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Abstract

In a probabilistic latent variable model, factorized
(or mean-field) variational inference (F-VI) fits
a separate parametric distribution for each latent
variable. Amortized variational inference (A-VI)
instead learns a common inference function, which
maps each observation to its corresponding latent
variable’s approximate posterior. Typically, A-VI
is used as a step in the training of variational au-
toencoders, however it stands to reason that A-VI
could also be used as a general alternative to F-
VI. In this paper we study when and why A-VI
can be used for approximate Bayesian inference.
We derive conditions on a latent variable model
which are necessary, sufficient, and verifiable un-
der which A-VI can attain F-VI’s optimal solution,
thereby closing the amortization gap. We prove
these conditions are uniquely verified by simple hi-
erarchical models, a broad class that encompasses
many models in machine learning. We then show,
on a broader class of models, how to expand the
domain of AVI’s inference function to improve
its solution, and we provide examples, e.g. hid-
den Markov models, where the amortization gap
cannot be closed.

1 INTRODUCTION

A latent variable model is a probabilistic model of obser-
vations x = x1.y with corresponding local latent variables
z = z1.y and global latent parameters 6. With a model
p(6,z,x) and an observed dataset x, the central computa-
tional problem is to approximate the posterior distribution
of the latent variables p(0, z | x).

One widely-used method for approximate posterior infer-
ence is variational inference (V1) [Jordan et al., 1999, Blei
et al., 2017]. VI sets a parameterized family of distributions

Q and finds the member of the family that minimizes the
Kullback-Leibler (KL) divergence

q" = argmin KL (¢(0,2) [ p(0, z| x)) . (1
qeQ

VI then approximates the posterior with the optimized ¢*.
(In practice, VI finds a local optimum of Eq. 1.)

To fully specify the VI objective of Eq. 1, we must decide
on the variational family Q over which to optimize. Many
applications of VI use the fully factorized family, also known
as the mean-field family. 1t is the set of distributions where
each variable is independent,

Op = {q 2 q(0,2) = q0(0) [T2_, qn(zn)}, ()

and where the notation ¢, clarifies that there is a separate
factor for each latent variable. The factorized family under-
pins many applications where fast computation is desired to
fit high-dimensional models to large data sets [e.g Bishop
et al., 2002, Blei, 2012, Giordano et al., 2023]. We call an al-
gorithm that optimizes Eq. 1 over Qp factorized variational
inference (F-VI).

While the factorized family involves a separate factor g, (z,)
for each latent variable, recent applications of VI have ex-
plored the amortized variational family [e.g Kingma and
Welling, 2014, Tomczak, 2022]. In this family, the latent
variables are again independent. But now the variational dis-
tribution of z,, is governed by an inference function fy(z,,),

Op = {q 2 q(0,2) = qo(0) [T, q(2n; qu(xn))} .3

The inference function f4 maps each x,, to the parameters
of its corresponding latent variable’s approximating factor
Gn(zn ). Optimizing Eq. 1 now amounts to fitting an approxi-
mate posterior go(6) and the inference function f,. Such an
algorithm is called amortized variational inference (A-VI).

The canonical application of amortization is in the vari-
ational autoencoder (VAE) [Kingma and Welling, 2014,
Rezende et al., 2014], where A-V1is used to do variational
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Figure 1: The variational family Qu for A-VI is a subset of the variational family Qp for F-VI. (a) In general, F-VI can
achieve a lower KL-divergence than A-VI. (b) Under certain conditions, however A-VI may still achieve the same optimal

solution q* as F-VL

expectation-maximization. In this application, p(x | 6, z) is
specified by a deep generative model. The inference func-
tion, termed the “encoder”, is used to approximate the con-
ditional posterior p(z,, | =, #) for the expectation step. We
then estimate 6 by maximizing the approximated marginal
likelihood p(x | €), which is the maximization step.

There exist several motivations for A-VI. One of them is
scaling. While F-VI requires fitting a separate variational
factor for each of the data points, A-VI can be more efficient
since what we learn about ¢ can be amortized across data
points. However, if A-VI’s inference function is not suffi-
ciently expressive, it may fail to produce as sophisticated
a solution as F-VI. We will formalize this intuition and go
a little beyond, showing that no matter how expressive the
inference function, Q, is always a poorer family than Q.

While A-VIis typically understood as a cog in the VAE, its
formulation suggests a more general algorithm for approx-
imate posterior inference. In this paper, we study A-VI as
a general-purpose alternative to F-VI. We ask: Under what
conditions can A-VI achieve the same solution as F-VI?

In more detail, because Qa (F) is a poorer family than Qp,
A-VI cannot achieve a lower KL-divergence than F-VI’s
optimal approximation. So, our goal is to distinguish the two
scenarios illustrated in Figure 1. In one, the amortized family
contains the optimal factorized variational distribution; in
the other, the amortized family does not contain it. In the
VAE literature, A-VI’s potential suboptimality relative to
F-VI1is known as the amortization gap [Cremer et al., 2018].

First, we characterize the class of models where A-VI can
close the amortization gap and show that this class corre-
sponds to simple hierarchical models [Agrawal and Domke,
2021], i.e. latent variable models which factorize as:

N
p(0,2,%) = p(0) [ p(za)p(@n | 20.0). @

n=1

This class includes the deep generative model that underlies
the VAE and many other models in machine learning and
in Bayesian statistics. Our analysis also shows that A-VIis
appropriate for full Bayesian inference, meaning we approx-
imate p(6, z | x), rather than approximate p(z | x,6) and

point-estimate 6 as in variational expectation-maximization.

Second, we generalize A-VI by expanding the domain of
the inference function beyond a single data point x,,. We es-
tablish verifiable conditions for when an expanded function
can close the amortization gap, and we provide a time-series
example. Finally, we show that there are important exam-
ples, such as the hidden Markov model and the Gaussian
process, where A-VI cannot attain F-VI’s optimal solution,
even if expanding the domain of the inference function.

Plan. In § 2 we show that the potential for A-VI to achieve
F-VI’s solution amounts to implicitly solving an amorti-
zation interpolation problem between z,, and the optimal
variational factors of F-VI. For a solution to exist, two con-
ditions must be met: (i) the interpolation problem must be
well-posed, which is a condition on the model p(0, z, x);
and (ii) the class of inference functions over which we learn
f must be sufficiently expressive, which is a condition on
the inference algorithm.

In § 3, we investigate condition (i) theoretically. We show
that, in general, the amortization interpolation problem ad-
mits a solution if and only if p(6, z,x) is a simple hierar-
chical model. We then show how to expand the inference
function to accommodate more models, and that there are
models for which the gap cannot be closed.

In § 4, we empirically study condition (ii). We find that the
number of parameters of the inference function does not
need to scale with N for A-VI to achieve F-VI’s solution,
whereas the number of parameters for F-VI must scale with
N. We demonstrate this phenomenon across several models,
including a Bayesian neural network. We also find that when
the class of inference functions is sufficiently expressive, A-
VI often converges faster than F-VI to the optimal solution.
However, in some problems, the performance of A-VI may
be much more sensitive to the random seed than F-VI.

Related work. The amortization gap has been extensively
studied in the context of VAEs [Hjelm et al., 2016, Cremer
et al., 2018, Kim et al., 2018, Marino et al., 2018, Krishnan
et al., 2018, Kim and Pavlovic, 2021]. This paper goes
beyond the VAE, seeking to understand when and how the



amortization gap closes for latent variable models in general.
The accuracy of A-VI has also been studied for calculations
on held-out likelihoods [Shu et al., 2018]. That said, our
focus here is on using A-VI for posterior inference, rather
than predictive distributions.

There has been some interest in applying A-VI to models
other than standard VAEs [Gershman and Goodman, 2014],
including dynamic VAEs [Girin et al., 2021], latent Dirich-
let allocation models [Srivastava and Sutton, 2017], and
Bayesian hierarchical models [Agrawal and Domke, 2021].
In this paper, we study latent variable models in general,
rather than focus on a specific model.

In some applications of A-VI, researchers have expanded
the domain of the inference function beyond a single data
point. The conventional wisdom is that the inference func-
tion should take as input the same data that the exact pos-
terior of the local variable z,, depends on [e.g Girin et al.,
2021, chapter 4]. When doing full Bayesian inference, each
latent variable z,, typically depends on the entire data set x,
however we argue that it can be sufficient to only pass x,, to
fe. Hence the amortization interpolation problem provides
a weaker condition than a posteriori dependence on when
the amortization gap can be closed.

In addition to passing more data points, it is also possi-
ble to pass latent variables to f,, notably in hierarchical
models [e.g Webb et al., 2018, Agrawal and Domke, 2021,
Girin et al., 2021]. This strategy changes the factorization of
q(0,z) and is aimed at closing the inference gap, i.e. further
reducing KL(q||p) towards O or equivalently increasing the
evidence lower bound (ELBO), rather than the amortization
gap. This type of A-VI is beyond the scope of our paper,
though extension of our analysis to such inference functions
is feasible.

2 PRELIMINARIES

We first set up some theoretical facts about A-VI and F-VI,
and articulate the conditions under which the A-VI solution
is as accurate as the F-VI solution. We assume that both
variational families (Eqgs. 2 and 3) use the same type of
distribution for ¢o(6) and so we focus on the variational
distributions of z,,. For each local latent variable z,,, F-VI
assigns a marginal distribution ¢y, (2, ; v,,) from a paramet-
ric family Q, with parameter v,, € U, where U denotes
the space of valid parameters for the variational distribu-
tion Q. The joint family O is then defined as the product
of marginals go (6 ; o) va\,]:1 Gn(2n ; V). Minimizing the
KL-divergence of Eq. 1 yields the optimal variational pa-
rameters v* = (v, vy, -+ ,UN)-

Let X be the space of x,,. A-VIfits a function fy : X — U
over a family of inference functions F parameterized by ¢
and the KL-divergence of Eq. 1 is minimized with respect
to ¢. We denote the resulting variational family QO (F).

Proposition 2.1. For any class of inference functions F,
QA (F) is a strict subset of Qp.

Proof. 1t is straightforward to see from Eq. 2 and Eq. 3 that
Oa(F) is a subset of QF.

To make the ordering strict, it suffices to find an element in
OF which does not belong to Q4. Note this element need not
be a minimizer of KL(g||p). Consider a case where two data
points are equal, x,, = z,,,. Then there exists a distribution
G(0,z) € O such that v,, # v,,, however, we necessarily
have fy(zn) = fs(2m), and so G(6,2z) ¢ Qa(F). O

An immediate consequence of the ordering is that A-VI
cannot achieve a lower KL-divergence than F-VI, leading to
a potential amortization gap. To close the gap, the inference
function f, must interpolate between x,, and the optimal
variational parameter v};,

folzn) =v;, Vn. 5)

We call the problem of finding an f that solves Eq. 5 the
amortization interpolation problem.

Definition 2.2. Given a data set x, suppose [ : X — U
solves Eq. 5. Then we say [ is an ideal inference function.

The strict ordering between Qa (F) and Qf warns us that the
amortization interpolation problem may not be well posed,
since we may find ourselves in a setting where x,, = x,,
but v} # v, in which case no ideal inference function
exists. In the next section, we derive conditions on the model
p(0,z,x) that guarantee the existence of an ideal inference
function. Once we establish that the amortization problem
is well posed, we can ask how rich does F need to be to
include an ideal inference function. We will investigate this
question empirically in § 4.

3 EXISTENCE OF AN IDEAL
INFERENCE FUNCTION

We first present a lemma that characterizes the optimal vari-
ational parameters of F-VI for any model.

Lemma 3.1. (CAVI rule) Consider a probabilistic model
p(0, z,%). The optimal solution for F-VI verifies,

q(zn; V) x exp {]Eq(g;yg) [Eq(zw;m) [logp(ﬁ,z,x)ﬂ } ,
(6)

where By, _ . .+ is the expectation with respect to all z;’s
except zy.

Proof. See Appendix A.1. O
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Figure 2: For the simple hierarchical model (Eq. 4), an ideal inference function fx such that fx(x,) = q(zn ; V) exists.
The saw time-series requires learning a map with two inputs (2,1, %y ). For the Hidden Markov and dense hierarchical
graphs, there is no ideal inference function. In the dense hierarchical model, there is an edge between every element of z
and every element of x. For clarity we removed edges between 0 and z,, in all graphs.

The proof follows from applying the coordinate ascent VI
update rule [Blei et al., 2017, Eq. 17] at the optimal solution
v*. Note that the optimal variational parameters depend on
the data and so, where helpful, we write v* = v*(x).

The CAVI rule uses the factorization of ¢ but makes no
assumption about the model. We will reason about the fac-
torization of p(f, z, x) using a directed acyclic graph (DAG)
representation and define an exchangeable latent variable
model based on a set of common assumptions.

Definition 3.2. An exchangeable latent variable model
(0, z,x) verifies

(i) local dependence, i.e. there is an edge between x,,
and zp, and p(xy, | 2,0) # p(xy | Z2—p, 0).

(ii) conditional independence of x,, on x_,, given z
and 0, i.e. p(x | z,0) = Hf:lzl (x| 2,0).

(iii) common distributional forms. no distribution in-

volving 0, z or x depends on the index of the random
variables.

Figure 2 presents several graphical models which conform
to the above definition, including hierarchical models and
certain time series.

Definition 3.3. Following Agrawal and Domke [2021], we
define a simple hierarchical model as an exchangeable la-
tent variable model that factorizes according to:

N
p(0,z,x) - p(@) H p(zn | e)p(xn | Z7L76)'

n=1

The main result of this section states that the existence
of an ideal inference function is, in general, equivalent to
p(6, z,x) being a simple hierarchical model.

Theorem 3.4. Consider an exchangeable latent variable
model p(0, z, x).

1. Suppose p(0, z,x) is a simple hierarchical model. Then
an ideal inference function exists.

2. Suppose an ideal inference function exists for each
p(0,z,x) that factorizes according to a graph. Then
this graph is the class of simple hierarchical models.

Proof. See Appendix A.2. O

Remark 3.5. The converse in Theorem 3.4 (item 2) is stated
for a class of models, meaning the result must hold for
any choice of distribution p(6, z, x) supported by the graph.
This excludes edge cases that arise due trivial symmetries
(see Appendix A.3).

We now provide an outline of the proof for Theorem 3.4.
Applying the CAVI rule to the simple hierarchical model,
we can show that F-VI’s optimal solution takes the form

q(zn; V) o / 9(0,x)[m(0, z,) + h(8, 2y, x,)]d0, (7)
e

where g(6,x) = q(6; v5(x)), m(0, 2,) = logp(zy | )
and h(0,x,,) = log p(x,, | zn, 0). While the function g de-
pends on the entire data set x, it is common to all factors of
q(z). Meanwhile, elements specific to z, only depend on
Zn. Moreover, x,, = &, implies ¢(z,, ; V1) = q(z2m ; V)).
Since a parametric density is uniquely defined by its param-
eter, we also have a map between x,, and v};.

We show item (2) by starting with the CAVI rule for a
general p(6,z,x) and identifying terms in the kernel of
q(zy ; V) which are not common to all factors of ¢(z) but
depend on elements of x other than x,,. To “eliminate” these



terms, we need to sever edges in the graphical representation
of p(f, z, x). Once we remove the offending terms, we are
left with a simple hierarchical model.

3.1 EXAMPLE: LINEAR PROBABILISTIC MODEL

We now provide an illustrative example where an ideal in-
ference function can be written in closed form. Consider the
simple hierarchical model,

p(0) < 15 p(z,) = N(0,1); p(zn | 20,0) = N (0472, %),
(®)
where 7 € R and o € R are fixed. In this example, the
marginal posterior p(z, | x) depends on the entire data
set x, rather than on z,, alone, a phenomenon known as
partial pooling in the Bayesian statistics litterature [Gelman
et al., 2013]. This is because rather than hold 0 fixed, we
marginalize over it to do full Bayesian inference.

Proposition 3.6. Let q(z,; v*) be the optimal solution
returned by F-VI, when optimizing over the family of factor-
ized Gaussians. Then

T _
Eq(zn;v:;)(zn) = W(xn—xﬁ Varq(zn;u*)(zn) = 52,
)
where T is the average of 1.y, and & is a constant.
Proof. See Appendix A.4. O

The bulk of the proof is to work out the posterior p(6, z | x)
analytically. Note a simple argument of conjugacy does not
suffice since we also need to marginalize over 6.

We can rewrite the optimal mean (Eq. 9) as a linear function,

Eqen; V;;)(Zn) = ap(x) + axy;
T T
T2y YT 22 (10)

aO(X) = 0_2 I 7_2‘

For A-VI to match F-VI’s solution, we need to learn a linear
function for the mean and a constant for the variance, and so,
regardless of the number of observations /N, we can close
the amortization gap by learning 3 variational parameters.

This example provides intuition behind Theorem 3.4, which
connects A-VI to classical ideas in hierarchical Bayesian
modeling. In the considered example, the posterior mean
demonstrates partial pooling, a key property of hierarchical
models [Gelman et al., 2013]: the posterior mean of z,
depends on both the local observation z,, and on the non-
local observations through Z. Even though p(z,, | x) #
p(zn | @), the posterior density of each latent variable is
distinguished by the local influence of z,,, while the global
influence of Z is the same for all latent variables. As a result
T = Tm = pP(zn | X) = p(2m | %), and an ideal
inference function exists.

3.2 FURTHER FACTORIZATIONS OF p(0, z, x)

Theorem 3.4 tells us that in general, A-VI cannot achieve
F-VTI’s solution for latent variable models other than the
simple hierarchical model. We show however that for certain
models, it is possible to extend the domain of the inference
function in order to close the amortization gap.

A general strategy to verify if the amortization interpolation
problem can be solved is to prove the existence of a (poten-
tially expanded) ideal inference function by applying the
CAVI rule (Lemma 3.1) to any model p(6, z, x) of interest.

Saw time series. Consider the saw time series model,

N
p(Q,Z,X) = p(@) H p(Zn | xnfl)p(wn ‘ Zma)’ (11)
n=1

where each latent variable z,, depends on the previous ob-
servation x,,_1. Applying the CAVI rule, we have

a(znivp) < p(2n | Tn—1) exp {Eq(S;Vg)[Ing(xn | Zme)]}a
(12)
which defines a (data-set dependent) function from
(p—1,y) to the optimal variational factor. There is no
ideal inference function, fx : X — U, however, there exists
an ideal inference function fx : X x X — U, such that
fx(@p_1,2,) = v foralln > 1.
Remark 3.7. When extending the domain of the inference
function, we must address edge cases which may not have
the requisite argument. For example, inference for z; re-
quires passing (o, 1) to fg, but g is not observed. In this
case, we assign a distinct variational parameter v; to the
factor g(z1 ), rather than use amortization.

Hidden Markov model (HMM). We now consider another
time series, where even after expanding the domain of the
inference function, the amortization gap cannot be closed.
The joint of the HMM is

N
p(oaz7x) :p(ﬁ) Hp(zn | Zn—l)p(xn | Z'mo)~ (13)
n=1

The next proposition states that there is in general no ideal
inference function f : X — U and furthermore expanding
the domain of the inference functions still yields no ideal
function.

Proposition 3.8. Consider the HMM of Eq. 13. Let w,, €
W be a strict subset of x. There exist HMMs with no ideal
inference function fx : W — U. That is, we cannot con-
struct an fx such that fx(w,) = v} for all n which do not
constitute an edge case (Remark 3.7).

Proof. See Appendix A.5. O

Remark 3.9. If we extend the domain of the inference func-
tion to the entire data set x, then A-VI reduces to F-VI and
the amortization gap is trivially closed.
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Figure 3: Examples of optimization paths. As benchmarks, we use F-VI and a constant factor algorithm which assigns the
same distribution to all q(z,). A-VI is then run using different classes of inference functions: (left) we vary the degree d
of a learning polynomial; (middle, right) we vary the width k of an inference neural network. For a sufficiently complex
inference function, we find that A-VI attains the same ELBO as F-VI, meaning the amortization gap is closed. For results

across multiple seeds, see Figure 4.

The proof of Proposition 3.8 is obtained by constructing a
(non-adversarial) example. We argue the above result holds
in general and provide a conceptual explanation as to why.
In the simple hierarchical and saw time series models the
existence of an ideal inference function (respectively over
X and X x X) is due to the fact that each data point either
has a local or a global influence on ¢(zy, ; v;). In the case of
an HMM, there is no common global influence: any obser-
vation x,,, will have a different influence on the variational
factor for each latent variable z,,. Moreover, each observa-
tion is, to a varying degree, local to any latent variable. A
similar reasoning can be applied to the dense hierarchical
model (Figure 2), which includes Gaussian process models.

4 NUMERICAL EXPERIMENTS

We corroborate our theoretical results on several examples
and explore the trade-off between the complexity of the
inference function, the quality of the approximation, and
the convergence time of the optimization. In all our exam-
ples, we do full Bayesian inference over ¢ and z. The code
to reproduce the experiments can be found at https://
github.com/charlesm93/AVI-when—and-why.

4.1 EXPERIMENTAL SETUP

As our variational approximation, we use the family of
factorized Gaussians. Our benchmarks are a constant factor
algorithm, which assigns the same Gaussian factor g to each
latent variable z,,, and F-VI. The constant factor and F-VI
are respectively the poorest and richest variational families.

With A-VI, we learn ¢(6), just as in F-VI, but amortize the
inference for ¢(z): specifically, we fit an inference function
between x,,, and the mean and variance of the Gaussian
factor q(z,). For the saw-time series example (§ 4.5) the
input of the inference function is expanded to (z,,—1, =, ).

To optimize the KL-divergence, we maximize the evidence

lower-bound (ELBO),
IEq(z.ﬂ;l/) [logp(97z7x) - logq(97z)] ) (14)

estimated via Monte Carlo. For all experiments we use a
conservative 100 draws to estimate the ELBO, except when
training a Bayesian neural network, where we use a mini-
batching strategy instead.

We employ the Adam optimizer [Kingma and Ba, 2015] in
PyTorch [Paszke et al., 2019] and use the reparameteri-
zation trick to evaluate the gradients [Kingma and Welling,
2014]. For F-VI, the optimization is directly performed over
the parameters of the factorized Gaussian ¢(6)q(z). For A-
VI, the optimization is over the parameters of the Gaussian
q(0) and over the parameters of the inference function (e.g.
the weights of the inference neural network) which maps x,,
to the parameters of ¢(z,,). We find a learning rate of le-3
works well across applications. The optimizer is stochastic
because of the random initialization and the Monte Carlo
estimation of the ELBO, and so we repeat each experiment
10 times. Depending on the choice of variational family, the
computation cost per optimization step can vary. Therefore
we report the ELBO against the wall time when evaluating
the performance of each algorithm.

4.2 LINEAR PROBABILISTIC MODEL

We begin with the example from § 3.1, using N = 10, 000
simulated observations, obtained by drawing # and z from
standard normals. A-VI’s inference function is a polynomial
of degree d and we require d = 1 to learn the optimal
variational parameters (Proposition 3.6). Figure 3 shows the
optimization paths over 5,000 steps for a single seed and
Figure 4 summarises the number of iterations to converge
across seeds for each VI algorithm. Consistent with our
analysis in § 3.1, A-VI attains the same outcome as F-VI
for d > 1. Furthermore, we find that A-VI requires an order
of magnitude less time to converge. Naturally, using d = 2
also yields an optimal solution, however we observe that
A-VI then converges more slowly.
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reconstruction. Algorithms with a collapsed box plot on the right do not close the amortization gap.

4.3 NONLINEAR PROBABILISTIC MODEL

This is a variation on the previous model, with a nonlinear
likelihood. The joint distribution is then,

p(0) = N(O’ 1)
p(zn) = N(0,1)
P(Tn | 20,0) =N (0 + 2,(1 +sin(2y,)), cos®(z,)) -

15)

N = 10,000 observations are obtained by simulation. The
inference function fy is a neural network with two hidden
layers of width k£ and ReLu activation. A-VI can match F-
VTI’s solution for £ > 4. In contrast to the linear probabilistic
example, an overparameterized inference function yields
faster convergence as measured by the median over 10 seeds
(Figure 4). However, A-VI is more sensitive to the seed and
in some cases, can fail to converge after 20,000 iterations. A
strength of F-VI relative to A-VI is therefore robustness to
initialization, particularly in this example. Given the large
number of Monte Carlo samples used to estimate the ELBO,
we deduce A-VI is sensitive to the initialization. The choice
k = 16 produces a fast and reasonably stable algorithm.

4.4 BAYESIAN NEURAL NETWORK

Next we consider a deep generative model applied to the
FashionMNIST data set [Xiao et al., 2017]. We associate
with each image x,, € R™* a low-dimensional representa-
tion z,, € R%4. The joint distribution is then,

p(0) = N(0, 1)

p(zn) = N(0,1)
p(Tn | 2n,0) = N (Q(zn; 0),1), (16)
where (2 is a neural network with two hidden layers of
width 256 and a leaky ReLu activation function. § € R>7-232
stores the weights and biases of the network. This generative
model underlies the traditional VAE, however we estimate
a posterior over 6 in order to confirm that A-VI can indeed
close the amortization gap when fitting a Bayesian neural
network. We train the model on 10,000 images and at each
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Figure 5: Image reconstruction error, as measured by MSE
over pixel, for a trained Bayesian neural network. The MSE
is not a one-to-one map with the ELBO. For a sufficiently
expressive inference network, A-VI achieves the same error
as F-VI and converges faster. The above provides the paths
for a single seed; for results across several seeds, see Fig-
ure 4.

iteration, evaluate the ELBO on a mini-batch of 1,000 im-
ages. Hence a single epoch contains 10 iterations, and we
run each VI algorithm for 5,000 epochs. From a pilot run,
we found estimating the ELBO with a single Monte Carlo
sample worked reasonably well.

Due to the non-linear landscape of the optimization, we can-
not guarantee that any of the algorithms converge. However,
we find that after 5,000 epochs, A-VI achieves the same
ELBO as F-VI when using a width k£ > 64 for the inference
network (Figure 3). We also study the image reconstruction
error measured by the mean squared error (MSE) over pixels
on the training set. (The MSE on the test set is not avail-
able for F-VI, however in Appendix B we provide test error
for A-VL.) For this calculation, we use the Bayes estimator
E(0 | x) and E(z | x). Figure 5 plots the MSE against
wall time for the same seed used in Figure 3. In Figure 4,
we report the wall time required to achieve an MSE below
0.03, which corresponds to F-VI’s best solution. For k£ > 64,
A-VIrequires 2-3 times less iterations to converge, however
each iteration is considerably more expensive. As a result,
the speed-up when examining wall-time is ~25%. Overpa-



rameterizing the inference network slightly improves the
convergence speed.

4.5 SAW TIME SERIES

In this final example, we explore the benefits of extending
the domain of the inference function. We simulate N =
1,000 observations from a saw time series (eq. 11), with
zo = 0 and

p(0) = N(0,1)
p(20) = N(0,1)
P(zn | Tno1) = N(n-1,1);
p(xn | 2n) = N(a( + z,), 1). (17)

Once again, we fit an inference neural network with two
hidden layers of width k. Additionally, we allow the net-
work to either take in x,, or (x,,—1, ) as its input. Only
with the expanded output does A-VI attain F-VI’s optimum
for k > 4. Using only z,, produces a suboptimal approxi-
mation even with a comparatively large inference network
(e.g. k = 20). Figure 6 demonstrates this behavior for one
optimization path. Across seed, we find that A-VI consis-
tently outperforms F-VI (Figure 4). While A-VI is sensitive
to the seed for £ = 2, the algorithm stabilizes once we
overparameterize the inference network, with k£ > 4.

S DISCUSSION

We studied amortized variational inference (A-VI) as a gen-
eral method for posterior approximation. We derived a nec-
essary, sufficient, and verifiable condition on the model
p(0, z,x) under which A-VI can achieve the same optimal
solution as factorized (or mean-field) variational inference
(F-VI). These results establish that A-VI is a viable method
for a large class of hierarchical models, including when
doing a full Bayesian analysis rather than using a point
estimator for the global parameter 6.

We then examined how to extend the domain of the inference
function for models beyond the simple hierarchical model.
We also established that there are some models for which
the amortization gap cannot be closed, even after expanding
the domain of the inference function and no matter how
expressive the inference function is. In such models, our
results can provide justification for methods such as semi-
amortized VI [Kim et al., 2018, Kim and Pavlovic, 2021],
in which A-VI is used to converge quickly to a suboptimal
solution, which is then refined with F-VI.

There remain several open questions about amortized varia-
tional inference.

Even when the model admits an ideal inference function,
a persistent question is how to choose the class of infer-
ence functions in order to close the amortization gap. The
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Figure 6: Optimization path for saw time series. An infer-
ence network which only takes in x,, as its input (1 = 1
case) cannot close the amortization gap, even when using a
relatively large network. On other hand, a network which
takes in T,_1,x, (1 = 2 case) closes the gap with a rela-
tively small network.

ordering of the variational families Q5 C Op suggests an
informal diagnostic: after A-VI converges, run a few steps of
F-VI and see if the solution improves. If it does then the in-
ference function may not be sufficiently expressive to close
the gap. It is also possible that the optimizer converged to a
local optimum and that changing the variational objective
allows the solution to improve. On the other hand, for high-
dimensional problems with highly non-convex landscapes,
it may take many iterations before the solution improves,
in which case the proposed diagnostic would not detect
shortcomings in the inference function.

A related question: For a choice of the class of inference
functions, how does A-VI change the optimization land-
scape relative to F-VI? Our experimental results also raise
the question of whether an overparameterized class of in-
ference functions burdens the optimization, as seen for the
linear probabilistic model, or improves the convergence rate,
as illustrated in the Bayesian neural network and the saw
time series. Along similar lines, it is of interest to study the
advantages and drawbacks of A-VI on more complex data
sets than the ones we have considered, particular case for
which convergence may not be achieved within a reasonable
computational budget.

Finally, how accurate is A-VI when applied to held-out data?
We expect the generalization gap [Shu et al., 2018, Ganguly
et al., 2022] can also be analyzed by setting up an implicit in-
terpolation problem, this time with constraints to not overfit
the data. In a full Bayesian context, how can we understand
the role of A-VI for online learning? In other words, how
well can fy(xn41) approximate p(z, | X, Zn11)?
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A  MISSING PROOFS

We provide proofs for all statements in §3.

A.1 CAVIRULE

Lemma 3.1 follows from the coordinate-ascent VI update rule for F-VI [Blei et al., 2017, Eq. 17], which tells us how to
choose ¢(z, ; V) to minimize the KL-divergence, while maintaining the other factors in the approximating distribution
fixed. Specifically, suppose v and v_,, are fixed. Then the optimal variational parameter v/ for n' factor verifies

Q(Zn ; V:L) X exp {Eq(a ;5 V0) []Eq(z,n s V) [logp(O, Z7X)H } . (18)

We now apply this rule to the optimal solution, i.e. we set vy = 1§ and v_,, = v* . Then, minimizing the KL-divergence,
vy = v} and the desired result follows. O

A.2 EXISTENCE OF AN IDEAL INFERENCE FUNCTION AND SIMPLE HIERARCHICAL MODELS

Theorem 3.4 states that the existence of an ideal inference function for a standard latent variable model (Definition 3.2) is, in
general, equivalent to p(6, z, x) being a simple hierarchical model (Eq. 1).

We first prove item (1). Suppose p(6, z, x) is a simple hierarchical model. Applying the CAVI rule (Lemma 3.1) to Eq. 1,

n

q(zn; V") < exp Eq;v2) | Baaon ;v log p(0) + Zlogp(zj | 6) + log p(x; | z5,0)
j=1

o< exp {Eq(0;2) [Eqz_, ;) 108 D(2n | 0) +10g p(an | 20, 0)]] }
o< exp {Eq(; vs) log p(zn | 0) + log p(zn, | 20, 6]} -
Then

q(zn; V") = kx(zy) /@ q(0; vy (x))log p(zy | 0) + log p(xy | 2n,0)d0, (19)

where ky (2,) = [ [ [o a(0; v5(x)) logp(zn | 0) + log p(zy | 2, 0)d0d2,| ! is a normalizing constant. The R.H.S of
Eq. 19 defines an ideal inference function fx(x,,), in the sense that, given x, we have x,, = ©,,, = fx(n) = fx(Tm)-

Next we prove the converse, which is item (2) of Theorem 3.3. Applying the CAVI rule to a standard latent variable model,

q(zn ; V*) X exp {Eq(a,z,n svEL) 1ng(9, z, X)}

o< exp Egoza, i) logp(zn | 2—n,0) +logp(ay | 2n,Z2—n,0) + Zlogp(xi | 2n,Z—n,0) 7. (20)
i#n
The last equation highlights all the terms in which z,, appears. Furthermore, we used the property of conditional independence
(Definition 3.2 (ii)) to break up the log likelihood log p(x | z, #) into a sum.

Suppose now that there exists a graph G, such that for any standard latent variable model supported by this graph, there
exists an ideal inference function, that is v = fx(x, ). Because ¢ is parametric, we have that the R.H.S of Eq. 20 is also a
(dataset dependent) function of x,,. For this assumption to hold for any choice of distribution, any contribution of x;-,, that
is not common to all the variational factors of ¢(z) must be absorbed into the normalizing constant and effectively vanish.
We will complete the proof by removing unique contributions of x; and severing offending edges in G (Figure 7).

The most obvious contribution of x; appears in the likelihood terms and is removed if and only if we exclude non-local
dependence, that is for i # n, p(x; | zn,2—n,0) = p(z; | 2—n, ). Doing so for every n, we have

p(l'i ‘ Zn,Z,n,a) :p(xi ‘ 21,0) (21)

Remark A.1. Here the assumption of local dependence (Definition 3.2 (1)) is critical. Without it, we cannot exclude the
possibility that z; does not depend on z;, or any z;’s other than z,, and hence that p(z; | zn,2_n,8) = p(z; | 2,,0), i # n.
Then an edge between z,, and x; would not contradict the existence of an ideal inference function.

11



Figure 7: Graphical representation of a standard latent variable model. If present, the dotted edges preclude the existence of
an ideal inference function fx(x,) = v} and the amortization gap cannot be closed.

Next, we have by assumption that v = fx(z;). Then

q(zn; V") o exp /@Z q(d; vo(x)) [ [ a(dzis f(:))logp(zn | 20, 0) +logp(zy | 20,0) p . (22)
Z—n i#n

The offending terms are now the variational factors ¢(dz; ; fx(x;)) in the integral. To remove them, we must get rid of any
term that couples z,, and z;, and so z;,, must be a priori independent of z;, that is

p(Zn ‘ Z_np, 9) = p(zn ‘ 9) (23)

A standard latent variable model that verifies Eq. 21 and Eq. 23 must also verify Eq. 1 and is therefore a simple hierarchical
model. O

A.3 EXAMPLE OF A LATENT VARIABLE MODEL, WHICH IS NOT A SIMPLE HIERARCHICAL MODEL
AND ADMITS AN IDEAL INFERENCE FUNCTION

The statement of Theorem 3.4, item (ii) is carefully written for all distributions supported on a graph. To see why a simple
“if and only if” version of item (i) is not true, consider a dense hierarchical model, with edges between all elements of x and
z. If we a choose a likelihood which is symmetric in z, e.g. p(z,, | 2,0) = p(xy, | D _,, 2n,0), then there exists a (constant)
ideal inference function and moreover, all factors ¢(z, ; v;;) are identical.

This case is of course trivial: with such a symmetry, the notion of a local latent variable is unjustified. To our knowledge, all
examples of models, which are not simple hierarchical models and still admit an ideal inference function, rely on a similar
trivialities. These however constitute edge cases we must be mindful of when writing formal statements.

A4 ANALYTICAL RESULTS FOR THE LINEAR PROBABILISTIC MODEL

We prove Proposition 3.6, which provides an exact expression for the mean and variance of ¢(z,, ; ¥*), the optimal solution
returned by F-VI when applied to the linear generative model. In the model of interest, 6 is a scalar random variable, and we
introduce the fixed standard deviations, 7 € R and o € R. Next

p(0) < 1; p(z,) = N(0,1); p(xy,) =N(0+T2p,0). 24)

Since the posterior distribution p(6, z | x) is normal, ¢(z, ; v*) can be worked out analytically [e.g Turner and Sahani, 2011,
Margossian and Saul, 2023]. Specifically,

1
Q(Zn; V;) =N (Mm W) ) (25)

where i, is the correct posterior mean for z, and X is the correct posterior covariance matrix. Note that F-VI always
underestimates the posterior marginal variance unless X is diagonal [Margossian and Saul, 2023, Theorem 3.1]. It remains
to find an analytical expression for the posterior distribution.

12



Lemma A.2. The marginal posterior distribution is given by

e 10 =N (o)), o
for some s, constant with respect to X.
Proof. From Bayes’ rule
1 1 <
logp(z,0|x) = k- 57;23 — @;(In —0 —72,)?
= k—liv:ZZ—LXN:HZ—i-(x—Tz) —20(xy, — T2n)
2 = " 202 = " " "
| N , 1 , N , N
= k- 3 nz::l T 502 (n@ + nz::l(a:n —Tzp)" — 20 nz::l(xn - TZn)) , 27

where k is a constant with respect to z and 6. Moving forward, we overload the notation for k to designate any such constant.
As expected, Eq. 27 is quadratic in 6 and z.

Remark A.3. At this point, the proof may take two directions: in one, we work out the precision matrix, ® (i.e. the
inverse covariance matrix X) for p(z, 6 | x) and invert it to obtain the posterior mean for each z,. Constructing P is
straightforward and necessary to show the covariance of ¢(z, ; vf) is constant with respect to x. However, inverting ®
requires recursively applying the Sherman-Morrison formula three times, which is algebraically tedious. The other direction
is to marginalize out §. We can then construct the precision matrix W for p(z | x), which only requires a single application
of the Sherman-Morrison formula to invert. We opt for the second direction, noting both options are rather involved.

To marginalize out 6, we complete the square and perform a Gaussian integral,

N
92_‘_%2(1‘ —TZpn) —292 n—TZn)

N
1 9 n
logp(z,0|x) = k— inzzjlzn ~ 5.2

n:l
2

X

( > (wn — 20 ) (28)
n
n=1
Then
1Y 1 | 1 (Y ’
_ 2 2

logp(z | x) =k — 3 nz::l z — 252 nz::l(x” —Tzp)” — - (;(xn — TZn)> . (29)

Expanding the square,

<Z(wn — Tzn)> = Z(:En —T2n)% 4+ 2 Z(:En —72n) (25 — TZ5). (30)

n=1

Plugging this in and factoring out 7, we get

| 1 N 9 72 N 1 Ty 22 T, x;
ourte 0=k 5305 g |3 (1) (S n) TS w) (Fos)[ o



Now the standard expression for a multivariate Gaussian is

1 1 [
logp(z | x) =k — i(z —w)V(z—p) =k — 5 Z Uy (2n — n)? + 22 jnlzn = pn)(z —pg) | (32)

n=1 j<n

where p is the mean and U the precision matrix. We solve for the mean and precision matrix by matching the coefficients in
the above two expressions for 2, 2,,z;, and z2, which respectively produce the following equations:

N
T _
Z Ui = ;(mn —I) (33)
j=1
7'2 .
\I/nj ) vn 7é J (34)
no
72 1
Un=1+—=(1——=]. 35
This immediately gives us the precision matrix. Eq. 33 may be rewritten in matrix form as
T 4 _
u= E\IJ [x — z1], (36)

where 1 is the N-vector of 1’s. Let & = W,,;, for any n # j, and 3 = ¥,,,, — . Then
U = BI+a11”, 37

Applying the Sherman-Morrison formula, we obtain the covariance matrix,

vt = (BI+a11")7?
PR e |
N 14+ al1T8-111
a1y af”
= B 5+Na11' (38)

Notice that ¥~! does not depend on x and that it’s diagonal elements are all equal. Moreover (¥ ~1),,,, gives us the constant,
s. Next let

L1 T B af™t 7
L Iy 39
Then g = (al + b117)[x — £117] and moreover
N
Uy = a(xn—:i)—i-bej -
j=1
= a(z, —7T)
T (T2 402\ _
- o2 o2 (0 —7)
T _
- 024—7'2( n =),
as desired.
O

To complete the proof of Proposition 3.4, we need to show that the variances of ¢(z,, ; ¥*) is constant with respect to x; that
they are equal for each z,, follows from the symmetry of the problem. We already constructed the precision matrix ¥ for
p(z | x), but we actually need to study the full precision matrix ® of p(6, z | x). We use the index 0 to denote the columns
(or rows) corresponding to 6.
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Lemma A.4. The posterior precision matrix ® of p(0,z | x) verfies

N 2
s Doy = o i > 05 By = 14 5 if i >0, By =0, if 0 A . (40)
o - 20 o :

Qoo =
Crucially, ® is constant with respect to X.

Proof. Consider Eq. 27, rewritten here for convenience,
1 X 1 N
_ - 2 _ 2 _ _ _
logp(z,0 | x) =k — 5 n2:1 “n T 952 (NG + nEZI(JU T2,)? — 20 E TZn > .
The standard Gaussian form is

logp(z,0 | x) =

N
l¢00 Z (I)nn (Zn - Mn)2

N
> @0i (0~ )25 — 1) + > Pj(za — ) (25— 1) | | - @1

j=1 j<n

+2

/\ I\DM—‘

Matching coefficients for 62, 6z;, z,,z; and 22, we obtain respectively

N 2
<I>00:§; Oy = 252 5 if j > 0; <I>mf1+ 5 ifn>0; &,;=0,ifn#j.

O

The variance of ¢(z, ; v*) is obtained by inverting the diagonal elements of ®. By symmetry, Vary-(z,) = £ Vn, where £
is a constant which does not depend on x. This completes the proof of Proposition 3.4. O

A.5 NON-EXISTENCE OF AN IDEAL INFERENCE FUNCTION FOR HIDDEN MARKOV MODELS

To prove Proposition 3.8, we construct an example for which the optimal F-VI solution, using a factorized Gaussian
approximation, can be written in a nearly closed form, and show that the optimal variational factors v;; take different values
even when all the values of x are equal. Then for any strict subset w,, € x, we have w,, = w,,, but v/ # v%,. This provides
our counter-example.

Consider the model
p(ZO) oc 1 ; p(zn | Zn—l) = N(Zn—la 1) ; p(frn | Zn) = N(Zn» 1)7 (42)

where 6 is held fixed, say to a point estimate 6, and ignored for the rest of this analysis. Applying Bayes’ rule and expanding

1 N

_ 2 2
logp(z | x) = kf§Z(znfzn_1) + (Zn — 2n)

n=1

N
LSg2 2 2 2
_5 Zp T 21 — 2TnpZn — 22p2n-1,

n=1

which is a quadratic form in z and hence a Gaussian. Matching the coefficients for z,,, 2, 2; and 22 to the standard expression
for a multivariate Gaussian (Eq. 41), we get

N
Z \I/nj/f’fj = —2]}” (43)
V,; =-2 {ifj=n—-lorj=n+1 (44)
U =3 ifn>1 (45)
Yoo =1. (46)
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Figure 8: Optimal variational means when using a Gaussian F-VI on a hidden Markov model (Eq. 42). Even though

the elements of x are all equal, the optimal variational means take on different values and so no inference function
fo 1 Wn — V], can be constructed, for any subset wy, € X.
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Figure 9: Reconstruction MSE on a test set.

All non-specified elements of ¥ go to 0. Moreover the precision matrix W is tri-diagonal. The posterior mean solves the
linear problem,

m= —2y 1k, (47

Since the variational family and the target are both Gaussian, the optimal variational mean is simply the posterior mean and
v* = . Even though the elements of x are all equal, it is in general not the case that the elements of v* are constant. To

see this explicitly, we take N = 100 and 1 = 2 = --- = 2 = 1, and find that the elements of v* are indeed distinct
(Figure 8). This shows that there exists a hidden Markov model and a realization of the data x such that no learnable
inference function exists. O

B ADDITIONAL EXPERIMENTAL RESULTS

Hardware. All experiments are conducted in Python 3.9.15 with PyTorch 1.13.1 and CUDA 12.0 using an NVIDIA
RTX A6000 GPU.

Reconstruction error on test set for Bayesian neural network. We consider the reconstruction error on a test set of 10,000
images (Figure 9). The reconstructed image is obtained by (i) computing ¢(z" | #’) using the inference function f, and (ii)
feeding E, (2" | ') into the likelihood neural network 2 (in the VAE context, the “decoder”) to obtain Z'. €2 is evaluated at
the Bayes estimator § = E, (8 | x). F-VI provides no automatic way of doing step (i) (one would need to learn ¢(z" ; ') by

running F-VI from scratch), and so we do not evaluate it on the test set. Overall, we find the model generalizes well, and the
test error is very close to the training error.
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