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Interstellar dust corrupts nearly every stellar observation and accounting
for it is crucial to measuring physical properties of stars. We model the dust
distribution as a spatially varying latent field with a Gaussian process (GP)
and develop a likelihood model and inference method that scales to millions
of astronomical observations. Modeling interstellar dust is complicated by
two factors. The first is integrated observations. The data come from a van-
tage point on Earth, and each observation is an integral of the unobserved
function along our line of sight, resulting in a complex likelihood and a more
difficult inference problem than in classical GP inference. The second com-
plication is scale; stellar catalogs have millions of observations. To address
these challenges, we develop ZIGGY, a scalable approach to GP inference
with integrated observations based on stochastic variational inference. We
study ZIGGY on synthetic data and the Ananke dataset, a high-fidelity mech-
anistic model of the Milky Way with millions of stars. ZIGGY reliably infers
the spatial dust map with well-calibrated posterior uncertainties.

1. Introduction. The Milky Way galaxy is primarily comprised of dark matter, stars,
and gas. Within the gas, in its densest and coldest regions, dust particles form. The stars of
the Milky Way are embedded in this field of dust.

Back on Earth, astronomers try to map the stars, measuring the location, apparent bright-
ness, and color of each. But the dust between Earth and a star obscures the light, corrupting
the astronomers’ observations. Relative to the star’s true brightness and color, the dust dims
the brightness and reddens the color. This corruption is called extinction, and it complicates
inferences about a star’s true distance and other true properties. Stellar extinction has hindered
many studies of stars in the Milky Way disk, which is where most dust lies, and, therefore,
the largest extinctions (Mathis (1990)).

To cope with these corruptions, astronomers need a map of interstellar dust, an estimate
of the density of dust at each location in the galaxy. An accurate dust map could be used
to correct our astronomical measurements and sharpen our knowledge of the galaxy’s stars.
Moreover, a dust map may be of independent scientific interest—for example, it may reveal
macroscopic properties of the shape of the Milky Way, such as spiral arms. !

But constructing such a map is difficult. We are embedded in our own dust field, and so
we cannot directly observe it. Rather, we can only observe a noisy integral of the field along
the line of sight between Earth and a star—the starlight extinction. (Here, the line of sight is
the straight line through space between the star and the Earth.) Thus, the inference problem
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1Though hints of spiral structures have been inferred from other observations (Georgelin and Georgelin (1976),
Chen et al. (2019)), whether the Milky Way galaxy is a grand design spiral or if the spiral structures are more
flocculent remains an open question. An accurate dust map will shed light on the recent dynamical history of the
Milky Way.
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is to calculate a single, coherent spatial field of dust that can explain the observed extinction
of millions of spatially distributed stars. In this paper we use a large data set of astronomical
measurements to infer a three-dimensional map of interstellar dust.

The data comes from standard practice in astronomy which is to estimate the extinction
of an individual star from its observed color and brightness using a physical model of star
formation and evolution.” This procedure results in an estimate of the extinction and an ap-
proximate variance of the estimate about the true extinction value. However, this estimate
is derived from a single star’s color and brightness; it ignores information about the spatial
structure of the Milky Way and the fact that all stars are observed through the same three-
dimensional density of dust.

The dust map is a spatial distribution of dust—an unobserved spatial function—that can
help refine these noisy measurements. Each measurement is modeled conditional on the func-
tion and the three-dimensional location of the star.’> Such a model shrinks estimates toward
their true values and reduces uncertainty about them. More formally, the unknown dust map
is a function p : R? > R from a three-dimensional location in the universe x to the density
of dust at that location. Our goal is to estimate this function from data.

We take a Bayesian nonparametric approach. We place a Gaussian process (GP) prior
on the dust map and posit a likelihood function for how astronomical observations arise
from it. We develop a scalable approximate posterior inference algorithm to estimate the
posterior dust map from large-scale astronomical data. In addition to the scale of the data,
the main challenge is the likelihood function. Typical spatial analysis involves data that are
noisy evaluations of an unobserved function, and the likelihood is simple. Astronomical data,
however, comes from a limited vantage point; we only observe the latent dust map as an
integrated process along a line of site to a star, and this integral is baked into the likelihood
of the observation.

More formally, let e, be the true extinction of starlight for star n at location x,,; let a, be
the noisily measured extinction with uncertainty o;,. Given the unknown dust map, we model
the noisy measurement as a Gaussian whose mean is an integral from Earth to x,, (Rezaei Kh.
et al. (2017)). With covariance function kg (-, -), the full model is

6] p(:) ~GP(0, ko (-, ),

) an ~N(en,0?2), wheree, £ / p(x)dx.
XER,

Here, R, is the set of points (i.e., the ray) from Earth to x,; the extinction e, is in an integral
of the latent dust map p(-), and it is through this integral that the map enters the likelihood.
Figure 1 graphically depicts the distinction between pointwise and integrated observations.

The data are N locations, extinctions, and measurement errors, denoted D = {a,, x,,
anz},’lvz ;- Conditional on the data, we want to calculate the posterior dust map 7 (o | D). This
posterior can estimate different properties of the latent dust, for example, the density of dust
p(-) at a new location, the integral of dust p(-) over new sets, and posterior uncertainty about
these values. Such inferences can aid many stellar studies.

2The observed color and brightness are directly derived from telescope images (e.g., photometry). Extinction
measurements are backed out from a theoretical distribution of dust-free star colors and luminosities, where lu-
minosity is the intrinsic brightness of a star. This distribution can be based on isochrones or empirically derived
from a region of the sky known to have no dust (e.g., the Milky Way halo). The extinction corresponds to how far
the observed color and brightness are from the set of theoretically plausible colors and luminosities. The extinc-
tion uncertainty incorporates both noise in the photometric measurement and prior uncertainty over the range of
plausible colors and luminosities.

3The spatial locations of stars can be derived from parallax measurements. In this work we consider them fixed
but in future work will additionally consider their uncertainty.
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FIG. 1. Reconstructing an unobserved function from pointwise (left) and integrated (right) observations. The

latent function governs noisy pointwise observations, yy, and integrated observations, ay. The task is to recon-
struct the unobserved function p(x), depicted by the grey contours, everywhere in the domain. Our perspective is
limited to the origin (large center dot); our observations of this process are integrated along a compact set (i.e., a
ray).

But the posterior is difficult to compute, complicated by both the integrated likelihood and
the large scale of the data. (Modern catalogs of astronomical data contain observations of
millions of stars (Brown et al. (2018), Aguado et al. (2019)).) In theory, the scale is help-
ful; each star provides information about the unobserved dust map. But scaling a Gaussian
process to millions of observations is a significant computational challenge.

We overcome these challenges with a scalable algorithm for Gaussian process inference
with integrated observations, which we call ZIGGY.* In particular, ZIGGY is a stochastic
variational inference algorithm, one that uses stochastic optimization, inducing points, and
variational inference to approximate the posterior. It handles general covariance functions and
scales to millions of data points. We study ZIGGY on both synthetic data and the Ananke data
which comes from a high-fidelity mechanistic model of the Milky Way. We find that ZIGGY
accurately reconstructs the dust map, and accuracy continues to improve as the number of
observations grows above a million.

In our applied setting the integrated observations introduce technical challenges. ZIGGY
builds upon an existing scalable Bayesian inference framework (Hoffman et al. (2013),
Hensman, Fusi and Lawrence (2013)) and introduces additional approximations and com-
putational techniques to address the challenges created by integrated observations.

The paper is organized as follows. Section 2 describes related work for estimating inter-
stellar dust. Section 3.1 formally sets up the problem and describes exact inference in GP
models with integrated observations. Section 4 develops a stochastic variational inference
algorithm that scales to millions of stellar observations. Appendix F in the Supplementary
Material (Miller et al. (2022)) studies ZIGGY on a synthetic two-dimensional example, com-
paring various settings of the algorithm that trade computation for accuracy and flexibility.
Section 5 studies ZIGGY with the Ananke data set, showing that it recovers a well-calibrated
three-dimensional dust map that accurately predicts extinctions and global dust structure.
Section 6 concludes the paper and discusses directions for future research.

2. Related research. This work builds on a foundation of research in both astronomy
and statistics.

Estimating the latent dust map. The seminal work of Schlegel, Finkbeiner and Davis (1998)
estimates the two-dimensional map of dust across the full sky using dust emission (rather

471GGY is named for Ziggy Stardust, David Bowie’s alter ego.
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than dust absorption, which we use here). Emission is a more direct estimate of the dust,
but doesn’t allow for direct inferences of 3D structure. Stars within the Milky Way, however,
are embedded in the three-dimensional dust field. Estimating per-star extinctions requires
characterizing the dust field as a function of distance, motivating the construction of three-
dimensional dust maps.

More recent approaches use hierarchical spatial models of noisy integrated observations to
reconstruct three-dimensional maps. These approaches, however, rely on discretizing space
and modeling integrated observations as finite sums. Various discretization strategies have
been proposed, each with different computational demands.

One approach models discretized lines of sight to every star (Rezaei Kh. et al. (2017)),
but this approach can only accommodate a few thousand stellar observations. Another ap-
proach uses a fine mesh of cubic voxels to describe the dust distribution. This introduces a
different computational trade-off. Larger voxels introduce unrealistic spatial artifacts (Green
et al. (2018, 2019)), while smaller voxels significantly increase the computational burden
(Leike and EnBlin (2019)). Moreover, the theoretical length scale of the dust distribution is
small; discretizing three-dimensional space with fine enough resolution to capture this small
length scale will have to rely on additional approximations to scale to the entire volume of
the Milky Way. The approach we develop here avoids discretization, works directly with
continuous space, and scales to millions of observations.

Spatial statistics and Gaussian processes. The field of spatial statistics has developed many
tools to estimate unobserved functions from noisy measurements (Cressie (1992)). One ubig-
uitous and fundamental method is Gaussian process regression, or kriging, which interpo-
lates or smooths a latent function, given noisy observation at nearby locations (Krige (1951),
Rasmussen and Williams (2006) Matheron (1963, 1973), Cressie (1990)). A GP defines a
probability distribution over the unobserved function that encodes prior assumptions about
some properties—continuity, smoothness, and amplitude—while remaining flexible. GPs ad-
mit analytically tractable inference routines in typical settings, making them a useful prior
for unobserved functions.

Scaling GPs to massive datasets is a more recent challenge. One approach is to approx-
imate the GP with inducing point methods (Quifionero-Candela and Rasmussen (2005),
Snelson and Ghahramani (2006)), where process values at specific places in the space, the
inducing points, are learned from the data, and predictions are then produced using the in-
ducing point process values. Inference using this approximation scales better than exact GP
inference. Bolstering their use, recent theoretical work has characterized the error of induc-
ing point GP approximations (Burt, Rasmussen and van der Wilk (2019)). However, inducing
point methods still require analyzing the entire dataset simultaneously; this requirement limits
their applicability to datasets where the number of observations is in the millions or billions.

Another thread of GP research in spatial statistics embeds them in more complicated
models and scales them (Cressie (1992), Banerjee, Carlin and Gelfand (2015)). For exam-
ple, nearest-neighbor GP’s are a scalable approximation for estimating the posterior of a
latent spatial field (Datta et al. (2016)). Similarly, the integrated nested Laplace approxi-
mations (INLA) framework is an approximate inference methodology that computes poste-
rior marginal uncertainty in latent Gaussian models, including Gaussian process models with
computationally tractable precision matrices (Rue, Martino and Chopin (2009)). Several scal-
able Gaussian process approximations are reviewed in Heaton et al. (2019).

Gaussian processes have also been used within astronomy applications beyond building
spatial maps of interstellar dust. Methods to scale one-dimensional GP regression to millions
of observations have been developed and deployed with success (Ambikasaran et al. (2014),
Foreman-Mackey et al. (2017)).

Scalable Bayesian inference. We build on methods for scaling Bayesian inference to mas-
sive datasets. Variational methods (Jordan et al. (1999), Wainwright et al. (2008), Blei, Ku-



2676 A.C.MILLER ET AL.

cukelbir and McAuliffe (2017)) are a computationally efficient alternative to Monte Carlo
methods for posterior approximation. Variational inference treats approximate inference as
an optimization problem, fitting a parameterized family to be close to the exact posterior.
Stochastic optimization (Robbins and Monro (1951)) scales variational inference to large
datasets, iteratively subsampling from the data to produce cheap, noisy gradients of the ob-
jective; this strategy is called stochastic variational inference (SVI) (Hoffman et al. (2013)).
Building off of SVI, stochastic variational Gaussian processes (SVGP) bring in inducing
point methods to scale Gaussian processes to massive datasets (Hensman, Fusi and Lawrence
(2013)). We build on the SVGP framework here, adapting it to fit the GP model of astronom-
ical data.

3. A Gaussian process model of starlight extinctions. The data are N stars, each one
a tuple of its location x,, a noisy measurement of the extinction a,, and the variance of the
observation 0,12; denote the data set D £ {x,,, a,, a,f}flv:]. Given the latent dust map p(x), the
likelihood of each observation a, is defined in equation (2), where the region of integration
R, is the ray that originates at the origin O (i.e., the Earth) and ends at the spatial location of
the star, x;,,

3) Ry={a-0+(—a) x,:a€l0,1]}.

To complete the model, equation (1) places a Gaussian process prior on the dust map.

Given the data, the posterior distribution, p(p|D), summarizes the evidence about the
latent dust map. Via the relationship between p(x,) and e,, defined in equation (2), we use
this posterior over p to form estimates of the extinction for observed stars e,, the extinction
at new locations e, and the dust map itself at new locations p (x,). Specifically, compute the
posterior expectations

“4) p(x) ZE[p(x*)ID], én £ Elenlxn, D], &x = Eles|xs, DI.

The posterior variance, for example, V[e,|x,, D], describes the uncertainty of the estimates.

The posterior dust map p(-) synthesizes information from nearby sources to de-noise or
shrink an individual extinction e,, resulting in more accurate inferences with smaller esti-
mator variance. Moreover, it enables estimating the dust density at a new location x, or to
estimate estimate the extinction along a path to the new point.

In the following sections we discuss how to calculate the posterior and how to approximate
it with large data sets of stellar observations. Before that, however, we discuss the choice of
a Gaussian process prior.

Why use a Gaussian process? First, Gaussian processes can flexibly model complex un-
observed latent functions. The dust map p(-) is not easily described by a parametric func-
tional form, but GPs can adapt highly complex, nonlinear functions to describe data. Second,
high-level properties of the unobserved dust map can be captured by the choice of the GP’s
covariance function. In particular, we assume the dust map has specific structure; it is contin-
uous, and two nearby locations are more likely to have similar dust density values than two
distant locations. GPs naturally capture such spatial coherence. Third, all stellar observations
are derived from the same underlying dust map p(x). Two noisy extinction measurements
with nearby integration paths must be coherently described by a single estimate of p(-). The
continuity, smoothness, and spatial coherence across observations give traction in forming an
accurate statistical estimate of the unobserved dust map.

3.1. GP inference with integrated observations. In a GP, any finite set of function evalu-
ations are multivariate normal distributed with covariance defined by the covariance function,
cov(p(x;), p(x;)) = kg(x;, xj). When observations are corrupted with Gaussian noise—the
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typical setting for GP models—the joint distribution between all observations and latent pro-
cess quantities remains multivariate normal, and the posterior at a new point p(x*) can be
expressed as a few matrix operations (Rasmussen and Williams (2006), Chapter 2). Infer-
ence in Gaussian process models with noisy integrated observations, defined in equation (2),
closely mirrors inference with the more typical, noisy pointwise observations.

Consider the model in equations (1) and (2). We derive the posterior distribution by
first characterizing the joint distribution over p(x,) and a = (ay,...,ay) (Rasmussen and
Williams (2006)). Observe that linear operations of multivariate normal random variables
remain multivariate normal in distribution. As noted in Rasmussen and Williams (2006),
Section 9.8, because integration is a linear operation, the value of the integral of p over the
domain X will remain Gaussian. This is also true for any collection of definite integrals and
the corresponding (Gaussian) noisy observations.

The joint distribution over a and p (x) =S P+ remains multivariate normal. Given the mean
and covariance of this joint distribution, we can compute the posterior distribution over p,
(or any set of p, points), given observations a, X, and 2. The joint distribution over a and p,
mimics the standard Gaussian process setup

a Ke+ X, Ke,*
) (,0*) NN(O’ ( Ky e K, )) ,

where the covariance matrix blocks are defined
(6) (Ke)ij = Cov(e;, ¢;), (Ky,e)xj = Cov(px, €;), K, = Cov(ps, ps),

and the observation noise matrix X, = diag(olz, - cr[%,). We note that, because py is scalar,
K is a 1 x 1 matrix. Computing these covariance entries enables us to populate the joint
covariance matrix and use standard multivariate normal conditioning for posterior inference.
This conditioning mimics the equations for standard Gaussian process inference,

@) P (xx) NN(M*, 3y),
®) e =Ky o(Ke + Xa) " 'a,
) =Ky — K*,e(Ke + Za)_lKe,>f<-

To compute this posterior, we need to compute the covariances in equation (6).

The chosen covariance function directly specifies Cov(px, p«) The other terms, Cov(e;, e;)
and Cov(px, ;) are slightly more complex and require integrating the covariance function in
one or both of its arguments.

CLAIM 3.1 (Semi-integrated covariance function). The covariance between a process
value p; £ p(x;) and an integrated value e £ fxeRj p(x)dx takes the form

(10) Covipiseyy= [ klxi,x)dx =K (x;,x;).

XER;

For consistency, we will write the integrated argument second.
The proof is in Appendix B in the Supplementary Material (Miller et al. (2022)).

CLAIM 3.2 (Doubly-integrated covariance function). The covariance between two inte-
grated process values e; and e; takes the form

(11) Cov(e;, e;) :/ k(x,x")dx dx' :k(dOUble)(xi,Xj).
(x,x")ER; X R;
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The proof for the doubly-integrated kernel is similar to the semi-integrated case.

To summarize, if we can compute these two types of covariance values, then we can plug
the result into the distribution in equation (5). As for standard GP inference, we can then
manipulate the joint distribution using Gaussian conditioning to compute the posterior dis-
tribution over the value of the unobserved function p(x,) or functionals over test locations,
for example, integrated values e,. Algorithm 1 in the Supplementary Material (Miller et al.
(2022)) summarizes GP inference using integrated measurements.

3.2. Choice of covariance function. Assumptions about the dust map p(-) can be en-
coded in the covariance function kg(-,-). We focus on kernels that are stationary and
isotropic, which can be written kg (x, y) = o 2k( ”C%yl), where 6 £ (02, ). The parameter £ is
the length scale, and the parameter o2 is the process marginal variance (Genton (2002)). The
length scale controls how smooth the function is; the marginal variance influences the func-
tion’s amplitude. We will compare three families of kernel functions: squared exponential,
Matérn, and a kernel from Gneiting (Gneiting (2002)). The squared exponential kernel—a
commonly used covariance function for Gaussian process regression—admits an analytically
tractable form for the semi-integrated kernel but not the doubly-integrated kernel. (See Ap-
pendix A in the Supplementary Material (Miller et al. (2022)).) Other kernels, such as the
Matérn (Matérn (1960)) or the kernel presented in Gneiting (2002) do not readily admit a
semi-integrated form which complicates their use with integrated observations. Similarly,
none of the mentioned kernels, including the squared exponential, admit a doubly-integrated
form over two line segments. We develop a method to overcome this technical limitation
in the following section. Furthermore, we use the analytic tractability of the semi-integrated
kernel to validate this method on the squared exponential kernel.

Beyond the choice of covariance function family, the covariance function parameters
(e.g,. the length scale and process variance) ought to be tuned. Tuning GP covariance pa-
rameters can be complex; the process values p can strongly depend on parameters o> and
£, making it difficult to explore their joint space. We discuss this phenomenon within the
context of our scalable approximate inference algorithm in Section 4.

4. Scaling integrated GP inference. Gaussian process models scale poorly to large
datasets (Quinonero-Candela and Rasmussen (2005), Titsias (2009)). Computing the pos-
terior distribution of the latent function, the posterior predictive distribution of new obser-
vations, or the marginal likelihood of observed data (e.g., for model comparison) all require
computing the inverse or the determinant of a N x N matrix — a O (N?3) operation. As N
grows larger than a few thousand observations, this computation becomes intractable. To ad-
dress this bottleneck, a common strategy is to approximate Gaussian process inference using
M < N inducing points or spatial locations in the input space that are used to approximate
the full Gaussian process. Inducing point approximations can be interpreted in multiple ways.
One interpretation is that the inducing points are used to construct a rank M approximation
to the N x N matrix that can be efficiently inverted (e.g., O(N - M %)) (Quifionero-Candela
and Rasmussen (2005)). Another interpretation (which we adopt below) is that the inducing
points are used to define a family of variational distributions for approximating the posterior
over p, and optimizing the variational objective avoids direct manipulation of the N x N
matrix (Titsias (2009), Hensman, Fusi and Lawrence (2013)).

Integrated observations create an additional computational issue; the semi-integrated or
doubly-integrated covariance value between any two values may be unavailable in closed
form (except in some special cases) and may require high-precision numerical approxima-
tion. With the integrated observations considered here, we have an additional computational
issue. Calculating the semi-integrated or doubly-integrated covariance value between any
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two values may be unavailable in closed form (except in some special cases) and may require
high-precision numerical approximation. The exact GP inference algorithm in Algorithm 1
(in the Supplementary Material) requires computing a N x N matrix of doubly-integrated
covariance values which will be computationally prohibitive when N is a modest size. Fur-
thermore, when tuning covariance function parameters or comparing covariance functions,
the N x N matrix of numerically integrated covariance function values will need to be re-
computed many times.

Thus, to use the model to analyze millions of integrated stellar observations, we de-
rive a scalable variational inference algorithm to perform approximate posterior inference.
Variational inference approximates a posterior distribution by optimizing a parameterized
family—the variational distribution—to be close to the exact posterior (Blei, Kucukel-
bir and McAuliffe (2017), Jordan et al. (1999), Wainwright et al. (2008)). For the model
here, our approach builds on the stochastic variational Gaussian process (SVGP) framework
(Hensman, Fusi and Lawrence (2013)). It uses stochastic optimization to approximate the
posterior (Hoffman et al. (2013)), operating on small minibatches of observations.

Further, to accommodate the integrated observations, we construct a Monte Carlo esti-
mate of the semi-integrated kernel that generalizes to covariance functions that do not admit
a closed form semi-integrated version. Additionally, we use the rotational invariance of sta-
tionary and isotropic covariance functions to construct a fast approximation to the doubly-
integrated covariance kernel.

This section describes the SVGP framework and our approach to adapt the framework to
incorporate integrated observations. Section 4.1 describes relevant details of the SVGP frame-
work, including inducing points, the variational family, and forming efficient mini-batch es-
timates of the variational objective. Section 4.2 details our approach to do inference with
integrated observations for a general class of semi-integrated kernels.

4.1. Stochastic variational Gaussian processes. SVGP casts inference in GP models as
an optimization problem. Crucially, the SVGP optimization objective is constructed such
that it can be written as a sum of N terms, each depending on only one data point. Given
this construction, the objective can be optimized using stochastic gradients computed with
minibatches of data. This makes inference more computationally and memory efficient.

Here, we discuss the SVGP objective with the standard observations—noisy versions of
p(x). We then adapt this approximate inference framework to integrated observations in Sec-
tion 4.2. Our derivation of the variational objective is slightly different from Hensman, Fusi
and Lawrence (2013); we first define a structured approximating family and then directly
derive the evidence lower bound objective.

For this section’s presentation of inducing points, variational inference, and stochastic
variational Gaussian processes, consider the typical GP model for N observations with
o ~ GP(0, kg(-,-)) and standard (i.e., nonintegrated) observations y,|x, ~ N (p(X,), 0,22).
We write the observation vector y = (yy, ..., yn) and the corresponding latent process vec-
tor p = (p(X1), ..., p(XN)).

Inducing points. Inducing points are a common tool used to scale Gaussian process infer-
ence (Quinonero-Candela and Rasmussen (2005)). An inducing point is simply a location in
the input space, x, which has a corresponding inducing point value p(x). Inducing points
are typically distributed about the input space. In our experiments we place them on a fixed
three-dimensional grid throughout space.

We augment the model above with M inducing points and their corresponding values

(12) X£xX,...,X) inducing points,

(13) uzpEp), ..., pXy) inducing point values,
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where u is the M-length vector of values of p evaluated at each of the M inducing points.
Note that the introduction of X and u has not altered the original model.

The model above specifies two latent variables, p and u, whose distributions we wish to
infer, given data y. That is, we wish to characterize the posterior distribution p(p, uly, X, X)
in a computationally efficient way.> SVGP uses inducing points and a specific variational
approximation to avoid the manipulation of the N x N observation covariance matrix.

Variational inference. Variational inference (VI) is an optimization-based approach to ap-
proximate posterior inference (Jordan et al. (1999), Wainwright et al. (2008), Blei, Kucukelbir
and McAuliffe (2017)). VI methods posit a variational family of distributions, g € Q, and use
optimization techniques to find the optimal approximate distribution from the set Q. Here,
each element of Q is a distribution over the latent quantities—g¢q (p, u).

The variational inference framework defines an objective to be optimized; the most com-
mon VI objective is the evidence lower bound (ELBO)

(14) L(q) =Eyu,p[lnp(p,u,yx,X) —Ing(p,w)] <Inp(ylx, X).
Maximizing the ELBO minimizes the KL divergence between ¢ (p, u) and the true posterior
p(p,uly, x,x).

Stochastic variational Gaussian processes. The stochastic variational GP framework
(SVGP) (Hensman, Fusi and Lawrence (2013)) uses a particular form for the variational
family. Given the set of inducing points x, the SVGP variational approximation is

(15) q(p,w) = p(plu)gy (u), (W) 2N (@m,S), and A= (m,S),

where p(p|u) is specified by the Gaussian process prior and recall that u and p are jointly
multivariate normal. The variational parameters A are fit by optimizing the ELBO defined in
equation (14).

The SVGP approximation, defined in equation (15), is chosen because it has a very specific
property; when plugged into equation (14), the objective decomposes into the sum of N
separate terms. This allows us to create unbiased minibatched estimators of the objective (and
its gradients), enabling efficient inference. We can see through a straightforward algebraic
manipulation (we suppress p and u’s dependence on x and X to remove clutter)

(16) LX) =Eypuw[lnp(p,u,y) —Ingi(p,u)]
(17) =Ey, wpoiw[In p(ylp) + Tiptelw) +In p(u) — Ingy (u) — Tiptelu) |
(18) = Eg,w)p(olw[In p(y1p)] —KL(gr ()| p(w)),

()

and we can write the term (i) as a sum over the N observations

(19) (i) £ Egu ) [Ep(om [In p(y10)]]
N
(20) =Eqm [E,,(mu) [Z 1np<yn|pn>ﬂ
n=1
N
21) =Y Eow[Epom[In p(ynlon)]]
n=1
2L,

S5Note that we are considering a model where the likelihood and prior are both Gaussian distributions, a conju-
gate pair, which implies that the posterior distribution will also be Gaussian. Indeed, it will be, but manipulating
Gaussian will scale cubically in N. The SVGP approach is constructed to scale linearly in N.
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When the likelihood p(y,|pn) is Gaussian, the expectation in each of the £, terms can be
computed analytically. Notice the cancellation in equation (17) eliminates the term that in-
volves all N data points and a N x N matrix inversion, In p(p|u) (Titsias (2009)).

To complete the derivation, we write a minibatched estimator of the ELBO. Given a set of
randomly selected observations B,

22) £ =2 ¥ £, — KLyl p(w),

B beB
which is an unbiased estimator of the full objective and only touches |B| << N observations.
We can use gradients of this estimator to optimize the lower bound with respect to variational
parameters A = (m, S). With M inducing points, a minibatched estimator can be computed
in O(|B| - M?) time.

When predicting, note that we only condition on the inducing point values u, relying only
on the prior covariance between u and p,. The structure of this variational approximation
forces the inducing point values u to represent all of the information learned from the data.
While this approximation is no longer “nonparametric,” in the traditional sense, it has been
shown that inducing point methods can provide good approximations to exact GP inference,
provided enough inducing points are used (Burt, Rasmussen and van der Wilk (2019)). Em-
pirically, we find that we can adequately tune covariance parameters and predict on held-out
data using a modest number of inducing points (on the order of M = 6000).

Natural gradients. Given the objective in equation (18), we are now tasked with finding
the optimal parameters A. We use stochastic optimization with minibatches (Hoffman et al.
(2013)) along with natural gradients (Amari (1998)) which are effective for variational infer-
ence of Gaussian processes (Hensman, Fusi and Lawrence (2013)).

For exponential family distributions (e.g., the multivariate normal), the natural gradient can
be computed by taking the standard gradient with respect to the mean parameters (Hoffman
et al. (2013)). Following Hensman, Fusi and Lawrence (2013), the natural gradient for varia-
tional parameters A = my, Sy is straightforward to express using the natural parameterization
of the multivariate normal g, ; see Appendix C in the Supplementary Material (Miller et al.
(2022)) for more details.

Whitened parameterization. Draws of u ~ p(ulX, @) are highly dependent on #. Consider
a draw u conditioned on a fixed length scale parameter of £. This same draw will be highly
improbable under the prior with a different length scale parameter, for example, 2¢. The vari-
ational approximation A targets the posterior distribution p(uly, @) which is highly dependent
on the structured Gaussian process prior. This dependence frustrates the joint inference of A
and 6; small changes in # can make the approximate distribution over u suboptimal. This
dependence forces gradient methods to take small steps which leads to extremely slow joint
inference.

An effective strategy for coping with this dependence is to do posterior inference in an al-
ternative parameterization of the same model that decouples variables u and . For structured
latent Gaussian models (e.g., Gaussian processes), this alternative model uses the whitened
prior (Murray and Adams (2010)) or noncentered parameterization (Bernardo et al. (2003)).
For the dust map model we whiten the prior by altering the target of posterior inference;
instead of approximating the posterior over inducing point values p(uly, #), we target the
posterior over inducing point noise values p(zly, @), where the relationship between z and u
is constructed to produce an equivalent model. For notational clarity we define K £ Kl(lozl for
a fixed value of @ and L such that K = LLT is a general matrix square root. The whitened
model can be written

(23) z~N(O, Iy), u2Lz~N(,K).
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We now_target the posterior distribution p(z|y,#) by fitting an approximation g (z) =
N (z|m, S). The linear relationship between z and u implies that m = Lm and S = LSLT.
We describe additional details of this parameterization in Appendix D in the Supplement
(Miller et al. (2022)).

4.2. Adapting to integrated observations. The previous section detailed a scalable ap-
proximate inference algorithm for Gaussian processes in the typical noisy pointwise obser-
vation setting. Here, we adapt this framework to integrated observations. The challenge is
now efficiently computing the appropriate semi- and doubly-integrated covariance values to
be used within each minibatch update.

The natural gradient described in equation (39) (Appendix C) consists of two types of
covariance matrices, Ky y and Ky ,. The former describes the prior covariance between in-
ducing point values and remains exactly the same in the integrated observation setting. The
latter describes the cross covariances between process locations and inducing point values;
this cross covariance must be adjusted to reflect the covariance between the integrated pro-
cess and the inducing point values. This is precisely what is defined by the semi-integrated
covariance function. The entries of K, y have to simply be switched to the semi-integrated
covariance defined in Claim B1
(24) Kpwhnm= [ K, ) dx.

XER,

In addition to the semi-integrated cross covariances, ZIGGY will need to calculate doubly-
integrated covariance terms. First, note that the gradient defined in equation (39) (Appendix
C) does not require doubly-integrated terms. This is convenient; the inducing point method
does not require cross covariances between integrated observations, and these cross co-
variances also happen to be the most expensive to approximate with numerical methods.
However, computing the variational objective (equation (18)) and making predictions (equa-
tion (78), Appendix E) do require the doubly-integrated diagonal terms, K, ,, for each ob-
servation.

Given the above dependence on integrated covariance terms, the full adaptation of the
SVGP method to integrated observations runs into two technical hurdles. First, the semi-
integrated covariance is not available in closed form beyond the simple squared exponential
which is considered too smooth (and thus of limited capacity) in many settings. This limi-
tation will make it difficult to use custom covariance kernels constructed with astronomical
theory (Leike and Enf3lin (2019)). Further, it will make it difficult to compare different models
and choose the best predictor among them. Second, even when the semi-integrated covari-
ance kernel is available in closed form, the doubly-integrated covariance is not. The SVGP
(and any inducing point) algorithm only relies on the diagonal of the covariance kernel, so
we only need to approximate this diagonal, scalar-valued function. We show that this scalar-
valued function can be easily approximated using a small grid of interpolated values, where
the “true” values are approximated using numerical integration.

We introduce two computationally efficient approximations to these operations on the co-
variance function to overcome these technical issues: (i) Monte Carlo estimates for semi-
integrated covariance functions and (ii) linear interpolation for the doubly-integrated diagonal
covariance function.

Monte Carlo estimators for semi-integrated kernels. The natural gradient updates in equa-
tion (39) (Appendix C) require computing the covariance between observations and inducing
point values, K, y. For integrated observations, the covariance between observations and in-
ducing points is given by the semi-integrated kernel in equation (24). For kernels with a
closed form semi-integrated kernel (e.g., the squared exponential), we can simply substitute
k™) (%, x,,) for k(X,,, x,,) in the loss and gradients and proceed within the typical SVGP
framework.
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For kernels without a closed form semi-integrated kernel, we run into a computational
issue. How do we compute the appropriate cross covariance values? One approach is to use
numerical integration—the semi-integrated covariance is a one-dimensional integral that can
be approximated with quadrature techniques. However, each batch requires computing M x
| B| semi-integrated covariance values; this can be computationally expensive, which would
force us to use small batches, and this leads to slower learning.

Stochastic natural gradient updates are already an estimate of the true gradient. How good
does this estimate have to be to effectively find the optimal solution? Numeric integration ap-
proximations to k™) (. .) are precise to nearly machine precision but are computationally
expensive. Analogously, we can ask, how good do the semi-integrated covariance approxi-
mations have to be to effectively find the optimal solution?

Pursuing this idea, we propose using a Monte Carlo approximation to the semi-integrated
covariance values; we sample uniformly along the integral path and average the original co-
variance values. More formally, we introduce a uniform random variable vg, that takes values
along the ray R,;, from the origin to x,. We can now write the semi-integrated covariance as

. 1
KO (i, 1) = f k(. x)dx = |Ral | o ki, ) dx = | Rl By [k (xm, v)].
XER, VER, |Rn |
=p(v)
This form admits a simple Monte Carlo estimator

A semmi R
@5) v v~ Unif(R), R (1,2 = L"' > klxm, v).
12

It is straightforward to show that equation (25) is an unbiased and consistent estimator for the
true semi-integrated covariance value evaluated at x,, and x,. While plugging this directly
into the gradient formula results in a biased estimator for the natural gradient, we find that
with a modest number of samples we can closely match the optimization performance of the
true natural gradient estimator. We investigate the relationship between samples L and the
resulting optimization in Figure 9 (Appendix E). Appendix E.1 contains additional details
and experimental results validating this approach.

Although conceptually similar, note that this Monte Carlo estimate of the semi-integrated
covariance is not equivalent to discretizing along each line of site as in (Rezaei Kh. et al.
(2017)). The estimator can use a small number of samples along the ray and still be useful
within stochastic gradient optimization.

Integrated observation variance. The SVGP algorithm requires an additional covariance
calculation—the marginal variance of an integrated observation at point x,,, k4 (x, ).
Note that we do not need to compute the nondiagonal terms of the doubly-integrated ker-
nel, a consequence of the separability of equation (21). Similar to the semi-integrated kernel
function, the doubly-integrated function can be approximated with numerical methods—a
double quadrature routine for each observation. But, similar to the semi-integrated case, this
double quadrature call becomes a computational bottleneck within each batch. Furthermore,
computing the gradient of the ELBO with respect to the covariance parameters with autodif-
ferentiation tools would require differentiating through a double quadrature call—prohibitive
in our setting.

We solve this problem by observing that a rotationally invariant (and stationary) kernel
admits a doubly-integrated version that is a function only of the distances to each of the
two integral endpoints. That is, k(doubly) (xi, xj) can be written as a function f(|x;], x;|)
for a fixed setting of covariance function parameters. Further, we can write the diago-
nal of the doubly-integrated kernel as a function of only the distance to the single point,
k@O (xyy, x) = f (1xa]).
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Given that this is a one-dimensional function shared by all N of our observations, we
approximate the doubly-integrated kernel diagonal with linear interpolation. The interpo-
lation scheme allows us to cheaply compute a highly accurate approximation to the doubly-
integrated diagonal. It also enables us to easily backpropagate gradients to the kernel function
parameters which enables efficient tuning during the variational inference optimization rou-
tine. Appendix E.2 describes the interpolation scheme for k(doubly) (. x.) in further detail.

4.3. Method summary and remarks. To summarize, ZIGGY scales Gaussian process in-
ference with integrated observations by fusing several strategies: (i) the explicit representa-
tion of the inducing point posterior within the SVGP framework, (ii) a whitened parameteri-
zation to decouple A and @ in the variational objective, (iii) on-the-fly Monte Carlo estimates
of the semi-integrated covariance function, (iv) and fast kernel interpolation of the doubly-
integrated diagonal covariance function that leverages the stationary and isotropic properties
of the covariance functions considered.

Algorithm 2 (in the Supplementary Material) describes the main loop for updating based
on stochastic gradients of the variational parameters and the covariance function parameters
6. Maximizing the variational lower bound (equation (18)) with respect to prior parameters
0 is a similar strategy to empirical Bayes (Efron (2008, 2019)), a method used to reduce the
average error of posterior estimates.

We find that the inducing point approach dovetails nicely with integrated observations;
most evaluations of the covariance function are between inducing points and observations.
This only requires computing the (easier) semi-integrated covariance function. Further, the
doubly-integrated covariance values between any two distinct observations never needs to be
computed. Rather, only the diagonal of this covariance function needs to be computed, but
this conveniently reduces to a one-dimensional function that can be efficiently approximated.
ZIGGY circumvents computing the (prohibitive) N x N doubly-integrated covariance.

We note that the SVGP framework for scaling Gaussian process is one approach to build
upon for our application; other frameworks for scaling kernel methods could have been em-
ployed. One example is random (or carefully selected) features for approximating the kernel
function (Le, Sarl6és and Smola (2013), Rahimi and Recht (2008), Yang et al. (2012)). While
these approximate kernel methods could yield superior performance, one reason we reach
for the SVGP framework is extensibility. The variational inference framework can incorpo-
rate more complex probabilistic graphical model structure. For this application, additional
types of observations can be incorporated into a more sophisticated likelihood model to help
identify the spatial dust distribution and incorporate additional sources of uncertainty.

5. Validation with a domain simulation. We developed ZIGGY with the goal of gen-
erating a three-dimensional dust map of the Milky Way using two billion stars in the Gaia
dataset (Brown et al. (2018)). As a step toward that goal and to test ZIGGY in an applied
environment, we infer the dust distribution of a mechanistic and physically motivated do-
main simulation.® The domain dataset is a synthetic Gaia survey of a high resolution Milky
Way-like galaxy simulation.

The domain dust density p(x) was generated in a Milky Way-like galaxy simulation, one
of many in the Latte suite of simulations of Milky Way-mass galaxies (Wetzel et al. (2016),
Hopkins et al. (2018)). It was run as part of the Feedback In Realistic Environments (FIRE)
simulation project which selfconsistently models extinction and star formation in a cosmo-
logical context at high resolution.

6Code is available in the Supplementary Material (Miller et al. (2022)).
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In astronomy, most observations prefer a model in which our universe is predominantly
made of cold dark matter (Aghanim et al. (2018)). On small scales, however, there are sig-
nificant challenges to this model (Klypin et al. (1999)), which this suite of simulations helps
resolve (Wetzel et al. (2016)). This Latte simulation overcomes the computational challenge
of including gas, dust, and stars with high enough resolution to resolve these tensions. It in-
cludes more complex physics of “normal” matter, as apposed to just dark matter, including
a high-resolution disk of gas and dust. Because of the results from these simulations, which
resolved these tensions, astronomers are more confident in a universal model of dark matter.

The simulation has enough resolution to resolve the formation of structures in the dense
gas that forms dust and stars, creating a realistic environment for inference. The positions of
the extinction observations, or the positions of stars within p(-), was generated by the Ananke
framework. The Ananke framework generated a realistic, mock star catalog from the FIRE
simulation and kept intact important observational relationships between gas, extinction, and
stellar populations (Sanderson et al. (2018)). This catalog was specifically designed to resem-
ble a Data Release 2 Gaia astrometric survey (Brown et al. (2018)), with a similar resolution
of stellar density as Gaia. We integrated p(x) along lines of sight to one million stars in the
Ananke dataset within a 0.5 kpc x 0.5 kpc x 0.1 kpc region of the synthetic sun. So, we
generate a set of N noisy integrated observations

(26) X, ~ Ananke(X) stellar locations,
27 en = p(x)dx domain extinctions,
XER,
(28) an ~ N (en,52) noisy integrated observation,

where the domain X = [(—0.25, 0.25), (—0.25, 0.25), (—0.05, 0.05)], the median extinction
value is 0.01, and noise variance is chosen to be 0, = 0.005. So our median signal-to-noise
value is 3. The true extinctions, e,, are computed to high precision using numerical quadra-
ture, integrating from the origin to the Ananke stellar locations x,. The integrated observa-
tions are depicted in Figure 2b. We estimate this domain specific dust density p(-) from noisy
integrated observations using ZIGGY.

In Section 5.1 we compare posterior estimates of p(-) as a function of training data set size.
This highlights the importance of scaling inference to more observations in order to obtain a
more accurate statistical estimator. In Section 5.2 we compare posterior estimates of p(-) as
a function of kernel choice with a fixed data set size.

5.1. The quality of the estimate. We study the quality of the estimate of p(x) as a func-
tion of data set size N. We fit the dust model to the Ananke dataset with data set sizes
N € {103, 10%, 107, 10} for 103, 10*, 103, 100 epochs, respectively. We trained each model
using minibatches of size |B| = 2000, an initial step size of 0.01, reducing it every epoch by
multiplying by a decay factor of 0.99. We measure model quality by computing root mean
squared error (RMSE) and log-likelihood (LL) on a set of Ngt = 2000 held out extinction
values. Each model uses M = 16 x 16 x 4 inducing points, evenly spaced in a grid in the
input space.

Figure 2 summarizes the model’s fit using one million observations, the most we tried in
this example. Figure 2c displays the posterior mean for p(x), given the one million obser-
vations depicted in 2b. Figure 2d shows the posterior uncertainty (one standard deviation)
about the estimated mean. We see that the million-observation model recovers the true latent
function particularly well.

Figure 3 quantifies the improvement in the RMSE and log-likelihood on a held out sample
of test stars as a function of dataset size N. As the dataset size increases, both statistics
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FI1G. 2. Integrated observation GPs can reveal spatial structure from a severely limited vantage point. This figure
summarizes domain simulated data posterior inference using N = 1,000,000 examples in a three-dimensional
space. Panel 2a depicts the true (unobserved) p(x) that generates the data. Panel 2b depicts the observed data,
noisy integrated measurements of p from the origin to stellar positions in the domain simulation. 2c depicts the
inferred p given these observations using ZIGGY with a squared exponential kernel. 2d depicts the marginal
posterior standard deviation at each location in X -space. All Panels are a slice at 7 = 0.

drastically improve. Figure 4 visualizes a direct comparison of the posterior estimate of the
latent function, as we increase data set size N. We can clearly see that, as we incorporate
more data into the nonparametric model, the form of the true underlying function emerges.
To accurately visualize and interpret large scale features of the latent dust distribution, we
will want to incorporate as many stellar observations as possible. This is particularly true in
the low signal to noise regime of extinction estimates.

5.2. Comparing kernels. Similar to the synthetic dataset, we compare multiple models
by fitting the variational approximation and tuning the covariance function parameters for
five different kernel choices.

In this domain setup we ran each model for 100 epochs, saving the the model with the
best ELBO value. We used minibatches of size | B| = 2000 and started the step size at 0.01,
reducing it every epoch by multiplying by a decay factor of 0.99. For kernels that do not have
a closed form semi-integrated version, we used L = 50 uniform grid Monte Carlo samples to
estimate the integrated covariance.
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F1G. 3.  Scaling to massive N improves estimator performance. We compare predictive RMSE (left) and log—
likelihood (right) as a function of data set size N on a held out sample of test stars.

We validate the inferences against a set of 2000 held-out test extinctions e,. We quantify
the quality of the inferences with mean squared error, log-likelihood, and the x2-statistic on
the test data. We also visually validate ZIGGY with a Q Q-plot and coverage comparison, also
on test data. We also visualize the behavior of ZIGGY as a function of distance to the origin;
specifically, we visualize how accurate and well-calibrated test inferences are, as synthetic
observations are made farther away.

In Figure 5 we compare the mean squared error (MSE), the log-likelihood, and the x?
statistic on the held-out test data. We compare five different kernels: (i) Gneiting « = 1 from

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
X1 X1
@) E[p| D], N = 1,000 (b) E[p| D], N = 10,000

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
X1 X1
(©) E[p| D], N = 100,000 (d) E[p| D], N = 1,000,000

FI1G. 4. Slices of the posterior mean function at z = 0 for various dataset sizes. More data leads to more accurate
predictions of p(-).
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FIG. 5. Predictive summaries across different models and inference schemes. The smoother models have better
predictive summary statistics which is consistent with the underlying density field being very smooth.

Rezaei Kh. et al., 2018, (ii)—(iv) Matérn, v € {1/2,3/2,5/2}, and (v) the squared exponential
kernel. The results match our expectations. The true p(-) is quite smooth, and we see that the
smoother kernels tend to have lower predictive error and higher log-likelihood. All kernels
have similarly calibrated x? statistic, except for Matérn, v = 3/2, which underpredicts it’s
posterior variances. This can also be seen in Figure 6. The test statistic comparison has chosen
a good match in the squared exponential kernel.

To test the calibration of posterior uncertainties, we inspect statistics of test-sample z-
scores for e,.. We test that the statistics of predictive z-scores resemble a standard normal dis-
tribution using a QQ-plot. For a more detailed description of the QQ-plot, see Appendix F.2.
To compare different models, we visualize QQ-plots for the different covariance functions
in Figure 6. As an additional summary of calibration, we compare the fraction of predicted
examples covered by 1/2, one, two, and three posterior standard deviations, summarized in
Table 1. We see that there is room for improvement in the posterior variances. The z-scores
and empirical coverage show posterior variances that are well calibrated for the squared ex-
ponential and Matérn, v = 5/2 kernels but are too large for the other kernels. The models
for the less smooth kernels are compute bound, requiring thousands of inducing points to tile
the domain. We ran the models for 100 epochs which maxed out the memory and compute
time. Miscalibration could be the result of misspecification of the model itself, for example,

3 e Gneita=1 O
Mat-v =1/2 ¢,
Mat-v = 3/2

A Matv=5/2

A
< SgExp &

-3 -2 -1 0 1 2 3

F1G. 6. QQ-plot for predicted distributions on 2000 held out integrated-p test points esx. Theoretical normal
quantiles are on the horizontal axis, and predictive z-scored quantiles are on the vertical axis. Posterior for
extinctions e are moderately well calibrated, with the squared exponential kernel having the best calibration.
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TABLE 1
Coverage fractions at various levels of z-score standard deviation o for test extinctions ey. Compared with
theoretical coverage fractions, we see that our inferences generate predictions that are well calibrated for the
smoothest kernels

o Gneit-o = 1 Mat-v =1/2 Mat-v =3/2 Mat-v =5/2 SqExp N(@O,1)
0.5 0.894 0.760 0.451 0.730 0.625 0.383
1.0 0.965 0.900 0.677 0.900 0.869 0.683
2.0 0.997 0.969 0.878 0.991 0.986 0.955
3.0 1.000 0.994 0.947 1.000 0.999 0.997

mismatch between the covariance function k and the true underlying p or the inflexibility of
the variational approximation. To diagnose this shortcoming, methods that allow us to scale
the expressivity of the variational approximation, for example, larger M would be necessary.

We also depict model fit statistics as a function of distance from the origin in Figure 7.
Figure 7a visualizes the test extinction values. ZIGGY is able to accurately reconstruct the
dust map. Figure 7b shows the posterior standard deviation by distance which shows a noise
reduction of about 10x for most stars. In Figure 7c we see that the predictions have posterior
variances that are slightly too high, causing z-scores that lie mostly within 20 independent
of distance, with only the most nearby stars extending to 3o. Decent calibration, including at
far distances, is encouraging, as the goal is to form good estimates of this density far away
from the observer location.

6. Discussion. Mapping the three-dimensional distribution of dust in the Milky Way is
fundamental to astronomy. Star dust obscures our observations of star light, and so an accurate
dust map would help us more clearly observe the universe. Such a dust map would be a new
lens into the dynamics of the Milky Way, providing a trace of the process by which it formed.

In this paper we developed ZIGGY, a method to estimate the dust map from millions of as-
tronomical observations. ZIGGY incorporates noisy information into a single, coherent spatial
model. We developed technical innovations to accommodate integrated observations into the
Gaussian process framework and to scale such a model to millions of observations without
spatial discretization. We validated these algorithmic innovations with numerical studies, and
measured the performance of ZIGGY in both a synthetic setting and a realistic, high-fidelity
dataset used in astronomical study. We showed that ZIGGY is able to incorporate millions
of observations and recover accurate and well-calibrated estimates of both stellar extinctions
and pointwise values of the three-dimensional dust map.
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FIG. 7. Posterior summaries as a function of distance to the origin (observation point). The noise variance for
the extinction estimates is o, = 0.005, so Figure (a) demonstrates our low signal to noise regime, Figure (b)
demonstrates our shrinkage by a factor of 10, and Figure (c) demonstrates our decent calibration in this very low
signal to noise regime.
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There are several avenues for future research and improvement. ZIGGY assumes that dis-
tances are known, when, in reality, they are noisy. In practical applications we will only
include stars with precise distance measurements, lowering the spatial density of observa-
tions, which may degrade estimates. We view ZIGGY as a step toward a probabilistic model
of photometric measurements that jointly infers brightnesses, colors, distance, and spatial
dust. Jointly modeling brightnesses, distances, and a spatial dust map using a Bayesian hier-
archical model will allow us to leverage the coherence of Bayesian probabilistic modeling to
form tighter estimates of all modeled quantities.

Additionally, a limitation of our treatment is the Gaussian error assumption. Non-Gaussian
observation errors could degrade extinction estimates, for example, forcing p to be more
complex (i.e., with a smaller length scale) than it truly is. A flexible hierarchical Bayesian
model could incorporate a non-Gaussian likelihood that could be more robust to heavier tailed
observation error.

A full map that spans the entirety of the Milky Way will require increasing the capacity
of the approximation. To reconstruct both global and local features using an inducing point
method, we need to ensure that small length scales (relative to the input domain) can be
resolved. When inducing points are spatially distant from one another, the inducing point
approximation will not have the capacity to represent sharp changes in p(x) at small scales.
This limitation can be overcome by including more, and closer, inducing points. However,
introducing more inducing points butts up against the O (M?>) computational limitations. In
this work we assume we are able to populate the space with enough inducing points, but the
scaling concern is an important avenue of future work. Incorporating more inducing points
will be crucial to resolving both global features and fine local features within the Milky Way.

The ultimate goal of this line of work is to produce an accurate catalog of the properties
of stars, such as probabilistic brightnesses and distances, and the focus of scale is motivated
by the size of modern photometric catalogs. PAN-STARRS 1 catalog includes 2.4 million
detected stars (Flewelling (2016)), the fifteenth data release of the Sloan Digital Sky Survey
includes photometry for over 260 million detected stars (Aguado et al. (2019)), and the sec-
ond GAIA data release has 1.3 billion stars with parallax measurements that can be used to
estimate the interstellar dust distribution (Brown et al. (2018)). As a final avenue of research,
we will scale ZIGGY to incorporate billions of observations in a much larger spatial domain.

SUPPLEMENTARY MATERIAL
Appendices (DOI: 10.1214/22-A0AS1608SUPPA; .pdf). Appendices to the main text.

Code (DOI: 10.1214/22-AOAS1608SUPPB; .zip). Implementation of the method pre-
sented.
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