, D} is defined as a
forest over leaves { A, B, C, D}.

Figure 2: Illustration of the sequence of probability spaces along with the natural forest extension used by CSMC. The
probability measure 7 is defined on the target space of trees Sg, and not the larger sample space of partial states S, < g,
which are defined on forests. The partial state s* = {Pap, C, D} corresponding to S; of Fig. 2 (a) is illustrated in Fig. 2 (b)
as a set of disjoint components over the four taxa { A, B, C, D}. Felsenstein’s pruning algorithm is used to obtain a marginal
likelihood estimate for each tree by passing messages from left and right child nodes and taking the inner product with 7,
the stationary state of Q. Each distinct likelihood is then multiplied to assign probability 7(s¥) to partial state s*.

Definition 2 (Natural Forest Extension). The natural forest
extends target measure 7 into forests by taking a product
over the trees in the forest:

w(s) =[] mvicn(t:)- (11)

(tl’Xi)

The natural forest extension (NFE) has the advantage of
passing information from the non-coalescing elements to
the local weight update. Fig. 2 provides an illustration of
the NFE applied to the state consisting of PA(A, B) and
non-coalescing singletons {C'} and {D}.

4 NESTED COMBINATORIAL
SEQUENTIAL MONTE CARLO

A potential drawback of the CSMC method is that partial
states are sampled to coalesce uniformly, when many of the
resulting topologies correspond to areas of low probabil-
ity mass. It seems natural to incorporate information from
future iterations within the proposal distribution to subse-
quently guide the exploration of partial states. Adapting the
proposal requires marginalizing the intermediate target over
future topologies and branch lengths.

Locally Optimal Combinatorial SMC. Choosing a good
proposal distribution is key for the effectiveness of SMC
methods. The locally optimal SMC [Doucet et al., 2000,
Naesseth et al., 2019b] chooses the proposal in such a way
that all particles have equal weights. This can significantly
improve the performance over the standard proposal used
in CsMcC. The locally optimal proposal based on the natural
forest extension is

W(sr)z/_(sr,l).

12
- (12)

q(5r|5r71) X

This locally optimal proposal for the CSMC algorithm
is computationally intractable, it requires us to exactly
marginalize the branch lengths. We use the nested SMC
[Naesseth et al., 2015, 2019a] method to overcome this
problem.

Nested Combinatorial SMC. We provide an overview of
Nested Combinatorial Sequential Monte Carlo before pre-
senting a detailed description in Algorithm 1 (we have anno-
tated the overview with steps from the algorithm). NCsSMcC
iterates over rank events (line 2) to perform a standard RE-
SAMPLE step also used in CSMC methods (line 4). For each
sample, NCSMC enumerates all (N 5 T) possible one-step
ahead topologies and samples corresponding M sub-branch
lengths (line 7). We evaluate importance sub-weights or
potential functions for each of these s [i] sampled look-
ahead states (/ine 8). Then, we extend our ancestral partial

k
state sii’ll to the new partial state s¥ (line 11) by selecting
one of the topologies and a corresponding branch length
according to its weight. Finally, for each sample (line 12),
we compute its weight by averaging over all the potential
functions. An illustration of the procedure is given in Fig. 5
of the Appendix.

Variational Nested CSMC Objective. The nested CSMC
method described in Algorithm 1 can also be used to con-
struct a variational objective:

Lyncsmc = g [log éNCSMC] , (13)
R 1 K

R 3 .

Znosme = ];[1 (K ; w) . (14)

We refer to the resulting VI framework as VNCSMC.



Theoretical Justification. Nested CSMC is an SMC algo-
rithm on the extended space of all random variables gener-
ated by Algorithm 1. This means it keeps keeps the favorable
properties of CSMC, such as unbiasedness of the normaliza-
tion constant estimate and asymptotic consistency. The key
property that ensures this for NCSMC is proper weighting
[Naesseth et al., 2015, 2019a].

Definition 3 (Proper Weighting). We say that the random
pair (s,,w,) are properly weighted for the unnormalized
distribution % if w, > 0 almost surely, and for

all measurable functions A,

E[wTh(sT)]:/h(sr)str. (15)

We formalize the result for NCsSMC, Algorithm 1, in Theo-
rem 1. We say that nested CSMC is an exact approximation
[Naesseth et al., 2019b] of CsMc with the locally optimal
proposal.

Theorem 1. The particles s¥ and weights w¥ generated by
(s )v” (8p—1)
m(Sr—1)

Algorithm 1 are properly weighted for

Proof.

Eluwfh(st)] = E [wf - h(s57[1)]
-\ 40

=E wk il h(sk9i
D T T

S EXPERIMENTS

We evaluate VCSMC and VNCSMC on three tasks: (i) a stan-
dard dataset of primate mitochondrial DNA, (ii) on the com-
plete 36 kilobase genomes of 17 species of Betacoronavirus,
and (iii) on 7 large taxa benchmarks datasets ranging from
27 to 64 taxa. For experiments using the same initialization
of likelihood and prior, the proposed methods converge to
higher log-marginal likelihood values than existing methods.
Additionally, they can be more easily adopted to a variety of
models, with arbitrary settings of parameters §. VCSMC and
VNCSMC also scale well with the number of sites in input
sequences.

Algorithm 1 Nested Combinatorial Sequential Monte Carlo
Input: Y = {Vi,---,Yu} € QVeM ¢ =
(@ (a2

1: Initialization. Vk, s <1, wk «+ 1/K.
2: forr=1to R=N —1do
3: fork=1to K do

4 RESAMPLE P(aF_| = i) = <=t
Zl:l r—1
5: forizltoL:(Q_)do
6: form = 1to M do
7 FORM LOOK-AHEAD PARTIAL STATE
k
a/’V‘
] ~ (s
8: COMPUTE POTENTIALS
k
) . ., an_
P Gl Gy
Wr M o ark~é1 ) k,m “571
ﬂ—(sry—l ) q(Sf [Z”Sry—l )
9: end for
10: end for
11: EXTEND PARTIAL STATE
sy = sy (1],
wp [i]
P(I=i.J =) =
Zl IZm L wr ™[]
12: COMPUTE WEIGHTS
| LM
k_ _— k
Wr = ML Z Z w
i=1 m=1
13:  end for
14: end for

.« 1K 1:K
Output: s;* , wiin

Primate Mitochondrial DNA. We evaluate VCSMC on a
benchmark dataset of nucleotide sequences of homologous
fragments of primate mitochondrial DNA [Hayasaka et al.,
1988]. The dataset consists of 12 taxa {Sg, - -- , S11} over
898 sites admitting 13,749,310,575 distinct tree topologies.
The set of taxa includes five species of homonoids, four
species of old world monkeys, one species of new world
monkey and two species of prosimians. VCSMC is run with
K = {4,8,16, 32,64, 128} particles, whereas VNCSMC is
run with K = {4,8,16,32,64, 128} and M = 1 particles,
each averaged over 5 random seeds. Fig. 3 shows higher
values of K produce larger log-marginal likelihood values
(tighter ELBO values) with lower stochastic gradient noise.
VcsMmc (blue) with K > 16 outperforms probabilistic path
Hamiltonain Monte Carlo (ppH M C') shown (green trace)
for comparison. VNCSMC (red) requires fewer epochs than
VcsMc to converge and produces tighter ELBO / larger log-
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Figure 3: Log likelihood values for VcsMmc (blue) with K = {4, 8,16, 32,64, 128} samples and VNCSMC (red) with
K ={4,8,16,32,64,128} and M = 1 samples on the primates data averaged across 5 random seeds. Higher values of K
produce tighter ELBO / larger log likelihood values with lower stochastic gadient noise. VCSMC with K > 16 outperforms
probabilistic path Hamiltonain Monte Carlo (ppH M C') which is shown (green trace) for comparison. VNCSMC requires
fewer epochs than VCSMC to converge and produces tighter ELBO / larger log likelihood values with lower stochastic
gadient noise. VNCsMC with (K, M) = (4,1) (top left) outperforms both ppH M C' and VcsMC with K = 128 (bottom
right).

Tarsius Syrichta (.Sp) Tarsius Syrichta (.Sp) —
Lemur Catta (S7) Lemur Catta (S7) —
Homo Sapiens (.S3) Homo Sapiens (S2)
Pan (Ss3) Pan (S3)
Gorilla (Sy) Gorilla (Sy)
Pongo (S5) Pongo (S5)
Hylobates (Se) Hylobates (Se)
Macaca Fuscata (S7) Macaca Fuscata (S7)
M Mulatta (Ssg) M Mulatta (Ss) {‘»
M Fascicularis (Sy) M Fascicularis (S)
M Sylvanus (S19) M Sylvanus (S70)
Samiri Sciure (S11) Samiri Sciure (S11)
(a) MrBayes phylogeny (b) VNCSMC phylogeny

Figure 4: MrBayes vs VNCSMC phylogeny on the primate mitochondrial DNA dataset. The data consists of 12 taxa
{So, -+, 511} over 898 sites on the genome. The maximum likelihood topology returned by VNCSMC corresponds to that
of Mr Bayes. The bottom clade partitions monkeys, while the central and top clades partition hominids and prosimians.
MrBayes uses 20,000 iterations of MCMC in contrast to VNCSMC which uses 256 samples.

marginal likelihood values with lower stochastic gadient Fig. 4 provides a single maximum likelihood phylogeny
noise. VNCSMC with (K, M) = (4,1) (top left) outper-  selected from a run of VNCSMC using K, M = (256,1)
forms both ppH M C' and VcsSMC with K = 128 (bottom  particles, along with a phylogeny from Mr Bayes on the
right). same dataset. The topology returned by VNCSMC corre-



Table 1: Log-marginal likelihood estimates of different variational inference techniques across 7 benchmark datasets for
Bayesian phylogenetic inference. Results reported by VBPI [Zhang and Matsen IV, 2019] and VBPI-NF [Zhang, 2020] were
obtained by (i) using 10 replicates of 10,000 maximum likelihood bootstrap trees [Minh et al., 2013] to obtain topologies
defining the support of the conditional probability tables and (ii) performing 400,000 parameter updates. VCSMC does not
require bootstrapped or MCMC tree topologies in order to learn parameters. We give VCSMC 2048 particles and evaluate the
likelihood after 100 parameter updates. Results for VcsMc and VcsMc (JC) are averaged over three random seeds. VCSMC
consistently explores higher probability phylogenies than VBPI and VBPI-NF without the use of preloaded topologies.

Log Marginal Likelihood

Dataset Reference # Taxa (N)  # Sites (5) VBPI VBPI-NF  Vcsmc  Vesmce (JO)
DS1 Hedges et al. [1990] 27 1949 -7108.4 -7108.4 -5929.8 -6906.7
DS2 Garey et al. [1996] 29 2520 -26367.7  -26367.7 -14160.4 -23252.6
DS3 Yang and Yoder [2003] 36 1812 -33735.1  -33735.1  -17460.5 -33177.8
DS4 Henk et al. [2003] 41 1137 -13329.9  -13329.9 -11251.9 -12232.6
DS5 Lakner et al. [2008] 50 378 -8214.5 -8214.5 -5797.1 -7921.2
DS6 Zhang and Blackwell [2001] 50 1133 -6724.3 -6724.3 -5216.5 -6575.5
DS7 Rossman et al. [2001] 64 1008 -8650.6  -8650.4  -5847.5 -6781.5

sponds to that of Mr Bayes. The bottom clade partitions
monkeys, while central and top clades partition hominids
and prosimians respectively.

Betacoronavirus Data. The evolutionary origin of SARS-
COV-II and the development of its genetic variants is an
open question of paramount importance in both virology
and in public health. At a high level, the species SARS-COV-
IT belongs to the genera of betacoronaviruses, which include
0c43 and HKU1 (which cause the common cold) of lineage
A, SARS-COV and SARS-COV-II (which causes the disease
CovID-19) of lineage B, and MERS-COV-II (which causes
the disease MERS) of lineage C [Boni et al., 2020]. The ex-
act origin of SARS-COV-II however is unknown; different
approaches to phylogenetic inference produce statistically
incompatible results [Pipes et al., 2020]. Coronaviruses have
relatively large genomes ranging from 26-32 kilobases, and
performing analyses on the full genomes is often a challenge.
Recently, it has been argued that viral recombination in be-
tacoronaviruses often encompasses the receptor binding do-
main (RBD) of the spike gene [Patifio-Galindo et al., 2020].
This process is thought to have produced a recombination
event at least 11 years ago in an ancestor of SARS-COV-
I [Patifio-Galindo et al., 2020]. We use VNCSMC to analyze
the complete genomes for 17 species of Betacoronavirus
downloaded from the NCBI Viral Genomes Resource [Bris-
ter et al., 2014]. Multiple Sequence Aligmnent using Clustal
was performed and each nucleotide was one-hot encoded
as a vector, producing input sequences with 36,889 sites.
Fig. 6 of the Appendix provides the maximum likelihood
phylogeny from a VNCSMC run using K, M = (256, 1) par-
ticles. The result shows that the phylogeny partitions four
lineages into clades: Embecovirus (lineage A), Sarbecovirus
(lineage B including SARS-COV and SARS-COV-II), Mer-
becovirus (lineage C), and Nobecovirus (lineage D) [Cotten

et al., 2013, Woo et al., 2010, Geldenhuys et al., 2018].

Large Taxa Benchmarks. We evaluate VCSMC on 7
large benchmark datasets for Bayesian phylogenetic infer-
ence [Hedges et al., 1990, Garey et al., 1996, Yang and
Yoder, 2003, Henk et al., 2003, Lakner et al., 2008, Zhang
and Blackwell, 2001, Rossman et al., 2001]. Each dataset
ranges from 27 to 64 eukaryote species with 378 to 2520
sites. Table 1 provides the marginal likelihood values for
various methods. VBPI [Zhang and Matsen IV, 2019] and
VBPI-NF [Zhang, 2020] both learn a simplified model of
molecular evolution referred to as Jukes-Cantor (JC), which
fixes the transition matrix [Jukes and Cantor, 1969]. For
a fair comparison, we report VCSMC (JC) results in addi-
tion to the harder task of also learning the transition matrix.
Results reported by VBPI and VBPI-NF were obtained by
(1) using 10 replicates of 10,000 maximum likelihood boot-
strap trees [Minh et al., 2013] to obtain topologies defining
the support of the conditional probability tables and (ii)
performing 400,000 parameter updates. Without bootstrap
trees, the conditional probability tables for VBPI and VBPI-
NF scale exponentially with the number of taxa [Zhang and
Matsen IV, 2019]. VcsMcC does not restrict the support of
the tree topologies and instead leverages CSMC to compute
a lower bound. We give VCSMC 2048 particles and evaluate
the likelihood after 100 parameter updates, averaged over
three random seeds. Both VcsMmc and Vcsmc (JC) explore
higher probability spaces than VBPI and VBPI-NF.

Empirical Running Times. We report the empirical run-
ning times of VCSMC and VNCSMC on the primates dataset
and highlight the results in Table 2 of the Appendix. Experi-
ments were performed on a 2.4GHz 8-core Intel i9 processor
Macbook pro with 64 GB memory and no GPU utilization.
We note that alternative methods are designed for solving



simpler problems in both inference and learning making any
runtime comparisons indirect. For instance, VBPI and VBPI-
NF use precomputed topologies, while ppH M C' support
Jukes-Cantor models. VCSMC runs on the primates dataset
at an average speed of 19.34 iterations per second (it/s) with
K =4 and an average of 2.25 seconds per iteration (s/it)
with K =256. VNCSMC runs in 3.89 seconds per iteration
with K =4 and 21.77 seconds per iteration with K = 256.
These numbers can be improved by leveraging GPU utiliza-
tion. In contrast, MrBayes in Figure 4 takes 12 seconds with
20,000 iterations, and the minimum it would take to con-
verge on the primates dataset is ~2,000 iterations, implying
a runtime of ~1.2 seconds. We observe that the first epoch
of VCSMC and VNCSMC is equivalent to the inference task
and runs faster than MrBayes.

6 DISCUSSION

Computational Complexity. The locally optimal pro-
posal in NCSMC requires additional computational com-
plexity to marginalize the intermediate target densities in
exchange for a more informed exploration of partial states.
NcsMmc costs O(KN3M) in contrast to O(KNM) for
CsMmc. Empirically, NcSMC with small K, M produces a
more accurate posterior approximation than CSMC with
larger K (see Fig. 3). NCSMC can accommodate a large
number of particles with low memory overhead, however
maintaining the computational graph and applying the sum-
product algorithm symbolically for each of the K samples
and M sub-samples, along with evaluating gradients for
each of these terms places a practical restriction on the
values of K, M and N used with VNCcsSMC without GPU
utilization. Alternative implementations of Bayesian phylo-
genetic inference are computationally intensive. While the
process of enumerating the (N 5 T) topologies across rank
events cannot be avoided, we find that choosing K as large
as possible and M = 1 is a useful heuristic for producing
good results. For example, K, M = (256, 1) can be run
on the betacoronavirus data with N = 17 and 36,889 sites
(see Fig. 6) without GPU utilization. One advantage of VC-
SMC and VNCSMC is the ability to use minibatch iteration
to speed up training. The experiments were trained using
ADAM with a batch size B = S/4. Opportunities exist to
parallelize VcsMC and leverage GPU optimization which
we expect would produce significant performance gains on
DS1-DS7 as K increases.

Effective Sample Size. One pertinent theoretical question
concerns the relationship between the effective sample size
(Ess), the number of samples K and the number of taxa
N. The EsS measures the diversity among samples and
is defined as Ess = (3, w;)?/ Y., w? where w; are the
unnormalized weights. We report ESS values on the primates
data in Table 2 of the Appendix. While an ESS close to
K is not sufficient to ensure a good approximation, it is

a necessary condition. We find near optimal ESS values
across all choices of K for both VcsMC and VNCSMC. The
theoretical foundations for developing lower bounds on ESS
for a given value of K have only been developed in the
context of online inference, where the posterior distribution
is updated as new sequence data becomes available [Dinh
et al., 2017b]. We leave theoretical questions of ESS and
online extensions of VCSMC for future work.

Contacts Outside of Phylogenetic Inference. VcsSMcC
and VNCSMC may be adapted to a wide class of problems
outside of phylogenetic inference. In principle, any gener-
ative model of data simulated by a Markov tree can be fit
using VCSMC and VNCSMC. Coalescent models for heirar-
chical Bayesian clustering and diffusion trees [Teh et al.,
2009, Boyles and Welling, 2012, Knowles and Ghahramani,
2011] are examples of alternative probabilistic approaches
involving distributions over latent trees that may be suited
for VcsMmc. The nested CSMC algorithm may also be used
to simulate approximate solutions to other combinatorial
optimization tasks. Combinatorial Monte Carlo methods
are used to approximate the number of self-avoiding ran-
dom walks on the lattice [Sokal, 1996, Shirai and Kikuchi,
2013]. Another point of contact is the reconstruction of jet
structures in particle physics for the analysis of data from
experiments at the Large Hadron Collider at CERN [Hoche,
2014]. Jet reconstruction algorithms are typically based on
greedy approximation methods [Cacciari et al., 2008, Dok-
shitzer et al., 1997], however VCSMC and VNCSMC may
be particularly suited for this domain. The aforementioned
extensions are open directions for further development.

Conclusion. We have introduced VcsMcC, a powerful
framework for both inference and learning in Bayesian phy-
logenetics. VCSMC is the first method to establish the use
of variational sequential search to learn distributions over
intricate combinatorial structures, uncovering connections
between VI and SMC. We have introduced NCSMC, and
proved that it provides an exact approximation to the locally
optimal proposal for CSMC. We have used NCSMC to define
a second objective, VNCSMC which yields tighter lower
bounds than VcSMcC. VcSMC and VNCSMC outperform
existing methods on a range of tasks. A TensorFlow imple-
mentation of both VCSMC and VNCSMC is available online
athttps://github.com/amoretti86/phylo.
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APPENDIX

Algorithm 2 Combinatorial Sequential Monte Carlo

Input: Y = {V;,---, Yy} € Q¥=M 9 = (Q, {\}LED)
1: Initialization. Vk, s& <1, wk «+ 1/K.
2: forr=0to R=N —1do
33 fork=1to K do

4: RESAMPLE )
wl
P<af—1 Z) = K r-1
D1 wlr—l
5: EXTEND PARTIAL STATE .
Q,._
sy ~q(ls,7")
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71'(57-:1 ) q 35|37~T—1 )
7. end for
8: end for

9: Output: sEX  wlhE

The proposal distribution for CSMC and approximate posterior for VCSMC can be written explicitly as follows:

K R K
: : : Wy.— akfl a’ffl affl
Qo (T B i) = (H%m’“)-qmzﬁ@)HH o (TR ) (BB T
k=1 r=2k=1 1=1 Wr—1
(16)

k ok K
State s* = (T;*, BF) is sampled by proposing forest 7,* ~ g, (+|7,-";*) and branch lengths B ~ g, (:|Bi"7", Tro'1*) from
UNIFORM and EXPONENTIAL distributions corresponding to Eq. 1 with ¢ and ) denoting discrete and continuous terms.
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Figure 5: Overview of the NcSMC framework. The enumerated topologies for state {A,B,{C,D}} are (top):
{A,{B,{C, D}}}, (center): {{A, B},{C, D}} and (bottom): { B,{A,{C,D}}} . M = 1 sub-branch lengths are sampled
for each edge. Sub-weights or potentials are computed (right). A single candidate is sampled to form the new partial state.



HUMAN CORONAVIRUS HKU-11: NC_006577.2

{ RAT CORONAVIRUS PARKER: NC_012936.1

BETACORONAVIRUS HKU24: NC_026011.1

RABBIT CORONAVIRUS HKU14: NC_017083.1

— HUMAN CORONAVIRUS Oc43: NC_006213.1

—=a BOVINE CORONAVIRUS: NC_003045.1
{ ROUSETTUS BAT CORONAVIRUS ISOLATE GCCDC1 356: NC_030886.1
ROUSETTUS BAT CORONAVIRUS HKU9-1: NC_009021.1

—@ BAT HP-BETACORONAVIRUS/ZHEJIANG2013: NC_025217.1

® BAT CORONAVIRUS BM48-31/BGR/2008: NC_014470.1

——® SARS-COV-II: NC_045512.2

® SARS-COV : NC_004718.3

—& BETACORONAVIRUS ERINACEUS/VMC/DEU/2012: NC_039207.1

{ BETACORONAVIRUS ENGLAND 1: NC_038294.1

9 MERS CORONAVIRUS EMC/2012: NC_019843.3
PIPISTRELLUS BAT CORONAVIRUS HKUS5-1: NC_009020.1

TYLONYCTERIS BAT CORONAVIRUS HKU4-1: NC_009019.1

Figure 6: Overview of the betacoronavirus results. The data consists of 17 species of betacoronavirus across 36,889 sites.
VNCSMC is run using K, M = (256, 1). A single nonclock phylogeny is chosen based on maximum likelihood and
displayed. Colors denote species from the four varying viral lineages: Embecovirus (orange lineage A); Nobecovirus (blue
lineage D); Sarbecovirus (red lineage B including SARS-COV and SARS-COV-II); Merbecovirus (grey lineage C) and
Hibecovirus (black not classified into the four lineages) are each partitioned in clades.
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Figure 7: VNCSMC on the primates data with K, M = (128, 1). The full distribution of log likelihood values for all particles
across epochs is plotted in black. The average likelihood across samples is plotted in blue.

-

A

|

B c

D A

B

C

D

N

A

B D c

Figure 8: Overview of the dual representation of a partial state. The partial state s} = { P4, C, D} for four taxa correspond-
ing to Fig. 2 is illustrated using its dual representation D(s). The dual state D(s) C T corresponds to the three complete
tree topologies. (left): {{A, B}, {C, D}} (center): {{A, B}, {A, B,C}} and (right): {{A, B},{A, B,D}}.

Vcsmc VNCSMC
K s/it s/mit time (minutes) Ess s/it s/mit time (minutes) Ess
4  517e-2 13le-2 0:22 3.98 4.01 1.17 6:32 3.99
8 5.58e-2 1.42e-2 0:28 7.96 4.27 1.24 7:09 7.88
16 3.11e-2 7.76e-2 0:30 1579  4.83 1.53 8:15 15.62
32 5.78e-2  2.17e-1 0:49 3172 598 1.59 10:17 31.00
64  9.80e-2 2.66e-1 1:23 62.92 8.33 2.09 14:33 62.59
128 1.35 3.48e-1 2:16 122.79 11.88 2.89 20:02 124.23
256 2.25 5.95e-1 3:52 252.02  21.77 4.98 36:51 252.43

Table 2: Empirical running times of VCSMC and VNCSMC. The Primates data consists of 12 taxa over 898 sites admitting
13,749,310,575 distinct tree topologies. Experiments were performed on a 2.4GHz 8-core intel i9 processor Macbook Pro
with 64 GB memory and no GPU utilization. We profile using K = {4, 8, 16, 32,64, 128,256} and M = 1. The left column
provides seconds per iteration (s/if), the left center column provides seconds per minibatch (s/mit), the center right column
provides total running time (minutes) across 100 epochs. The effective sample size is provided in the right columns.
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Figure 9: VNCSMC on the 9-taxa subset of primates data with K, M = (128, 1). The full distribution of log likelihood
values for all VNCSMC particles across epochs is plotted in black. The average likelihood across samples is plotted in red.
Particle Gibbs [Wang and Wang, 2020] is run for 5000 iterations 10 times independently. The last 100 iterations for the

10 independent runs of Particle Gibbs are averaged and plotted in green. VNCSMC using 100 epochs outperforms Particle
Gibbs using 5000 iterations.
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