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Admixture models are a ubiquitous approach to capture latent pop-
ulation structure in genetic samples. Despite the widespread applica-
tion of admixture models, little thought has been devoted to the
quality of the model fit or the accuracy of the estimates of param-
eters of interest for a particular study. Here we develop methods for
validating admixture models based on posterior predictive checks
(PPCs), a Bayesian method for assessing the quality of fit of a statistical
model to a specific dataset. We develop PPCs for five population-level
statistics of interest: within-population genetic variation, background
linkage disequilibrium, number of ancestral populations, between-
population genetic variation, and the downstream use of admixture
parameters to correct for population structure in association studies.
Using PPCs, we evaluate the quality of the admixture model fit to four
qualitatively different population genetic datasets: the population
reference sample (POPRES) European individuals, the HapMap phase 3
individuals, continental Indians, and African American individuals. We
found that the same model fitted to different genomic studies resulted
in highly study-specific results when evaluated using PPCs, illustrating
the utility of PPCs for model-based analyses in large genomic studies.

posterior predictive checks | admixture models | population structure |
model checking | genomic data

One essential problem for population genetics is to charac-
terize latent population structure in genetic samples. Inferred

population structure is used to control for confounding effects in
both genome-wide association studies (GWAS) and quantitative
trait mapping (1, 2), and to explore genetic relationships when
studying population ancestry and history (3–6).
An important and influential approach to characterizing latent

population structure is the admixture model, first implemented
in the Structure program (7). The admixture model is a Bayesian
model of a collection of genomes. It represents each genome as a
convex combination of K ancestral populations and each ances-
tral population as population-specific allele frequencies for each
genetic locus. Given genetic data, admixture models recover
both the genetic variation within ancestral populations and
proportions of each ancestral population within a genome. Be-
cause of their descriptive power, admixture models have become
essential for exploratory analyses of genomic studies (8); they
have transformed modern research in population genetics.
The admixture model, like all statistical models, makes simpli-

fying assumptions about the data. These assumptions enable
complex data to be modeled in a way that is both analytically useful
and computationally tractable. For example, the admixture model
assumes that individuals in the sample are distantly related, that all
locus-specific allele frequencies are equally likely, and that genetic
loci are independent. Population genetics tells us, however, that
genomic data violate these assumptions (7). Paraphrasing the quip
by statistician George Box, our question is not whether the model
is true—we know that it is not—but whether it is useful. Do the
fitted parameters help with the analytic task, or do the simpli-
fying assumptions direct us to unsupported conclusions?
Here, we show that the effect of the admixture assumptions on

inference of population structure depends on the data at hand;

thus diagnosing admixture model misspecification should be
regular practice in their application. A misspecified model may
indicate spurious associations between diseases and genetic
variants after correcting for latent structure, or lead to blind
alleys of ancestral history while exploring inferred structure that
is an artifact of the simplifying assumptions. When we fit the
admixture model to genetic data—whether we are exploring la-
tent structure or using inferred population structure in down-
stream analyses—we rely on the recovered representation from a
statistical procedure to be meaningfully connected to the true
genetic structure that has emerged from a complex evolutionary
process. It is essential that we assess the strength of this connection.
To this end, we develop a general statistical procedure for

checking the goodness-of-fit of an admixture model to genomic
data. Our procedures are based on posterior predictive checks
(PPCs), a technique from Bayesian statistics used to quantify the
effect of Bayesian model misspecification (9–13). A PPC works
as follows. We first fit a model using observed data, estimating
the posterior distribution of latent parameters. The fitted model
induces a distribution of future data conditioned on the obser-
vations; this distribution is called the posterior predictive distri-
bution (PPD). We use the PPD to generate synthetic datasets.
Finally, we check whether the simulated datasets are close to the
observed dataset when summarized through a statistic of interest,
called the discrepancy function.

Significance

Bayesian models, including admixture models, are a powerful
framework for articulating complex assumptions about large-
scale genetic data; such models are widely used to explore data
or to study population-level statistics of interest. However,
we assume that a Bayesian model does not oversimplify the
complexities in the data, to the point of invalidating our
analyses. Here, we develop and study procedures for quanti-
tatively evaluating admixture models of genetic data. Using
four large genetic studies, we demonstrate that model check-
ing should be an important part of the modern genetic data
analysis pipeline. Our methods help to support inferences
drawn from recovered population structure, to protect scien-
tists from being misled by a misspecified model class, and to
point scientists toward useful model extensions.
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The idea behind PPCs is that, if the model assumptions are ap-
propriate, then data generated from the PPD will look like the ob-
served data. The discrepancy measures a relevant property of the data
that we hope to capture. If the model is well specified for a specific
dataset, then the observed data, viewed through the discrepancy, will
be a likely draw from the estimated PPD. If the model is not well
specified, then the observed discrepancy will look like an outlier.
Given observed genotype data, checking admixture models

with a PPC works as follows (Fig. 1). We first fit an admixture
model to the data, estimating ancestral populations and indi-
vidual-specific population proportions. Most analyses end here,
e.g., with illustrations of the population proportions as in Fig. 2.
We then simulate genomes from the posterior predictive distri-
bution, using posterior estimates of the latent parameters to
draw synthetic genetic data that share the same structure as the
observed data; we repeat this process many times to create a
collection of replicated data. Finally, we compare discrepancies
computed on the observed data to the empirical distribution of
the discrepancies computed on the replicated data. When an
observed discrepancy is not likely relative to the empirical dis-
tribution of the replicated discrepancies, the PPC suggests that
the model is misspecified with respect to the discrepancy. We
maintain that PPC assessments are best made visually (12, 13).
We used PPCs to check for misspecification in four genomic

datasets: HapMap phase 3, Europeans, African Americans, and
continental Indians. These data have been previously characterized
using an admixture model and have qualitatively different types of
latent population structure (Fig. 2). We developed five discrepancy
functions to check for important types of model misspecification in
admixture model analyses. The discrepancy may be a function of
both observed and latent variables (11, 12). We based these dis-
crepancies on common measures in population genetics:

• Identity by state (IBS): We test for the impact of long-range
single nucleotide polymorphism (SNP) correlations on within-
population variance estimates by quantifying the genomic var-
iation among pairs of individuals within alleles from the same
ancestral population;

• Background linkage disequilibrium (LD): We test for the impact
of short-range SNP correlations on allele frequency estimates
by computing autocorrelation between SNPs, or background LD;

• FST: We check the number of ancestral populations by com-
puting FST among labeled and inferred ancestry;

• Assignment uncertainty: We test how distinct the ancestral
populations are from one another by quantifying uncertainty
in ancestral population assignment; and

• Association tests: We test whether or not the inferred popula-
tion structure adequately controls for confounding latent pop-
ulation structure in association mapping studies by quantifying
the difference in statistical significance of corrected associations
versus uncorrected associations under the null hypothesis of
no association.

Using and comparing PPCs with several discrepancies allows
scientists to innovate the model in the directions for which it is
most important for the analysis task (Discussion).
With five discrepancies and four datasets, PPCs reveal that each

application of the admixture model meets and diverges from its as-
sumptions in different ways. Each PPC indicates when we might
extend the model to better match the complexities of the data at
hand, and in the Discussion we point to some specific extensions that
address each direction of misspecification. Although we focus here on
the simple admixture model, we emphasize that assessing model fit-
ness is important in any application of statistical models to data. We
will demonstrate that PPCs give an intuitive framework for visually
and quantitatively understanding when inferred hidden structure can
or cannot be safely interpreted and used in downstream analyses.

Results
We used PPCs to assess the fit of an admixture model to data
from four genomic studies. We developed five discrepancies,
each measuring the degree to which the fitted model captures
one aspect of the data. Here we report our findings.
We first describe the admixture model and outline our pro-

cedure for using a PPC to check for misspecification. The ad-
mixture model uses allele frequencies across genomes to recover
individual-specific ancestry proportions and population-specific
allele frequencies. The observed data include i= 1, . . . , n in-
dividuals, each with ℓ∈ 1, . . . ,L SNPs. Each SNP ℓ for individual
i is represented as two binary variables, xi,ℓ,1, xi,ℓ,2 ∈ f0,1g, where
xi,ℓ,1 + xi,ℓ,2 is the number of copies of the minor (less frequent)
allele (genetic variant); here we assume diploid organisms (two
complete sets of chromosomes) and biallelic SNPs. The admix-
ture model assumes that there are k= 1, . . . ,K ancestral pop-
ulations that describe these data, where K is specified a priori,
and that each population is associated with location-specific al-
lele frequencies βk,ℓ. Individual i’s genotype data are generated as
follows: (i) draw individual-specific ancestry proportions θi from
a uniform Dirichlet distribution; (ii) for each SNP ℓ, draw two
categorical variables zi,ℓ,1 and zi,ℓ,2 from a multinomial distribution
with parameter θi; these latent variables indicate the ancestral
populations assigned to the two copies of that SNP; and (iii) con-
ditioned on the assigned ancestral populations, draw two alleles
for SNP ℓ using the corresponding allele frequencies; that is,
draw each xi,ℓ, · from a Bernoulli with parameter βzi,ℓ, · ,ℓ.
Conditioned on data, the admixture model estimates the

posterior distribution of latent population structure. This struc-
ture is encoded in individual specific population proportions θi
(illustrated in Fig. 2), the population-specific allele frequencies
βk, and the assigned ancestral populations z. We use expectation
maximization (EM) to estimate model parameters. See Methods
for complete model specification and description of EM.
To estimate the posterior predictive distribution for this fitted

model, we generated replicated data from parameter estimates.
For each observed genomic data matrix x and K ancestral pop-
ulations, we first estimated the latent parameters: β, θ, and z.
With these estimates, we generated a collection of replicated
datasets. We drew L SNPs for the same n individuals, holding
the parameters z and β fixed. This resulted in a set of simul-
ated individuals xrep. In particular, for all i and ℓ, we drew
xrepi,ℓ,1jzi,ℓ,1, βℓ ∼Bernoulliðβzi,ℓ,1 ,ℓÞ and similarly for xrepi,ℓ,2. The replicated

Fig. 1. Schematic diagram showing PPCs applied to genetic studies. The ad-
mixture model is fitted to a collection of genomic data. A distribution of the
discrepancy function fð · , · Þ for each of K inferred populations to the replicated
genomic data Xrep, given the estimated ancestral population parameters Z,
approximates the posterior predictive distribution. The probability of observ-
ing the discrepancy function applied to the observed data Xwith respect to this
approximate posterior predictive distribution quantifies the goodness-of-fit.
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data were generated conditional on the inferred latent variables;
we do not need to reestimate them at any point in our analysis.
For each dataset x and fitted admixture model we generated 100
replicated datasets xrep.
For each PPC, we developed a discrepancy function f ðx, z, θÞ,

which is a function of the data and inferred latent structure. In
our PPCs, each discrepancy partitions the alleles by assigned pop-
ulation and produces K scalar values. We computed the observed
discrepancy f ðx, z, θÞ and the replicated discrepancy f ðxrep, z, θÞ for
each replicated dataset. The empirical distribution of f ðxrep, z, θÞ is
an estimate of the PPD of the discrepancy. Thus, we checked model
fitness by locating the observed discrepancy in this distribution. If
the observed discrepancy was an outlier with respect to this es-
timated PPD, then we conclude that the model is not a good fit
to our data with respect to the discrepancy.
For each PPC, we used visualizations and assessments of sig-

nificance to summarize the results (19). The PPC plots visualize
the observed discrepancy against its PPD. We plotted the value
of the replicated discrepancies f ðxrep, z= k, θÞ with gray circles
and the observed discrepancy f ðx, z= k, θÞ with an offset solid
circle. We colored the observed discrepancy to encode its z score,
the number of SDs from the mean of the replicated discrepancy.
Finally, we quantified the likelihood that the K z scores were
jointly generated from a standard normal distribution. The num-
ber of gray stars at the top of each figure corresponds to the level
of deviation from standard normal (Methods), which quantifies the
magnitude of model misspecification with respect to a discrepancy.
Our results include evaluations of four genomic studies (see

Methods for details). We set the number of ancestral populations
based on prior work; we extend the results to diverse K in the
Supporting Information. We study the following datasets:

• The HapMap phase 3 (HapMap) data include 1,043 individu-
als genotyped at 468,167 SNPs from populations worldwide;
these individuals descend from distinct (and, in a few cases,
admixtures of distinct) ancestral populations (20). Each indi-
vidual is labeled with the location of the sample collection.
Following prior work, we set K = 6 (21).

• The population reference sample (POPRES) (POPRES) data
include 1,387 individuals genotyped at 197,146 SNPs from
continental Europe (16, 22). We expect the ancestry of these
individuals to be an admixture of populations defined on a
continuous geographic gradient instead of distinct ancestral
populations (15). Each individual has a label describing the
geographic birthplace of their grandparents, and we included
individuals only if all four grandparents shared the same birth-
place. Following prior work, we set K = 4 (15).

• The African American (ASW) data include 61 African Amer-
ican individuals from the southwest United States, 32 indiv-
iduals from Utah of Northern and Western European ancestry
(CEU), and 37 Yoruban individuals from Ibadan, Nigeria
(YRI) in the 1000 Genomes Project sequenced at 88,885 SNPs
(17). We expect the ancestry of the genotypes from the ASW
individuals are admixed from two distinct ancestral populations:
European and West African. Individuals are labeled as ASW,
CEU, or YRI. We set K = 2 because all individuals are thought
to have ancestry from only European and Yoruban populations.

• The Indian data (Indian) include 74 individuals genotyped at
196,375 SNPs from 15 distinct groups across India (18). The
ancestry of each of these individuals’ genotypes is admixed
between two distinct but closely related ancestral groups: An-
cestral North Indians and Ancestral South Indians (18).
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Fig. 2. Illustration of the variation in individual-specific ancestry proportions across the four genomic studies. The x axis represents the individuals in each
study, and the y axis is the proportion of the genome with maximum likelihood assignment in each ancestral populations (colors distinguish ancestral
populations). (First Row) HapMap phase 3 individuals, clustered by geographic origin of sample, fitted to six ancestral populations (14). Individuals, for the
most part, have ancestry in one of the six continental ancestral populations, and are not substantially admixed. (Second Row) POPRES individuals, clustered by
geographic location in Europe, fitted with four ancestral populations (15, 16). Because of the genetic proximity of the four populations, representing four
corners of Europe, each individual has a proportion of ancestry in each population. (Third Row) ASW individuals, clustered by reported African ancestry, fitted
to two ancestral populations (17). Because we include African and European individuals, we see individuals have either ∼ 80% African and ∼ 20% European
ancestry, or all African or all European ancestry. (Fourth Row) Indian individuals, fitted to two ancestral populations (18). Most individuals have some pro-
portion of ancestry in the two ancestral populations, because of an ancient admixture event.
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Group labels are associated with each individual. Following
prior work, we set K = 2 (18).

We number and describe the estimated ancestral populations
in Table 1 (see also Fig. 2). We are using a fixed number of
ancestral populations for each study, and we keep this number-
ing consistent throughout the figures in the Results.
Below, we describe each discrepancy and how each study fared

under its lens. Then, we shift the focus to the genomic studies,
summarizing how well the model fits the data across the col-
lection of discrepancies.

Discrepancy in Within-Population Genomic Variation. Population
admixture models are often used to explain similarities between
individuals’ genotypes: if two individuals have portions of their
chromosomes that are descended from the same ancestral pop-
ulation, they will, probabilistically, have more alleles in common
than two individuals descended from distinct populations ac-
cording to the admixture model. How many more alleles the
individuals share depends on the separation between ancestral
populations, the proportion of the genomes with shared ancestry,
and within-population genetic variation.
We developed a discrepancy to compute the IBS between pairs

of individuals, which measures conditional similarity of alleles
between individuals (23). For a pair of individuals, we averaged
the number of alleles in common across the genome for SNPs that
share ancestry assignments in the fitted model (24). For this dis-
crepancy, a pair of individuals with a discrepancy of 1.0 for pop-
ulation k indicates that 100% of the alleles assigned to population
k in both individuals are identical, whereas 0.0 indicates 100%
differing alleles. A misspecified model with respect to this IBS
discrepancy may imply that we cannot safely ignore admixture LD,
or (possibly long distance) genetic correlations induced by recent
admixture of distinct populations, in our admixture model (25).
We performed the PPC and found that, for HapMap, ASW,

and Indian, the within-population variation is well captured by
the admixture model (Fig. 3). In contrast, the POPRES data
showed underestimated average interindividual similarity, indi-
cating model misspecification. Note that the two studies with
distinct populations (HapMap, ASW) tended to have z scores
greater than zero indicating greater than expected interindivid-
ual similarity on the observed data; the two studies with less well-
separated populations (POPRES, Indian) have z scores below
zero, indicating less similarity than expected.
We also looked at the observed discrepancy without the con-

text of the replicated discrepancy. In the POPRES data and, to a
lesser degree, the Indian data, the average similarity of indiv-
iduals is similar across ancestral populations. This might be ex-
pected when modeling data with continuous population structure.
In contrast, HapMap and, to a lesser extent, ASW exhibit more

variability across ancestral populations. This may be a function of
variable heterozygosity within the distinct ancestral populations
(26). The higher observed discrepancy in ASW relative to the
same recovered ancestral populations in HapMap may suggest
that, within this ASW population of African Americans, there is
less variability within ancestral populations than in estimates of
these populations from nonadmixed individuals (European and
Yoruban HapMap individuals, for example). This is interesting
in light of recent estimates of the effective population size of the
ASW population, which is an order of magnitude greater than
either the European or Yoruban effective population sizes (27).
A mismatch in observed and replicated interindividual similarity

leading to a failure of this PPC may be due to admixture linkage
disequilibrium. Admixture LD arises as a result of admixture
across two distant populations; because of the difference in allele
frequencies between these two populations, there will be large
regions across chromosomes that are well correlated because of
shared ancestry (25). More generations of admixture reduces the
effect of admixture LD for genomic regions that are inherited in-
dependently, leaving only correlations among neighboring genomic
loci (background LD). Thus, for recently admixed individuals such
as in ASW, we might expect to see evidence of admixture LD that
leads to higher-than-expected similarity among individuals. Lower
than expected similarity is likely due to the proximity of the an-
cestral populations: if the ancestral populations are difficult to
distinguish with respect to allele frequencies, then SNP-specific
ancestral assignments will be arbitrary, and within-population allele
variation will be higher in the observed data than is modeled by the
Bernoulli and found in the replicated data (Fig. S1).

Discrepancy in Background LD. Linkage disequilibrium LD is the
nonrandom assortment of alleles across the genome. LD occurs
when alleles are not inherited independently: the alleles at one
genomic locus provide information about the alleles at another
locus. The process of recombination in diploid chromosomes
implies that alleles that are nearby on a chromosome are inherited
together unless a recombination event occurs, creating depen-
dencies in local genotypes populationwide. Recombination is an
infrequent event across a genome: for a single offspring, there are
on average a small number of recombination events per chro-
mosome, with high variance (28). Recombination events within a
population lead to a blocklike correlation structure of genotypes
across the genome, where polymorphisms adjacent in the chro-
mosome will be well correlated (referred to as background LD, in
contrast to possibly long-distance dependencies induced by admix-
ture LD). This correlation decays as the chromosomal distance
increases—but not uniformly. Although each study we analyzed
contains local correlation patterns, the admixture model assumes
independence of every SNP conditional on population ancestry;

Table 1. Numbering and composition of each of the estimated ancestral populations for each study

HapMap POPRES ASW Indian

1 Pakistan (0.6); N Europe (0.2);
Russia (0.2); Israel (0.2)

Ukraine (0.5); Slovenia (0.5); Croatia (0.4);
Bosn. Herz. (0.4)

YRI (1.0); ASW (0.8) Kurumba (0.8); Bhil (0.8);
Tharu (0.7); Vaish (0.7)

2 New Guinea (1.0); S Europe (0.2) Norway (0.6); Latvia (0.5); Finland (0.5);
Denmark (0.5)

CEU (1.0); ASW (0.2) Vysya (1.0); Velama (0.8);
Srivastava (0.8); Kamsali (0.7)

3 S Africa (1.0); C Africa (1.0);
N Africa (0.3)

Portugal (0.3); Spain (0.3); Bulgaria (0.3);
Switz. (0.3)

4 N Europe (0.7); Israel (0.7);
N Africa (0.7); S Europe (0.7)

Slovakia (0.6); Turkey (0.6); Greece (0.5);
Italy (0.5)

5 S America (1.0); C America (0.9)
6 Japan (0.9); China (0.9);

SE Asia (0.8); Russia (0.3)

Proportions in parentheses are the estimated proportions for individuals with those geographic labels that have ancestry in that estimated ancestral
population.
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this PPC check fails when this independence assumption does not
hold in the posterior predictive distribution.
We assessed the fitted admixture model for local correlation

structure among SNPs. To do this, we built a discrepancy func-
tion (LD discrepancy) that measures local dependencies among
SNPs using mutual information (MI). The history of statistics to
quantify LD is rich (29), and there are many possibilities for this
discrepancy. Mutual information quantifies the reduction in
uncertainty about random variable xi,ℓ,j given knowledge of the
state of xi,ℓ′,j′ (or vice versa; MI is symmetric) for a pair of discrete
random variables, here, the observed alleles at two loci, xi,ℓ,j and
xi,ℓ′,j′ (30) (Eq. 1). If two SNPs are independent (i.e., in linkage
equilibrium, or inherited independently), MI will, theoretically,
be zero. However, finite samples imply that, even when two SNPs
are in linkage equilibrium, the MI may be nonzero by chance.
Our discrepancy uses MI to measure dependence between ad-
jacent pairs of assayed SNPs. We checked lags between pairs of
SNPs varying between 1 and 30, indicating 0 to 29 intervening
SNPs between the pairs of tested SNPs along the chromosome.
When we applied this LD PPC to our data, we found that,

across studies, the models were generally misspecified at small

lags (Fig. 4). For all studies but HapMap, the z scores show that,
as the lag grows, the observed MI tend toward underestimates of
MI in the posterior predictive distribution. The z scores for
POPRES deviate substantially from a standard normal for all
lags indicating more observed background LD than expected.
The model’s independence assumption across SNPs manifests in
nearly identical replicated discrepancies across lags, regardless of
the number of ancestral populations (Fig. S2). Failure of this
PPC may suggest using a subset of SNPs with low pairwise LD;
however, admixture models rely on greater SNP densities to
enable the separation of similar ancestral populations.
We also looked at the observed discrepancies alone. In

POPRES and Indian data, background LD decayed rapidly with
observed SNP lag (31). In the POPRES data, the measurements of
background LD were consistent across inferred populations. In the
HapMap data, background LD differs among distinct populations
(32); this is expected because LD is impacted by population-specific
effects, including migration, deviations from random mating, and
selection (33). In HapMap and, less so, ASW, background LD is
fairly uniform across different lags. This difference may be a func-
tion of the density of SNPs and SNP ascertainment biases, which
differs across studies, but we found that these results persist for lags
up to 1,000 adjacent SNPs. Note also that the HapMap data in-
clude almost 2.5 times more SNPs than the POPRES data.

Discrepancy in Reported Ancestry. It is often assumed that self-
reported ancestries provide no additional information above
fitted individual-specific ancestry parameters. To test misspecification
with respect to this assumption, we developed a PPC to compare
inferred individual-specific ancestry proportions to geography labels
using the fixation index FST. Using the fitted admixture model to
partition alleles into one of K inferred ancestral populations, FST
measures whether or not subdividing these alleles by individual-
specific geography labels reduces the variance of those allele fre-
quencies. The FST is zero if no additional population structure exists
in the geography labels beyond what is already recovered in the
inferred ancestral populations. Conversely, large values of FST in-
dicate that the geography labels capture additional structure not
found in the estimated populations. For a fitted admixture model
with K populations, we evaluated this population-specific FST dis-
crepancy function by computing K FST values (Eq. 2).
We computed the PPC for the FST discrepancy. We found

that, except in ASW, the estimated genetic ancestry often reflects
all of the population structure in the reported ancestry (Fig. 5). If we
perform this PPC over many different values of ancestral pop-
ulations K, we found that this PPC tends to fail for values of K that
are inadequate to explain variation in the observed data (Fig. S3).
This discrepancy appears to be, in these four studies, an effective
approach to evaluate the range of well-specified numbers of ancestral

Fig. 3. Average population-specific interindividual similarity across four stud-
ies. Each x axis represents the study for which the admixture model was
fitted. Each y axis represents mean interindividual similarity across indiv-
iduals conditioned on one ancestral population. Gray points represent val-
ues from replicated data. Larger points represent values from observed data,
colored by their z scores relative to the empirical distribution of the repli-
cated values. Stars indicate significant divergence in z scores from a standard
normal. POPRES data show underestimated average interindividual simi-
larity relative to the data replicates.

* ****** ** ****** ************ ** * *** ** * *
HapMap POPRES ASW Indian
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Fig. 4. LD discrepancy PPC across four studies. The x axis indicates the number of lag SNPs between pairs of SNPs over which mutual information is averaged.
The y axis represents the average MI between SNPs at varying lags. Observed values for each population are connected by lines across lags and colored by
z score. None of these studies are well fit across all SNP lags, highlighting the impact of the assumption of independence between SNPs.

Mimno et al. PNAS Early Edition | 5 of 10

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

ST
A
TI
ST

IC
S

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412301112/-/DCSupplemental/pnas.201412301SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412301112/-/DCSupplemental/pnas.201412301SI.pdf?targetid=nameddest=SF3


populations in the admixture model. Based on recent observations
in these 1000 Genomes data, we hypothesize that these ASW in-
dividuals have an uncharacteristically large proportion of Native
American ancestry relative to prior genomic studies from African
American individuals, and that the correct number of populations
here is indeed K = 3 (34); this is confirmed in the success of this
PPC for K = 3 as described in the Supporting Information.
The observed FST varied considerably across studies (Fig. 5). As

with other discrepancy functions, HapMap and ASW show greater
variability of observed FST values across populations than POPRES
and Indian due to greater heterogeneity of ancestral populations.
The two ASW populations have consistently lower observed FST
values, suggesting that the fitted admixture model captures most of
the information in the reported ancestries (ASW, CEU, and YRI).
Indeed, FST is undefined for several populations within the ASW
models because all alleles assigned to those populations were from
individuals with a single reported ancestry. In the context of the
replicated data, however, this conclusion is shown to be incorrect:
there is latent structure in the data that is not captured in this
model, specifically, the presence of Native American ancestry. The
Indian data, with 14 reported ancestries, have higher overall FST
values: individuals within a reported ancestry have a range of
admixture between Ancestral North Indian and Ancestral South
Indian (18), and geographic labels are, unsurprisingly, a poor in-
dicator of admixture proportions across these individuals.

Discrepancy in Uncertainty in Ancestral Population Assignments. We
chose these four studies because they represent distinct patterns of
admixture (Fig. 2): in HapMap, most individuals have ancestry
explained by one or two populations; in POPRES, although regional
variation in ancestry proportions is clear, most individuals have
substantial ancestry contributions from all four populations. We
measured the degree of uncertainty of individual-specific population
assignments to determine whether this uncertainty is characteristic
of true latent structure or evidence of model misspecification.
The discrepancy function for this task quantifies the average

entropy, or uncertainty, of the ancestral population assignment
for alleles in the fitted model. We used the fitted admixture model to
compute estimates of the conditional probability of the assignment
of each SNP allele to each ancestral population k∈ f1, . . . ,Kg.
We then computed, for each population, the average entropy of
this conditional probability across individuals and SNPs (Eq. 3).

We performed PPCs with this discrepancy and found that this
model is misspecified for ASW with respect to uncertainty in allele-
specific ancestry assignments (Fig. 6); the other three studies did
not indicate problems. We found the small variation in average
entropy among the replicated data surprising; indeed, the repli-
cated points appear near identical at the scale of the visualization.
Again we hypothesize that the failure of this PPC on ASW is due
to additional Native American ancestry that is not captured with
K = 2 populations (Fig. S4).
The success of this PPC across three studies is also unexpected

when considering the observed discrepancies alone. The POPRES
and Indian studies showed high entropy, indicating a high degree
of uncertainty in population assignments (Fig. 6). This uncertainty
does not appear to be caused by lack of EM convergence: this
same uncertainty is observed for models fit with 10 times as many
EM iterations. In contrast, the HapMap and ASW studies, which
have distinct ancestral populations, have greater variance of av-
erage entropy across populations within K, indicating greater un-
certainty in some population assignments relative to others.

Discrepancy in Correcting for Population Structure in Genome-Wide
Association Studies. The final discrepancy function we considered
is the value of using estimates of individual-specific ancestry
proportions to correct for population structure in association
studies (1, 2, 35–37). Association mapping uncovers associations
between SNPs and traits (e.g., height, disease status, cholesterol
levels). Correcting for population structure in association map-
ping is essential because latent structure leads to false positive
associations when alleles that have different frequencies across
populations are mapped to traits with differential rates across
populations (38, 39). We note that, in the original manuscript
describing the use of admixture model parameters to correct for
population stratification in association studies (1), they effec-
tively performed the same PPC as we applied here without de-
scribing it as a posterior predictive check.
For this task, we quantified the effect of the fitted admixture

parameters on the log10 Bayes factors (BFs) comparing the null
hypothesis of no association between a SNP and the trait con-
trolling for population assignment, and the alternative hypothesis
of an association between a SNP and the trait, controlling for
population assignment (following prior work; ref. 1). We randomly

Fig. 5. FST discrepancy function across four studies. The x axis columns re-
present application to HapMap, POPRES, ASW, and Indian studies, respec-
tively. The y axis represents the FST value of a single ancestral population k
with respect to the geography labels. Smaller values indicate a closer match
between the labeled and estimated populations. In ASW, the number of
ancestral populations K = 2 is outside of an acceptable range.

Fig. 6. Average entropy discrepancy function across four studies. The x axis
represents the number of populations in the fitted admixture model; panels
represent application to HapMap, POPRES, ASW, and Indian studies. The
y axis represents the average entropy of the posterior distribution over
populations for each allele. Larger absolute value entropy represents greater
uncertainty over population assignments. This discrepancy function shows
small variance among replicates and finds a misspecified model for ASW.
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generated binary traits for each study using a population k in the
model to create phenotypes with different rates within our estimated
populations but with no explicit association with any SNP. Thus,
controlling for population structure, any significant association
will be a false positive. The value of the discrepancy for a specific
population is computed as the maximum log10 BF over all SNPs.
We then computed the z score of the log10 BFs of the observed data
associations with respect to the log10 BFs from the replicated data.
We performed this mapping PPC and found that the observed

maximum log10 BFs are generally within the expected range when
sampling alleles from the fitted model, which provides additional
confidence in our ability to reject false positives (Fig. 7). The
variation in the POPRES replicates highlights why the PPC fails:
controlling for fine levels of population structure with noisy dis-
crete estimates is not effective control for structure. It is coun-
terintuitive, although, that the four populations in POPRES have
lower than expected observed corrected log10 BFs (Fig. S5).
In the observed discrepancies alone, we found that the maxi-

mum log10 BF across studies was small (<0.14), indicating that
this approach to correcting for population structure is broadly
effective at avoiding false positive associations. As in previous
discrepancies, the variability in maximum log10 BF between pop-
ulations was greater for HapMap and ASW data than POPRES
and Indian data, reflecting greater distinction between populations
in the first two studies. The maximum log10 BFs for POPRES are
smaller than the other studies, reflecting less significance in tests
for association between SNPs and populations; this is unsurprising
given the homogeneity of the inferred populations and the corre-
sponding randomly generated phenotypes.

Summarizing PPC Results Within Study. We turn our attention to
summarizing the results from the five PPCs for each of our ge-
nomic studies. Our results across PPCs tell a complex story for
each study that indicates specific misspecified assumptions.

HapMap Phase 3. In our application of PPCs to the HapMap
phase 3 data, we found that the background LD discrepancy PPC
indicated a gross model misspecification, highlighting the nega-
tive impact of the assumption of independent SNPs. Other PPCs
did not find misspecification with K = 6 on these data. Two ways
to address this model misspecification with respect to background

LD in these well-separated ancestral populations would be to
(i) prune the SNP data drastically to select a near-independent set
of SNPs from which ancestry may be estimated, or (ii) model
background LD explicitly (Discussion).

European Samples. In our application of PPCs to the POPRES
data, we found that the admixture model with K = 4 ancestral
populations generally indicated similar variation in discrepancy
within and across populations. Many of the failures of the PPCs
on these data could be used together to highlight model mis-
specificiation with respect to the continuous structure of the an-
cestral populations, which is poorly captured by discrete structure
assumed by an admixture model. We might model latent structure
for these data with a continuous population model (e.g., principal
components based; refs. 40, 41).

African Americans. PPCs on the ASW data with K = 2 showed that
the ancestral population corresponding to European ancestry
was well captured in the observed data with respect to the rep-
licated data, but the population corresponding to Yoruban an-
cestry was often misspecified for the observed data with respect
to the replicated data; the FST PPC and the entropy PPC show
this differential fit. For these data, explicitly modeling Native
American ancestry with K = 3 addresses these specific model
misspecifications (see Supporting Information for results).

Continental Indians. With PPCs on the Indian data with K = 2, we
found that the failure of the entropy PPC indicates that the
underlying estimates of the two ancestral populations have sub-
stantial uncertainty. Relying on these estimates to characterize
ancestral population allele frequencies or determine admixture
proportions for each individual is unjustifiable. These data may
also benefit from using a continuous model of ancestry because
of the difficulty of differentiating these two fairly proximal an-
cestral populations many generations after the admixture events
(18); alternatively, denser biomarkers may facilitate separation
of the two ancestral populations.

Discussion
We have developed posterior predictive checks for analyzing
genomic datasets with an admixture model. We have demon-
strated that the PPC gives a valuable perspective on genetic data
beyond statistical inference of model parameters. Research on
fitted admixture models is often accompanied by a “just so” story
to explain the inferred parameters and how they are reflective of
ancestral truth (14). The model may suggest specific hypotheses,
but only conditioned on the model being a good fit for the ob-
served data. PPCs check this assumption of good fit, giving sup-
port to hypotheses by confirming that the underlying assumptions
do not oversimplify the existing structure in the observed data. In
this paper, we developed PPCs for the admixture model. We
designed biological discrepancy functions to quantify the effect of
the model assumptions on interpreting and using the estimated
parameters for downstream analyses.
Statistical modeling of genetic data requires us to balance the

complexity of the model with its capacity to capture the data at
hand. We are often limited, for example, by insufficient data to
support an overly complex model, or by computational con-
straints on the class of model we wish to fit. Thus, we support the
iterative practice of fitting the simplest model (i.e., the one we fit
here), checking whether a higher resolution model is needed,
and then improving the model only in the ways that result in more
reliable interpretations of the results. PPCs drive this process of
targeted model development, pointing us toward enriched Bayes-
ian models to quantifiably improve their performance for the ex-
ploratory tasks at hand. With this practice in mind, we revisit the
PPCs described above. We discuss how we extend the admixture

Fig. 7. Association mapping correction PPC across four studies. The x axis
represents application to HapMap, POPRES, ASW, and Indian studies, re-
spectively. The y axis represents maximum log10 BFs. Maximum log10 BFs
from replicated genomes are shown with gray points. Colors of the observed
data discrepancy values represent the z score with respect to the replicated
samples from fitted admixture models. Stars indicate deviation from nor-
mality in z scores. The POPRES data appears to deviate from the estimated
posterior predictive distribution for association mapping.
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model, or choose a variant from the research literature, when we
detect a misspecified assumption.
Many population studies have applied admixture models to ex-

plore and quantify genetic variation between individuals within and
across ancestral populations (14, 42, 43); these analyses may benefit
from the interindividual PPC. For studies where this PPC indicates
misfit, prior work has adapted the admixture model to control ad-
mixture LD by explicitly modeling haplotype blocks for each an-
cestral population (44). In particular, the SNP-specific ancestry
assignment z variables for each individual are modeled by a Markov
chain, where the probability of transitioning to a different ancestral
population from one position to the next has an exponential dis-
tribution. This specifies a Poisson process describing haplotype
block lengths across the genome, with global rate parameter r.
Many studies have noted that background LD may lead to

phantom ancestral populations (45); applying admixture models to
genomic data that contain background LD may find the SNP au-
tocorrelation PPC useful. After identifying model misspecification
using the background LD discrepancy, we could extend the ad-
mixture model to explicitly capture background LD. Above we de-
scribed a Markov model on the z variables, where genotypes remain
independent conditional on ancestral population assignment. Ex-
tending this idea, Saber (46) implements a Markov hidden Markov
model (MHMM) to capture both haplotype blocks and background
LD by adding a Markov chain across the observed SNPs x. Others
have further extended this model in various ways, including esti-
mating recombination events explicitly in the MHMM (47), and
incorporating sophisticated models of haplotypes and LD (48).
The FST discrepancy function effectively checks for a mis-

specified number of ancestral populations K. The ubiquitous
problem of selecting a number of ancestral populations is, argu-
ably, the most substantial hurdle to overcome in applying admix-
ture models (or more general latent factor models) to data (2, 7,
14). Methods and statistics have been proposed to evaluate the
proper number of latent ancestral populations, often motivated by
FST (7, 49); additionally, Bayesian nonparametric models estimate
the posterior distribution of K (50, 51). We propose a PPC with
the FST discrepancy for general use in evaluating appropriate
ranges of the number of ancestral populations for a specific study.
A simple adaptation of the model to correct for a failure of this
PPC is to change the number of ancestral populations K (Fig. S3).
There are explicit model extensions that affect the FST of the

inferred ancestral populations. For example, one can build hi-
erarchical models that allow the sharing of allele frequencies
across populations for some SNPs; this was implemented in the
Structure 2.0 model, which includes a hierarchical component
to allow similar allele frequencies across ancestral populations
(the F model) (44). A second example is from the topic model
literature (similar models applied to text documents), where the
ancestral populations are captured in a tree-structured hierarchy
(52, 53). In the corresponding admixture model, the root node
would include SNPs that have shared allele frequencies across all
ancestral populations; the leaves would include SNPs that have a
frequency in a single ancestral population that is different from
the frequency in all other ancestral populations (referred to as
ancestry informative markers, ref. 21).
Previous population studies have explored and interpreted the

population-specific SNP frequencies estimated by admixture
models (54–56); almost all applications of the admixture model
have used point estimates of ancestry assignments to determine
the proportion of admixture in individuals (15, 21). The average
entropy PPC will check uncertainty in ancestry assignment, and
has implications for interpreting estimates of SNP frequencies.
To adapt the model to this misspecification, the hyperparameters
for the Dirichlet-distributed allele-specific ancestry assignments
may be changed. We and others set α= 1 (7), giving equal weight
to all possible contribution across ancestries for each SNP. In
particular, we might give higher weight to admixture proportions

near 0 and 1 by setting α< 1 for studies where we expect low
levels of admixture (e.g., the HapMap data). The equivalent change
for the hyperparameters in the population-specific allele frequency
parameters would encourage allele frequency distributions that
more closely match observed allele frequency spectrums (57).
Another relevant model adaptation would be to modify the

distribution of a SNP to be not Bernoulli but instead Poisson
(58), Gaussian (59), or something more sophisticated (60, 61).
Although these extensions seem reasonable, the PPC with this
discrepancy found little need to modify the admixture model
assumptions in our current studies. The exception to this point is
the ASW study, although we note that setting K = 3 as suggested
above will, in part, address this misspecification (Fig. S4).
We believe that methods to control for population stratification

in association mapping will benefit from application of the mapping
PPC, including linear mixed models and nongenerative methods
such as EIGENSTRAT (2, 62). Failure of the association mapping
PPC indicates that the estimates of population structure are in-
sufficient to correct for the confounding latent structure in the in-
dividuals. There are many directions to consider for mitigating this
type of model misspecification. As examples, one may use larger
numbers of estimated principal components or populations, use
alternative approaches to specifying the latent structure variables,
or correct for structure estimated on local regions of the genome.
Applied statisticians develop models to capture the complexity

of data. To form hypotheses from these models, however, we
need assurances that the data can support them. PPCs provide a
simple mechanism to quantify when a model is sufficient or when
it needs additional structure to support downstream analysis for
specific data. Although we have focused on the admixture model,
the PPC procedure applies to any probabilistic model. For ex-
ample, we believe there could be a substantial role for PPCs in
evaluating demographic models. As we continue to collect ge-
nomic data, we continue to develop complex models to explain
them. Equally important to building our repertoire of statistical
models for analyzing genomic data are to build our repertoire of
ways to check these analyses.

Materials and Methods
Software for all methods described here is publicly available at github.com/
mimno/admixture-ppc. Note that this PPC software to generate replicated
data from a fitted model may be used to evaluate any admixture model
where the alleles are independent Bernoulli variables from one of K pop-
ulations indicated by some fitted latent variable z, which is fixed in the data
replicates. This class of admixture model includes Structure 2.0 (44). The
discrepancies, however, will work for all admixture models, although they
will not be meaningful for some that encode different assumptions.

Genomic Study Data.We downloaded the HapMap phase 3 release 3 genotype
data from the National Center for Biotechnology Information (NCBI) website
(20). We downloaded the POPRES data from dbGaP (accession no. phs000145)
and filtered these genotype data as described in prior work (15, 22). We
downloaded the ASW genotype data from 61 individuals, 32 CEU individuals,
and 37 YRI individuals from the 1000 Genomes Project Phase 1 (17) from the
1000 Genomes FTP server (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results) and pruned these data by randomly sampling 1% of SNPs
with minor allele frequency (MAF) ≥5%. We downloaded the Indian data
from the Reich Lab FTP server (18) and processed it as in previous work (15).

Admixture Model and Parameter Estimation. We used a standard admixture
model in this work, as implemented in the Structure software (7), although
we built our own software to fit this model to large-scale data as described
below. We represented ancestral population k∈ f1, . . . ,Kg with a Dirichlet-
distributed random variable ϕℓ,k, for each SNP ℓ∈ f1, . . . , Lg, over all possible
alleles; we assumed exactly two alleles for each SNP, so this simplified to a
beta distribution. We represented individual-specific ancestry proportions
for individual i∈ f1, . . . ,ng as a Dirichlet-distributed variable θi over K pop-
ulations. To generate a diploid genotype i from this model, for each SNP ℓwe
sampled two multinomial variables with parameter θi, zi,ℓ,1 and zi,ℓ,2, one for
each allele copy. We then sampled alleles xi,ℓ,1 and xi,ℓ,2 from the distributions
ϕℓ,zi,ℓ,1 and ϕℓ,zi,ℓ,2 , respectively. The generative model has the following form:

8 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1412301112 Mimno et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412301112/-/DCSupplemental/pnas.201412301SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412301112/-/DCSupplemental/pnas.201412301SI.pdf?targetid=nameddest=SF4
http://github.com/mimno/admixture-ppc
http://github.com/mimno/admixture-ppc
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results
www.pnas.org/cgi/doi/10.1073/pnas.1412301112


θi ∼ DirKðαÞ
ϕℓ,zi,ℓ,j ∼ Betaðγ, γÞ
zi,ℓ,j ∼ MultðθiÞ  for  j∈ f1,2g
xi,ℓ,j ∼ Mult

�
ϕℓ,zi,ℓ,j

�
  for  j∈ f1,2g,

where j∈ f1,2g represents the two allele copies. For simplicity, we set α= 1
and γ = 1, indicating a uniform prior on the ancestry proportions for each
individual and the site-specific allele frequencies for each population (63).
The likelihood for this model has the form:

Pðx, zjθ,ϕÞ= ∏
n

i
∏
L

ℓ
∏

j∈f1,2g
ϕ
xi,ℓ,j
ℓ,zi,ℓ,j

�
1−ϕℓ,zi,ℓ,j

�1−xi,ℓ,j
θi,zi,ℓ,j .

Without loss of generality, we represent a heterozygous SNP (encoded as 1)
as xi,ℓ,1 = 1 and xi,ℓ,2 = 0, where 1 and 0 are the two alleles at that site (7).

We estimated parameters and latent variables with EM, alternating be-
tween (i) (E step) estimating the posterior mode for population assignments
of alleles Z given estimates for ϕ and θ, and (ii) (M step) maximizing the
individual- and population-level parameters given posterior modes of Z (63,
64). The update equations for the E step, estimating the posterior mode for
population assignment for an allele, are

q
�
zi,ℓ,j =kjxi,ℓ,j = 1,ϕℓ,k , θi,k

�
∝ θi,kϕℓ,k

q
�
zi,ℓ,j =kjxi,ℓ,j = 0,ϕℓ,k , θi,k

�
∝ θi,k

�
1−ϕℓ,k

�
.

The update equations for the M step, estimating the model parameters for
n individuals and L SNPs given the posterior mode for Z, are:

ϕℓ,k =
1
2n

Xn
i=1

X
j∈f1,2g

q
�
zi,ℓ,j = k

�1½xi,ℓ,j=1�
�
1−q

�
zi,ℓ,j = k

��1½xi,ℓ,j=0�
θi,k =

1
2L

XL
ℓ=1

X
j∈f1,2g

q
�
zi,ℓ,j =k

�
.

We initialized the population-specific minor allele frequency parameters ϕℓ,k to
the empirical proportion of the minor allele in the training data, plus a uniform
random variable u∼Uð0,0.1Þ, truncating extreme values so that 0.05<ϕℓ,k <
0.95. To initialize population proportions for each individual, we drew K uniform
random variables uk ∼Uð0,1Þ and set θi,k =uk=

PK
k′uk′. We iterated between

these E and M steps for 1,000 iterations. We also ran a number of models to
10,000 iterations, but found no substantial differences in the fitted models,
supporting convergence of the parameter estimates in 1,000 iterations.

Discrepancy: Interindividual Similarity for IBS. We measured similarity be-
tween individuals (identity by state) with respect to population k by counting
the number of alleles that are shared between individuals with population
assignment zi,ℓ,j = k (i.e., the Manhattan distance) and dividing by the total
number of alleles with population assignment zi,ℓ,j = k (24). The value of the
discrepancy function is the average proportion of shared alleles over all pairs
of individuals. We ignored pairs of genomes that shared fewer than 500
alleles assigned to a population k.

Discrepancy: Mutual Information for Background LD. We calculated pop-
ulation-specific MI for each pair of adjacent SNPs within a lag of all integers
m∈ f2, . . . , 30g. This window is with respect to the ordering of the SNPs in
our filtered dataset based on chromosomal position, although the actual dis-
tance in base pairs between SNPs varies dramatically across studies and SNP pairs.

Mutual information—quantified in bits—is computed between alleles at
two adjacent loci separated by m− 1 SNPs, xi,ℓ,j and xi,ℓ′,j′. For haploid geno-
types, both generated from the same population k, we computed:

I
�
xi,ℓ,j ; xi,ℓ′,j′

�
=

X
xi,ℓ,j∈f0,1g

X
xi,ℓ′,j′∈f0,1g

p
�
xi,ℓ,j , xi,ℓ′,j′

�

log2

 
p
�
xi,ℓ,j , xi,ℓ′,j′

�
p
�
xi,ℓ,j

�
p
�
xi,ℓ′,j′

�
!
.

[1]

As calculating this statistic is computationally intensive, we computed MI for
this 30 SNP window only over the first 10,000 SNPs in each study.

Discrepancy: Distance Between Estimated Ancestral Populations and Geographic
Labels. We computed the FST statistic on alleles assigned to one ancestral
population relative to the geographic labels using Wright’s estimator of FST ,

which considers single alleles at each genomic locus (65). In our data, each
individual has exactly one geographic label g, but individual’s alleles are
assigned to possibly many ancestral populations. The probability of an allele
for SNP ℓ and population k is computed as pk,ℓ =

1
Nk,ℓ

P
i

P
j∈f1, 2gxi,ℓ,j1½zi,ℓ,j = k�,

where Nk,ℓ is the total number of alleles assigned to population k, and 1½ · � is an
indicator function. We further partition these population-specific probabilities
by geographic label g: pk,g,ℓ =

1
Nk,g,ℓ

P
i∈g
P

j∈f1, 2gxi,ℓ,j1½zi,ℓ,j = k�, where Nk,g,ℓ is the

number of alleles assigned to population k for individuals with geographic
label g, which may be zero, in which case this probability is set to zero. With
these probabilities in hand, and assuming Bernoulli distribution of alleles
(which fixes the variance given the expectation), we calculate fixation index
FST as

FST =

1
Rk

Xjgj
g=1

�
pk,ℓ −pk,g,ℓ

�2
pk,ℓ

�
1−pk,ℓ

� , [2]

where Rk is the number of geographic labels with nonzero alleles in
population k.

Discrepancy: Average Entropy. We computed the average entropy discrepancy
function as the average entropy for each estimated ancestral population over
all alleles assigned to a population. Given estimates of the distribution of
ancestral populations for an individual i, θ̂i, · , and the probability of the minor
allele for a SNP across populations, ϕℓ, · , we calculated the posterior proba-
bility of each population k for the observed alleles xi,ℓ, · in that individual’s
genome. The entropy is

H�zi,ℓ, · jxi,ℓ, · �=−
XK
k=1

p
�
zi,ℓ, · = kjxi,ℓ, ·

�
log2 p

�
z= kjxi,ℓ, ·

�
. [3]

Then we computed the discrepancy as the average entropy for each ancestral
population k over all alleles assigned to a population.

Discrepancy: Correcting Latent Structure in Association Mapping. For each model
and each ancestral population k, we generated a binary phenotype vector of
length n, simulating a condition that is associated with that population. In par-
ticular, for the kth phenotype vector, we sampled a Bernoulli random variable ci
for each individual with probability 0.5θk,i + 0.1ð1− θk, iÞ, so individuals with
ancestry in population k are more likely to exhibit the phenotype. To compute
the discrepancy function for the GWAS association controlling for ancestry, we
computed, for each SNP, the 2 ln BF for each SNP as the ratio of the likelihood of
the genotype given the phenotype and the population assignment of the SNP
(pðxi jci , ziÞ), and the likelihood of the genotype given the population assignment
(pðxi jziÞ) (1, 66). We used a beta-binomial model with symmetric smoothing
parameter 0.1 for the generalized linear model. The value of the discrepancy for
population k is the maximum 2 ln BF over all SNPs. For each population k, we
sampled random phenotypes 10 times using that population as the risk factor
and averaged the result of the discrepancy function over the 10 samples.

Diploid Data. Diploid data complicates some discrepancy functions, because, con-
ditionally, eachof the two copies of anallelemaybeassigned todifferent ancestral
populations. As in the original specification of the admixture model, we divided
single ternary observations x ∈ f0,1,2g into the sum of two binary observations
x1, x2 ∈ f0,1g. Each binary observation has its own population assignment z1, z2.
Two of our discrepancy functions (i.e., IBS, MI) compared pairs of SNPs and were
modified to account for as many as two population assignments per SNP.

Let za1, za2, zb1, zb2 be the first and second assignment variables at SNPs a
and b, and let xa1, xa2, xb1, xb2 be the alleles associated with those hidden
variables. There are four possible comparisons, depending on how many of
the population assignment variables are set to k:

1. No match. If one SNP is not assigned to k, there are no comparisons.
2. Single match. If exactly one allele in both SNPs is assigned to k, those

alleles are comparable; e.g., if za1 = k and zb2 = k, but za2 ≠ k and zb1 ≠ k,
then we compare xa1 with xb2.

3. Single-double match. If one SNP has one allele assigned to k, and the
other SNP has both alleles assigned to k, there are two comparisons; e.g.,
if za1 = k, za2 = zb2 = k, we compare xa1 with xb2 and xa2 with xb2.

4. Double-double match. When all four alleles are assigned to k, there are
four comparisons: xa1 with xb1, xa1 with xb2, xa2 with xb1, xa2 with xb2.

Posterior Predictive Checks. We generated replications of the observed data
by sampling from the fitted model distributions:
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. [4]

For a discrepancy function of alleles and their population assignment variables,
fðx, zÞ, we calculated fðx1, zÞ, . . . , fðxR, zÞ, holding the latent variables fixed. For
each of our PPCs, we set R= 100, except for the IBS discrepancy that considers
every pair of individuals, where we used R= 30. We calculated the mean μk and
SD σk of the replicated density over all R replications for each of K ancestral
population. We then computed an empirical z score to compare the observed
discrepancy x to the mean and SD of the replicated density: σ−1k ðfðx, zÞ− μkÞ.
Given these population-specific z scores, we estimated the significance of their

deviation from a standard normal distribution by computing a likelihood ratio
(LR) as the ratio of density of the z scores under a normal distribution with
maximum likelihood estimates of parameters over the likelihood of the z scores
under the standard normal. We report this LR in figures—three stars for
2 log LR> 10, two stars for 2 log LR> 6, and one star for 2 log LR>2—where a
larger LR indicates greater distance from the standard normal for the z scores.
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SI Results
In the main manuscript, we chose to present results for four
different study data with five separate discrepancies and a single
number of ancestral populations per study. The results from this
analysis are simple to interpret and present an elegant motivating
example for the use of PPCs for generative models. In reality, we
fit a finite admixture model to one of four genomic datasets across
a range of numbers of latent ancestral populations. Although
these additional results include ideas that require additional
explanation beyond the results presented in the paper for single
values of K, we include them in the supplemental information to
show a more thorough but complex analysis of model fit to ge-
nomic data.

Discrepancy in Genomic Similarity. When we apply the discrepancy
for interindividual similarity to the four studies across multiple
numbers of ancestral populations K, we observed a general de-
creasing trend in similarity as we increased K. Taken by itself,
this trend might be seen as indicating that larger numbers of
populations lead to overfitting, but when we compare the ob-
served values to replications from the fitted model, we see the
same trend. Similarities for replicated genomes are consistently
lower, and more variable, as we increase K, indicating that lower
similarity values are an expected feature of more fine-grained
models. We can compare observed values to the distribution of
replicated values using the z scores for each population, which are
shown with a color scale. The POPRES data shows the strongest
pattern, with similarities that are consistently lower than expected
for K = 3 and 4, but values closer to the mean replicated similarity
around K = 7.
Individuals in the POPRES, ASW, and Indian data are, on

average, more similar to each other overall than individuals in
HapMap, as we might expect considering the low relative hetero-
zygosity in these regional studies relative to HapMap.
Across these studies, interindividual similarity tends to de-

crease as the number of ancestral populations increases. In the
Indian data, the average similarity across individuals in all three
populations in the K = 3 model is greater than the average sim-
ilarity across individuals in all six populations at K = 6, suggesting
that the estimates of the allele specific distributions associated
with each ancestral populations have greater uncertainty (i.e.,
minor allele frequency [MAF] estimates closer to 0.5 than 0 or 1)
as the number of populations increases.
HapMap z scores show that, regardless of the number of an-

cestral populations, the within-population variation is well cap-
tured by the admixture model. For POPRES, ASW, and Indian
data, however, there is a preference for certain numbers of an-
cestral populations. In ASW and Indian data we found that two
populations captured within-population variation well, and for
ASW, Indian, and POPRES, larger numbers of populations (seven
for POPRES) were necessary to capture within-population genetic
variance.

Discrepancy in Background LD. When we apply the discrepancy for
interindividual similarity to the four studies across multiple
numbers of ancestral populations K, we found that fitting an
admixture model with additional ancestral populations K gen-
erally increases the background LD observed within each pop-
ulation: for a fixed lag (say, 20 SNPs) there is generally an
increase in the average MI within ancestral populations as the
number of ancestral populations increases, indicating greater LD

at farther distances as population structure is modeled at finer
resolutions.
Next, we applied the LD discrepancy to our replicated data

(Fig. S2). The z scores for the POPRES data deviate substantially
from a standard normal for all lags at K = 3 indicating more
observed background LD than expected, but are better captured
by a standard normal for K = 5 at lags 25 and 30, and are below
the replicated MI values at the same lags for K = 8, indicating
less observed background LD than expected with respect to the
sample replicates. Thus, despite having larger absolute MI values,
admixture models with larger numbers of ancestral populations
capture less background LD than expected for larger lags. This
may be due to smaller population-specific sample sizes: as K in-
creases, MI values on the observed data are estimated from fewer
alleles, leading to greater variance.

Discrepancy in Reported Ancestry. We applied this FST discrepancy
to the observed data from the four studies across different
numbers of ancestral populations. We found that, in general, the
average FST across the K ancestral populations increased as we
increased the number of populations (Fig. S3), suggesting that,
as we divide genomes more finely between larger numbers of
ancestral populations, within each inferred population less in-
formation is captured about reported ancestries.
The naïve interpretation of the FST discrepancy applied to the

observed data are that increasing the number of estimated
populations leads to lower-quality models that fail to capture
meaningful population structure, including structure infor-
mation available in reported ancestries. Another interpreta-
tion is that the increase in FST as K increases is because the
number of alleles from which variance is estimated shrinks as
we partition genomes both by inferred ancestry and again by
reported ancestry. Consider an extreme case where every in-
dividual within an estimated population k has the same reported
ancestry A except for one with ancestry B. Because the allele
frequencies for population k and ancestry B are estimated from
only one genome, the variances are drastically underestimated.
We applied the FST discrepancy function to replicates from

each of the fitted models, conditional on the inferred ancestry
assignments for each SNP, to compute the z scores for this dis-
crepancy. HapMap requires six or more ancestral populations to
properly model the structure in the ancestry labels (there are 14).
In particular, the z scores for the POPRES data are well captured
by a standard normal across all numbers of inferred populations,
in agreement with previous results that inferred admixture pop-
ulations capture the same information as the 32 reported geo-
graphic labels at approximately K ≥ 4 (1, 2). In contrast, the Indian
data ancestry labels best capture the underlying heterogeneity in
the data with two populations, which is believed to be the truth
(3), but poorly fit a standard normal distribution for K > 3 despite
the large number of ancestral assignments (there are 15). We
hypothesize that the ancestry labels for the POPRES and Indian
data do not reflect underlying population structure, but instead
split each inferred population into partitions that do not have a
strong genomic signature, but instead reflect geographic or cul-
tural basis. On the HapMap data, the z scores indicate a poor
model fit to the population labels for K < 6. As prior work sug-
gests, the “best” number of ancestral populations in these data
were six (4).

Discrepancy in Uncertainty in Ancestral Population Assignments. We
applied the population assignment discrepancy to the observed
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data from the four studies across different numbers of ancestral
populations. We found that, in general, the average entropy across
ancestral populations increased as we increased the number of
ancestral populations (Fig. S4), illustrating that, as the number
of ancestral populations grows, the uncertainty in the population
assignments of alleles increases. This trend is stronger in the
two studies that have poorly separated ancestral populations
(POPRES, Indian).
The HapMap data are notable for this PPC: at every value of K

there is at least one population with average entropy lower than
expected by at least three SDs (z score < −3) (Fig. S4). These
populations with greater certainty than expected are enriched for
individuals with reported ancestry in South and Central Amer-
ica; for K = 3, this population with lower-than-expected entropy
combines the Americas and East Asia. In absolute terms, these
populations with greater than expected certainty have average
entropy within range across k. It is only when we compared ob-
served entropy to replication entropy that misspecification with
respect to these populations emerged.

Discrepancy in Correcting for Population Structure in Genome-Wide
Association Studies. We applied the association mapping dis-
crepancy function to the observed data and found variable results
across studies and numbers of ancestral populations (Fig. S5). We
found that the maximum log10 BF across studies and K was small
(<0.15) indicating that the model is effective at avoiding false
positives. This maximum log10 BF tended to decrease as we in-
creased the number of populations, indicating that overfitting
the admixture model is advantageous when using the parameters
for downstream structure corrections.
We then performed the PPC with this discrepancy function on

replicated data, and, as for our four other discrepancy functions,
we found that the PPC supports different conclusions than the
observed discrepancy. The largest deviations from normality in z
scores are at low numbers of populations for HapMap and
POPRES, but these studies violate normality of z scores in op-
posite directions. In HapMap at K = 3, log10 BFs are significantly
greater than expected under the model, showing that controlling
for biased estimates of latent structure limits the ability to reject
false positives in association testing. In POPRES at K ≤ 7, not
only are maximum log10 BFs small, they are significantly smaller
than expected according to the replicated data.

Summarizing PPC Results Within Study. Our results across PPCs do
not show a succinct picture of how admixture models are mis-
specified for genomic data, but instead tell a complex story for
each study. Although these results are written for the case of
multiple values of K, they are meant to supplement and detail the
summarized results in the main manuscript.
HapMap phase 3. Across our application of PPCs to the HapMap
phase 3 data, we found, not surprisingly, that there is substantial
allelic heterogeneity within individuals in ancestral populations,
illustrated in both interindividual PPC and the entropy PPC.
Moreover, we found substantial variability in allelic heterogeneity
across ancestral populations: admixture LD is badly misspecified
in the admixture model for these data. These data did not show

position specific background LD patterns we found in other
studies, but background LD was also misspecified for these data
across all tested values for K. The appropriate number of an-
cestral populations is in the range K ≥ 6. Below this range the
model does not fully account for information present in reported
ancestries, and cannot effectively filter false-positive gene asso-
ciations. For exploratory analyses relating to contrasting within-
and across-population heterogeneity, these PPCs would suggest
using more admixture models that capture background LD and
admixture LD with K ≥ 6 for these data, such as SABER (5).
European samples.Across our application of PPCs to the POPRES
data, we found that there was strong allelic homogeneity among
individuals within ancestral populations, and we also found that
there were strikingly similar levels of interindividual homogeneity
across populations from the interindividual PPC, background LD
PPC, and entropy PPC. Admixture LD and background LD were
misspecified in this application, but background LD was fit well
when K = 5 and lag was greater than 15. This indicates a possible
correction may be to subsample the genomic data every fifteenth
SNP in the data, although this would remove a large number of
SNPs that may be essential to discriminating these relatively similar
ancestral populations. It appears, across PPCs, that a good range of
K is around 4≤K ≤ 7; when correcting for population structure,
fitted parameters seem to perform well when K = 7 for these data.
For exploratory analyses related to European population sub-
structure, these PPCs would suggest using admixture models that
capture admixture LD, such as the Structure 2.0 method (6); an-
other indication would be to model latent structure with a con-
tinuous population model (e.g., principal components based).
African Americans. Across our application of PPCs to the ASW
data, we found strong allelic homogeneity within some ancestral
populations, and a large variance across populations for within-
population homogeneity. Unlike the first two applications, most
of the PPCs appear well fit for K = 4 for many downstream
analyses; the one exception is for the background LD, where all
models appeared misspecified across most lags in SNP adjacency.
For these data, it may be useful to include a more descriptive
model of background LD (5), which may change the appropriate
number of ancestral populations (7). Nonetheless, this application,
with recent admixture between two well-separated ancestral pop-
ulations, appears well suited for analysis using the admixture model.
Continental Indians. Across our application of PPCs to the Indian
data, we found substantial allelic homogeneity among individuals
within a population, and little variation among the estimated
ancestral populations in the homogeneity of the individuals, al-
though there is more variation in this application than in the
POPRES application. Because we see so little variation among
estimated ancestral population, but we believe the true ancestral
populations may be well separated, it is possible that the more
ancient admixture events and the absence of an individual with
ancestry in only one of the ancestral populations imply poor
estimation of the ancestral populations. Despite this, it appears
that, across the PPCs, K = 2 with a base-pair lag of greater than
10 is well-specified across many downstream analyses.
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Fig. S1. Average population-specific interindividual similarity, varying K, across four studies. Each x axis represents the number of ancestral populations in the
fitted admixture model; panels represent application to HapMap, POPRES, ASW, and Indian studies, respectively. The y axis represents the mean interindividual
similarity across individuals conditioned on each ancestral population. Small semitransparent points represent values from replicated data. Larger points
represent values from real data, colored by their z scores relative to the empirical distributions of the replicated values. Stars indicate significant divergence in
z scores from a standard normal. (A) HapMap data; (B) POPRES data; (C) ASW data; and (D) Indian data, with K = 2,3,4,5,6.
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Fig. S2. LD discrepancy function PPC, varying K, across four studies. Each x axis indicates the number of lag SNPs between pairs of SNPs over which mutual
information is averaged. The y axis represents the average mutual information between SNPs at varying lags. Each panel shows different numbers of ancestral
populations in the fitted admixture models. Observed values for each population are connected by lines across lags and colored by z score. Stars indicate
significant divergence in z scores from a standard normal. (A) HapMap data, with K = 3,5,8; (B) POPRES data, with K = 3,5,8; (C) ASW data, with K = 2,3,5; and
(D) Indian data, with K = 2,3,5.
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Fig. S3. FST discrepancy function, varying K, across four studies. The x axis represents the number of ancestral populations K in the fitted admixture model;
columns represent application to HapMap, POPRES, ASW, and Indian studies, respectively. The y axis represents the FST value of a single ancestral population
k with respect to the self-reported ancestry information. Smaller values indicate a closer match between the reported and estimated ancestral populations.
POPRES values are within the expected range for all K, indicating that the increasing observed values are an artifact of increasing subdivision of the data. For
HapMap K = 6 is the smallest model for which reported ancestries are no longer informative. With the smaller datasets (ASW, Indian), models with more
populations show consistently lower association between alleles and reported labels than expected. (A) HapMap data; (B) POPRES data; (C) ASW data; and
(D) Indian data, with K = 2,3,4,5,6.
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Fig. S4. Average entropy discrepancy function, varying K, across four studies. The x axis represents the number of ancestral populations in the fitted ad-
mixture model; panels represent application to HapMap, POPRES, ASW, and Indian studies. The y axis represents the average entropy of the posterior dis-
tribution over populations for each allele. Larger absolute value entropy represents greater uncertainty over population assignments. Replicated values are
shown as smaller gray circles. (A) HapMap data; (B) POPRES data; (C) ASW data; and (D) Indian data, with K = 2,3,4,5,6.
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Fig. S5. Association mapping correction PPC, varying K, across four studies. The x axis represents the number of ancestral populations in the fitted admixture
model; panels represent application to HapMap, POPRES, ASW, and Indian studies, respectively. The y axis represents maximum log10 BFs. Maximum log10 BFs
from replicated genomes are shown with smaller gray points. Colors of the observed data discrepancy values represent the z score with respect to the rep-
licated samples from fitted admixture models. Stars indicate deviation from normality in z scores, suggesting that larger numbers of populations are more
effective in controlling for latent population structure in POPRES and, to a lesser degree, HapMap. (A) HapMap data; (B) POPRES data; (C) ASW data; and
(D) Indian data, with K = 2,3,4,5,6.
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