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A B S T R A C T

Recent research shows that the covariance structure of functional magnetic resonance imaging (fMRI) data – commonly described as functional connectivity – can
change as a function of the participant's cognitive state (for review see Turk-Browne, 2013). Here we present a Bayesian hierarchical matrix factorization model,
termed hierarchical topographic factor analysis (HTFA), for efficiently discovering full-brain networks in large multi-subject neuroimaging datasets. HTFA approximates
each subject's network by first re-representing each brain image in terms of the activities of a set of localized nodes, and then computing the covariance of the activity
time series of these nodes. The number of nodes, along with their locations, sizes, and activities (over time) are learned from the data. Because the number of nodes is
typically substantially smaller than the number of fMRI voxels, HTFA can be orders of magnitude more efficient than traditional voxel-based functional connectivity
approaches. In one case study, we show that HTFA recovers the known connectivity patterns underlying a collection of synthetic datasets. In a second case study, we
illustrate how HTFA may be used to discover dynamic full-brain activity and connectivity patterns in real fMRI data, collected as participants listened to a story. In a
third case study, we carried out a similar series of analyses on fMRI data collected as participants viewed an episode of a television show. In these latter case studies,
we found that the HTFA-derived activity and connectivity patterns can be used to reliably decode which moments in the story or show the participants were
experiencing. Further, we found that these two classes of patterns contained partially non-overlapping information, such that decoders trained on combinations of
activity-based and dynamic connectivity-based features performed better than decoders trained on activity or connectivity patterns alone. We replicated this latter
result with two additional (previously developed) methods for efficiently characterizing full-brain activity and connectivity patterns.
Introduction

The most common approaches for analyzing functional Magnetic
Resonance Imaging (fMRI) data involve relating, in individual images,
the activity of individual voxels or multi-voxel spatial patterns of brain
activity to the subject's cognitive state (Friston et al., 1994, 1996; Nor-
man et al., 2006; Zarahn et al., 1997). In contrast, functional connectivity
analyses correlate the time series of activities across images of pairs of
voxels (Rubinov and Sporns, 2010). Functional connectivity analyses
have already led to new insights into how the brain's correlational
structure changes during different experimental conditions (Turk--
Browne, 2013).

The size of the full-brain functional connectivity matrix grows with
the square of the number of voxels. Because of this rate of growth, filling
in its entries and storing it in memory can become intractable for fMRI
images with tens of thousands of voxels. For example, for a series of
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50,000 voxel images, each connectivity matrix occupies approximately
5 GB (storing only the upper triangle, using single precision floating point
entries). Storing many such matrices in memory (e.g. to compare
different subjects and/or experimental conditions) can exceed the limits
of modern hardware. Further, many of the algorithms used to relate
multivariate patterns of voxel activities in individual images to cognitive
states or experimental conditions (e.g. Haxby et al., 2001; Norman et al.,
2006) use superlinear time and memory with respect to the number of
features; this computational expense makes it impractical to use the same
techniques to examine correlational data (although see (Wang et al.,
2015) for another promising approach using massive parallelization on a
specialized computing cluster).

Previous work circumvents this issue by using functionally (Gonza-
lez-Castillo et al., 2015; Craddock et al., 2012; Power et al., 2011; Yeo
et al., 2011) or anatomically (Betzel et al., 2017; Fox and Greicius, 2010;
Shen et al., 2013) defined voxel clusters or regions of interest. These
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approaches segment the brain into discrete components, and then
examine interactions or correlations between the activity patterns
exhibited by those components (rather than attempting to examine every
voxel-to-voxel interaction). In other words, these approaches encapsulate
an intuition about how our brains work– specifically, that our brains are
composed of a small number of network nodes that interact with each
other.

One such class of methods entails pre-selecting a small number of
regions of interest [ROIs; e.g. motor cortex (Biswal et al., 1995)] or a seed
voxel [e.g. a single voxel within the posterior cingulate (Greicius et al.,
2003)]. This procedure reduces the connectivity matrix from a V � V
matrix (where V is the total number of voxels in each brain volume) to a
much smaller VROI � V matrix (where VROI is the number of seed or ROI
voxels). However, reducing the connectivity matrix in this way precludes
finding connectivity patterns unrelated to the ROI or seed region. For
example, if the analysis is limited to connectivity patterns between motor
cortex and the rest of the brain, this precludes finding patterns of con-
nectivity that do not involve the motor cortex (e.g. connectivity between
prefrontal cortex and the hippocampus). Other work has examined
full-brain connectivity patterns via ROI-to-ROI connectivity matrices
(e.g. as defined using anatomical data; Honey et al., 2009). This method
provides a tractable means of examining full-brain connectivity patterns
by assuming that each ROI is perfectly uniform and discrete.

A related technique that does not require pre-selecting ROIs or seed
regions is to compute the full voxel-to-voxel connectivity matrix, and
then to threshold the connection strengths such that one only examines
the most reliable connections (Cao and Worsley, 1999). This approach
yields a sparse voxel-to-voxel connectivity matrix that may be efficiently
manipulated (provided that it is sufficiently sparse). One drawback to
this approach is that it is not always clear how to set the connectivity
strength threshold; for example, setting too high a threshold will leave
out potentially important patterns, whereas setting too low a threshold
will not substantially reduce the computational burden (as compared
with examining the original voxel-to-voxel connectivity matrix). How-
ever, regularization techniques such as sparse regression (e.g., Vald�es--
Sosa et al., 2005) show promise. Another potential drawback is that it is
not clear that the strongest connections are necessarily the most infor-
mative; for example, a sub-threshold connection may still carry cogni-
tively relevant information.

Other approaches have focused on reducing the dimensionality of the
connectivity patterns (seeWorsley et al., 2005) for a comparison between
threshold–based and dimensionality-reduction–based approaches). For
example, clustering-based approaches attempt to group together voxels
into “factors” that exhibit similar activity patterns over time, across
subjects (Cordes et al., 2002). One may then examine connectivity pat-
terns between the factors rather than between the voxels [this approach
was originally developed in the positron emission tomography literature
using Principle Components Analysis (PCA; Friston et al., 1993)].

Here we propose hierarchical topographic factor analysis (HTFA), a
Bayesian factor analysis model specifically designed to facilitate analyses
of brain network dynamics. HTFA is focused on finding spherical nodes
that can be used to efficiently explore, analyze, and understand full-brain
network dynamics. Like other dimensionality reduction methods, HTFA
provides a compact means of representing full brain connectivity patterns
that scales well to large datasets (Anderson et al., 2016). But HTFA goes
beyond these methods: (a) it provides a natural means of determining
how many network nodes should be used to describe a given dataset; (b)
it allows those nodes to be overlapping rather than forcing nodes to be
fully distinct; and (c) it constrains the nodes to be in similar (but not
necessarily identical) locations across people. Further, HTFA decomposes
brain images into sums of spatial functions, which supports seamless
mapping between images of different resolutions (e.g. different voxel
sizes) and potentially between different recording modalities (e.g. fMRI,
EEG, ECoG, MEG). We return to these latter points in the Discussion.

HTFA casts each subjects' brain images as linear combinations of
latent factors [Gaussian radial basis functions (RBFs)]. Each RBF can be
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interpreted as a spherical node in a simplified representation of the brain's
networks. (The number of nodes, K, is determined from the data.) In this
way, HTFA is a spatial model: these nodes reflect structures localized in
3D space whose activity patterns influence the observed voxel activities.
This is conceptually different from approaches that interpret voxel ac-
tivities directly: HTFA defines an explicit model for how voxels relate to
each other according to their relative locations in space (also see
Gershman et al., 2011). One advantage of constraining HTFA's nodes to
be RBFs is that they are spatially compact. In this way, HTFA is quali-
tatively similar to spatial ICA (Calhoun et al., 2001). However, unlike
spatial ICA, HTFA further constrains nodes to be in similar locations
across subjects, providing a natural means of combining or comparing
connectivity across individuals. [ICA with dual regression (Beckmann
et al., 2009) also models hierarchical patterns across participants.] Note
that in this paper we have constrained the RBF nodes to be isotropic, but
in principle this assumption could be relaxed to support any parame-
terizable spatial function (e.g., non-isotropic Gaussians, mixtures of
Gaussians, 3D wavelets, etc.). These spatial functions could also be
constructed to incorporate detailed conductance models (e.g. informed
by diffusion tensor imaging data). We have left these extensions to be
explored in future work.

Applying HTFA to an fMRI dataset reveals the locations and sizes of
these network nodes (i.e. the centers and widths of their RBFs), as well as
the per-image node weights. If a given subject has contributed N images
to the dataset, then the subject's N by K node weights matrix may be
viewed as a low-dimensional embedding of their original data. Further,
the pairwise correlations between columns of this weight matrix reflect
the signs and strengths of the node-to-node connections (just as the
pairwise correlations between voxel time series reflect the corresponding
“connectivity” in voxel-based functional connectivity analyses).

The next section provides a descriptive overview of the HTFA model.
Materials and methods describes how we efficiently fit the model to a
multi-subject fMRI dataset using maximum a posteriori inference. The
Supplemental materials contain a complete formal (mathematical)
description of the model. To validate our approach, we first generated a
set of 50 synthetic datasets for which the underlying activity patterns,
node locations and sizes, etc. were known, and we show that HTFA re-
covers these known patterns. Then we applied HTFA to two (real) fMRI
datasets collected as participants listened to an audio recording of a story
(Case Study 2) and watched an episode of a television show (Case Study
3). We show that the moment-by-moment patterns uncovered by HTFA
may be used to decode which moments in the story or show the partic-
ipants were experiencing.

Model description

Overview

HTFA is a member of a family of models, called factor analysismodels,
that includes Topographic Factor Analysis (TFA; Manning et al., 2014),
Topographic Latent Source Analysis (TLSA; Gershman et al., 2011),
Principal Components Analysis (PCA; Pearson, 1901), Exploratory Factor
Analysis (EFA; Spearman, 1904), and Independent Components Analysis
(ICA; Jutten and Herault, 1991; Comon et al., 1991), among others. If we
have organized our collection of images (from a single subject) into an N
by V data matrix Y (whereN is the number of images and V is the number
of voxels), then factor analysis models decompose Y as follows:

Y � WF; (1)

where W is an N by K weight matrix (which describes how each of K
factors are activated in each image), and F is a K by V matrix of factor
images (which describes how each factor maps onto the brain). Note that,
in the general case, this decomposition is underspecified– in other words,
there are infinitely many solutions forW and F that approximate the data
equally well. What differentiates factor analysis models is the particular



Fig. 2. Graphical model for HTFA. Each variable in the model appears as a
circle; hidden variables are unshaded and observed variables are shaded. The
variables include yn;s (observed image n from subject s); wn;k;s (node k's weight,
or activity, in image n from subject s); μk;s (node k's center coordinate for
subject s); λk;s (node k's width for subject s); bμk (node k's center in the global

template); and bλk (node k's width in the global template). Hyperparameters
(defined in the Supplemental materials) are denoted by dots. Arrows denote
conditional dependence, originating at terms that appear on the right sides of
conditionals and pointing towards terms that appear on the left sides. Rect-
angular plates denote repeated structure, where the number of copies is
indicated within each plate: Ns (number of images from subject s); S (number
of subjects), and K (number of nodes). For a comprehensive introduction to
graphical models see Bishop (2006).
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constraints they place on what form W and/or F should take (i.e. by
changing the function being optimized in order to settle on a specific
choice ofW and F). We may then useW as a low-dimensional embedding
of the original data (e.g. to facilitate interpretability or improve
computational tractability), or we may choose to examine the factor
images in F to gain insights into the spatial structure of the data.

In related approaches such as PCA and ICA, the entries of W and F
can, in principle, be any pattern of real numbers. In PCA, each row of F is
an eigenvector of the data covariance matrix, and W is chosen to mini-
mize the reconstruction error (i.e. to makeWF as close as possible to Y in
terms of mean squared error). In ICA, the goal is to minimize the statis-
tical dependence between the rows of F while also adjusting W to
minimize the reconstruction error. In this way, the factor images (the
rows of F) obtained using PCA and ICA are unstructured images (i.e.
activity patterns) of the same complexity as individual observations in
the original dataset: each factor is parameterized by V numbers (1
parameter per voxel).

In TFA (and TLSA), each row of F is parameterized by the center
parameter, μ, and the width parameter, λ, of an RBF. If an RBF has center
μ and width λ, then its activity RBFðrjμ; λÞ at location r is:

RBFðrjμ; λÞ ¼ exp

(
�
����r� μ

��j2
λ

)
: (2)

The factor images are filled in by evaluating each RBF, defined by the
corresponding parameters for each factor, at the location of each voxel. In
contrast to the factors obtained using PCA or ICA, TFA's more constrained
factors may be represented much more compactly; each factor corre-
sponds to the structure or group of structures in the brain over which the
factor spreads its mass (which is governed by μ and λ). As highlighted
above, TFA's factors may be conceptualized as nodes located in 3D space
whose activity patterns influence the observed brain data.

HTFA works similarly to TFA, but places an additional constraint over
the nodes to bias all of the subjects to exhibit similar nodes. Whereas TFA
attempts to find the nodes that best explain an individual subject's data,
HTFA also attempts to find the nodes that are common across a group of
subjects (Fig. 1). This is important, because it allows the model to jointly
consider data from multiple subjects.

HTFA (Fig. 2) handles multi-subject data by defining a global template,
which describes in general where each RBF is placed, how wide it is, and
how active its node tends to be. In addition to estimating how nodes look
and behave in general (across subjects), HTFA also estimates each in-
dividual's subject-specific template, which describes each subject's partic-
ular instantiations of each RBF (i.e. that subject's RBF locations and
widths) and the node activities (i.e. the activities of each of that subject's
RBF nodes in each of that subject's images). These node activities, in turn,
may be used to estimate each subject's full-brain functional connectivity
patterns. Further, because the subject-specific templates are related to
each other [hierarchically (Gelman and Hill, 2007), via the global tem-
plate], a given node's RBF will tend to be located in about the same
location, and be about as large, across all of the subject-specific tem-
plates. Because each subject has the same set of nodes (albeit in slightly
different locations and with slightly different sizes) we can run analyses
of the global template's nodes to their average weights in the subject-specific reconst
across subjects, whereas the single-subject RBF locations reflect the associated subje
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that relate node activity across subjects (as in the inter-subject functional
connectivity analyses described below).

Materials and methods

Applying HTFA to multi-subject fMRI datasets

We use amaximum a posteriori (MAP) inference procedure to compute
the most probable RBF nodes and node weights. The procedure has three
basic steps: initialization (during which we set the prior over each node's
parameters); fitting subject-specific node parameters for each subject
(given the prior); and updating the global template (using the subject-
specific parameters). When we carry out the full inference procedure,
Fig. 1. Hierarchical topographic factor analysis. A. A
brain image and its associated reconstruction. The left
sub-panel displays a single horizontal slice from a single
subject; the right sub-panel displays its associated HTFA
reconstruction, which we obtain by summing together the
weighted images of the subject's RBF nodes. B. Explaining
data across subjects. The left and middle sub-panels display
example images from five subjects (left sub-panel), and their
associated reconstructions (middle sub-panel). The right sub-
panel displays the approximation of all of the single-subject
images in the left sub-panel, obtained by setting the weights

ructions. The locations of the RBFs in the global template reflect commonalities
ct-specific idiosyncrasies.
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we first perform a cross-validation step (described in the next sub-
section) to determine the optimal number of nodes, K. We then
randomly initialize K RBF nodes by drawing their parameters from the
prior distribution (see Supplemental materials). Finally, we iterate be-
tween updating the subject-specific parameters (using the current global
template as the prior) and the global template (using the latest estimates
of the subject-specific parameters) until the largest change in any pa-
rameters value from the previous iteration to the current iteration is less
than a pre-determined threshold value, ε. (We typically set ε to be the
length of the longest voxel dimension.) Once the global centers and
widths have converged, we run an additional step whereby we re-
compute the per-image node weights for each subject. We developed
an efficient implementation of our algorithm for applying HTFA to large
multi-subject fMRI datasets (Anderson et al., 2016); additional details
may be found there. We also published a Python toolbox that enables
users to apply HTFA to multisubject fMRI datasets (Capota et al., 2017).
Estimating the optimal number of nodes

When K (the number of nodes) equals V (the number of voxels), HTFA
can exactly recover the data by setting the RBF widths to be very small
and the per-image node activities equal to the voxel activities. Therefore
setting K ¼ V represents one logical extreme whereby HTFA loses no
information about the original data but also achieves no gains in how
efficiently the data are represented. At the other extreme, when K ¼ 1,
HTFA achieves excellent compression but poor reconstruction accuracy
(only a single activity value may be represented for each image). In
practice, we will typically want to set K to some value between these
extremes. Specifically, we want to choose the minimum K that is ex-
pected to explain the data up to a pre-defined level of precision, q.

Given a multi-subject dataset, we first select straining subjects at random
(from the full set) to participate in the cross validation procedure. For
each of those subjects, we select (at random) a set of ntraining images from
each subject's data (here we set this number to be 70% of the subject's
images). We fit HTFA to these randomly selected images to estimate the
subject-specific node centers (μ1:::K;1:::S) and widths (λ1:::K;1:::S). Next, of
the remaining ntest ¼ Ns � ntraining images for each subject, we select (at
random) 70% of the voxels to estimate the per-image node weights,
w1:::N;1:::K;1:::S. Finally, we use the estimated centers, widths, and weights
to reconstruct the voxel activities for the remaining 30% of the voxels in
those ntest images. The mean squared error between the reconstructed
and true (observed) voxel activities provides an error signal that we can
use to optimize K. In particular, starting from a minimum value of
K ¼ δK , we use the above procedure to compute the mean squared error
for δK . We then increase K (in increments of δK) until the mean squared
error is less than our pre-defined threshold, q. (In this paper we set δK ¼
100 and q ¼ 0:25.)
Inferring dynamic full-brain inter-subject functional connectivity patterns

Inference yields, for each subject, an Ns by Kmatrix,Ws, of per-image
node weights (i.e. activity patterns). We can estimate the functional
connectivity between each pair of nodes by computing the correlation
between the columns of Ws. This approach is analogous to standard
voxel-wise techniques for estimating functional connectivity (Biswal
et al., 1995). Further, because the columns of W1:::S correspond to the
same nodes across the different subjects, since all of the nodes are linked
through the global template, the set of these weight matrices provide a
convenient means of testing hypotheses related to the connectivity
strengths.

In our analyses for Case Studies 2 and 3, we used inter-subject func-
tional connectivity (ISFC; Simony et al., 2016) to isolate the time-varying
correlational structure (functional connectivity patterns) that was spe-
cifically driven by the story participants listened to (Case Study 2) and
television show participants watched (Case Study 3). We first applied
4

HTFA to the fMRI datasets to obtain a time series of node activities for
every participant (where K ¼ 700 for Case Study 2 and K ¼ 900 for Case
Study 3; see Estimating the optimal number of nodes). We obtained ISFC
matrices for each of a series of overlapping temporal windows (sliding
windows). To do so, we performed the following analysis for each sliding
window (which contained a 90 s time series of node activities for each
node and participant). For each participant, we computed the correlation
between the activities of each node from that participant (during that
sliding window) and the average activities of every node during the same
window (where the average was taken across all of the other partici-
pants). The result, Cs;t was a K by K correlation matrix for a single
participant (s), during a single sliding window (t). We computed the ISFC
matrix (across participants) during time t as:

Ct ¼ R

 
1
2S

X
s¼1

S

ZðCs;tÞT þ ZðCs;tÞ
!
; (3)

where Z is the Fisher z-prime transformation (Zar, 2010):

ZðrÞ ¼ logð1þ rÞ � logð1� rÞ
2

(4)

and R is the inverse of Z:

RðzÞ ¼ expð2z� 1Þ
expð2zþ 1Þ : (5)

For additional details and discussion of ISFC see Simony et al. (2016).

Decoding analysis

We asked whether the moment-by-moment HTFA-derived patterns
we identified in Case Studies 2 and 3 were reliably preserved across
participants, and (in Case Study 2) whether the degree of agreement
across participants was modulated according to the cognitive salience of
the stimuli participants experienced. For example, prior work has shown
that different participants exhibit similar responses while experiencing
richly structured stimuli (such as story listening), whereas participants
exhibit less stereotyped responses while experiencing less structured
stimuli (such as resting with their eyes open in the scanner; Simony et al.,
2016).

To study these phenomena, we randomly divided the Case Study 2
participants into two groups, for each experimental condition: intact (i.e.
participants who listened to the original story recording), paragraph-
scrambled (i.e. participants who listened to an altered recording where
the paragraphs occurred in a randomized order), word-scrambled (i.e.
participants who listened to an altered recording where the words
occurred in a randomized order), and rest (i.e. participants who rested
with their eyes open in the scanner, without listening to any story).
Participants within each condition experienced the same auditory stim-
uli, but the cognitive salience (i.e. how meaningful the stimuli were)
varied systematically across these experimental conditions. (For the
experiment presented in Case Study 3, every participant experienced the
analog of the “intact” condition.)

For each experimental condition, we computed the mean voxel, node,
or factor activities within each sliding window (this resulted in either a V-
dimensional or K-dimensional vector for each moment of the story). For
each group of participants in turn, we compared these activity patterns
(using Pearson correlations) to estimate the story times each pattern
corresponded to. In the activity-based analyses shown in Fig. 4 (darker
bars in each color group), we used these activity vectors to decode which
moments of the story participants were listening to. Specifically, we
asked, for each sliding window (t): what are the correlations between the
first group's activity pattern at time t and the second group's activity
patterns in every sliding window (this yielded one correlation value per
sliding window). We used the best-matching pattern (i.e. the activity
pattern with the strongest positive correlation) to estimate which story
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Fig. 3. Recovered structure from 50 synthetic datasets. A. Center recovery. Left. Each color denotes a different node's RBF in the global template of one
synthetic dataset. The filled circles indicate the true locations of the RBF centers, and the open circles indicate the RBF centers recovered by HTFA. To facilitate
visual comparison between the true and recovered locations, we have drawn a line between each recovered RBF center and the closest matching RBF center in the
synthetic template. One “missed” RBF that was not assigned any nodes by HTFA (as determined by using this matching technique) is denoted by a black �.Middle.
Number of missed nodes across 50 synthetic datasets. Right. Average distances between the true and recovered (global) node centers, across 50 datasets. The
averages include distances between “missed” nodes and the nearest recovered node. B. Width recovery. Left. Each dot denotes an RBF's true and recovered
(global) widths. The correlation reported in the panel is between the true and recovered RBF widths. To enable us to make comparisons in this panel, we have
assigned each recovered node to the node in the original template with the closest RBF center (in terms of Euclidean distance). The colors match those in Panel A
(left). Middle. This panel is in the same format as the left panel, but combines results across 50 synthetic datasets. The dot colors denote which dataset they came
from (one color per dataset). Right. Correlations between true and recovered (global) widths across 50 synthetic datasets. C. Across-voxel correlation matrices.
The left and middle panels display the true and recovered voxel-to-voxel correlation matrices for one synthetic dataset. The right panel displays a summary of the
correlations between the true vs. recovered across-voxel correlation matrices across 50 synthetic datasets. D. Across-image correlation matrices. The left and
middle panels display the true and recovered image-to-image correlation matrices for one synthetic dataset. The right panel displays a summary of the correlations
between the true vs. recovered across-image correlation matrices across 50 synthetic datasets.

A. B.

Intact Paragraph Word Rest
Condition

0.00

0.05

0.10

0.15

0.20

D
ec

od
in

g 
ac

cu
ra

cy

Voxel activity
HTFA node activity
HTFA node ISFC
HTFA node activity-ISFC mixture
Atlas-based parcel activity
Atlas-based parcel ISFC
Atlas-based parcel activity-ISFC mixture
ICA factor activity
ICA factor ISFC
ICA factor activity-ISFC mixture

Feature typeCase study 2 Case study 3

Intact
Condition

0.00

0.05

0.10

0.15

0.20

Fig. 4. Decoding accuracy. Bars of
each color display cross-validated
decoding performance for decoders
trained using different sets of neural
features: whole-brain patterns of
voxel activities (red); HTFA-derived
node activities (blue); anatomically
derived parcel activities (yellow); and
dual regression ICA-derived factor
activities (green). The shading re-
flects post-processing applied to each
class of feature prior decoding:
activity-based decoding (dark
shading); ISFC-based decoding (me-
dium shading); and a 50-50 mixture
of activity-based and ISFC-based
decoding (light shading). Panel A.

displays the decoding performance for Case Study 2 and panel B. displays the decoding performance for Case Study 3. All error bars denote bootstrap-estimated 95%
confidence intervals, estimated using 5000 iterations.

J.R. Manning et al. NeuroImage xxx (2017) 1–10
time sliding window t corresponded to.
We used a similar approach to examine moment-by-moment ISFC

patterns for each of the two groups of participants (i.e. for each condition,
we obtained one ISFC pattern for each sliding window, for each of the
two groups). For the ISFC analysis shown in Fig. 4 (medium-shaded bars
in each color group), we reshaped these ISFC patterns into vectors, and
used the same correlation-based technique to label each group's sliding
windows according to how well they matched the ISFC patterns in the
other group's sliding windows.

Finally, we carried out a mixed activity-based and ISFC-based
decoding analysis by combining the estimates of the two above de-
coders. Specifically, for each sliding window (from one group of partic-
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Fig. 5. Decoding accuracy as a function of mixing proportion (ϕ). The bar h
parameter, ϕ, where ϕ ¼ 0 corresponds to HTFA node activity-based decoding; ϕ
mixture of activity- and ISFC-based decoding. Panel A. displays the decoding perfo
B. displays the decoding performance for Case Study 3.
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ipants), we computed the correlations between the activity patterns from
each sliding window from the other group, and the correlations between
the ISFC patterns from each sliding window of the other group. We used
the average of these two correlations to label each group's timepoints in
the “mixed” decoding analysis shown in Fig. 4 (lightly shaded bars in
each color group). In Fig. 5 we extended this analysis by changing the
relative weights of the activity-based and ISFC-based decoders using a
mixing parameter, ϕ, where ϕ ¼ 0 corresponds to activity-based decod-
ing; ϕ ¼ 1 corresponds to ISFC-based decoding; and 0 < ϕ < 1 reflects a
weighted mixture of activity- and ISFC-based decoding. (Using this no-
tation, we fixed ϕ ¼ 0:5 for all mixture analyses in Fig. 4.)

We note that the decoding test we used is more conservative than
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ɸ

B.

eights indicate the decoding accuracy achieved for each value of the mixing
¼ 1 corresponds to ISFC-based decoding; and 0 < ϕ < 1 reflects a weighted
rmance for Case Study 2 (colors denote the experimental condition) and panel
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those used in some previously reported timepoint decoding studies (e.g.
Haxby et al., 2011) because we count a timepoint label as incorrect if it is
not an exact match, even if it overlaps substantially with the correct label.
For example, if our decoder matches the 0–60 TR window from group 1
with the 1–61 TR window from group 2 (i.e. 88.5 of the 90 s are over-
lapping), our performance metric considers this to be a decoding failure,
indistinguishable (performance-wise) from if the group 1 and group 2
windows had not overlapped at all; by contrast Haxby et al. (2011) used a
more liberal procedure where they only compared the correct time
window (e.g. 0–60 TR) to the exactly matching window or
non-overlapping time windows (e.g. 61–120 TR), but not to partially
overlapping windows (e.g. 1–61 TR). We chose to use this conservative
test because our decoders attained over 99% accuracy for both
voxel-based and HTFA-derived neural features (on data from the intact
condition of the experiment in Case Study 2, as well as in Case Study 3)
when we used the more liberal “standard” matching procedure. This
made it difficult to achieve our goal of comparing and distinguishing
between decoders trained on different neural features, hence our more
conservative test.

Results

We applied HTFA to three types of data. In Case Study 1, we applied
HTFA to synthetic data, and in Case Studies 2 and 3 we applied HTFA to
fMRI data from human participants.
Case study 1: recovering known network dynamics from synthetic data

We generated 50 synthetic datasets, each comprising 200 brain im-
ages from each of 10 simulated subjects. Each image volume was a 50�
25� 25 rectangular block of 31,250 1� 2� 2mm voxels. To generate
the voxel activities in each image, we randomly placed 20 RBF centers in
a “template” brain volume (drawn randomly without replacement from
the set of 31,250 voxel locations), and randomly assigned a positive
width to each RBF [where logðwidthÞ � N ðμ ¼ 2mm; σ2 ¼ 0:5mmÞ]. We
then generated each subject's RBF centers and widths by adding a small
amount of Gaussian noise to the corresponding parameters in the tem-
plate [for each parameter dimension, noise � N ðμ ¼ 0; σ2 ¼ 0:5mmÞ].
Next, we set the time-varying activities of each simulated subject's RBF
nodes to exhibit a pre-defined sequence of activity patterns. Specifically,
the node activations were defined by a symmetric Toeplitz matrix whose
first row was the sequence ð1;2;…; 19; 20;20;19;…; 2;1Þ, tiled 5 times
to yield an activation for each node in each of the 200 images (Fig. 3D,
left panel).

Our primary goal in examining the synthetic dataset was to assess
whether the patterns (i.e. the RBF nodes and node weights) revealed by
applying HTFA (with K ¼ 20) to the dataset corresponded to the known
patterns in the data. We first compared the global RBF centers and widths
recovered by the model to the RBF centers and widths in the original
template image. We found that the nodes' RBF centers recovered by
applying HTFA to the synthetic data closely matched the template's RBF
centers (Fig. 3A), and that the recovered RBFwidths were correlatedwith
the template RBF widths (Fig. 3B).

We next asked whether HTFA accurately recovered the correlational
patterns in the synthetic data. We found that both the mean voxel-to-
voxel correlation matrices (Fig. 3C) and the mean across-image corre-
lation matrix (Fig. 3D) recovered by HTFA were strongly correlated
with the true patterns we embedded into the synthetic data. (Recovery
statistics for one example dataset, along with summaries of how well
each pattern was recovered across all 50 datasets, are reported in the
figure.) Taken together, these analyses show that HTFA is able to
accurately infer (from synthetic data) the locations and sizes of the
underlying RBF nodes, the correlation patterns within the images, and
the correlations across images. We next turn to a series of analogous
analyses on fMRI data.
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Case study 2: full-brain network dynamics are modulated by story listening

We examined fMRI data collected as participants listened to an audio
recording of a story (intact condition; 36 participants), listened to time-
scrambled recordings of the same story (18 participants in the para-
graph-scrambled condition listened to the paragraphs in a randomized
order and 25 in the word-scrambled condition listened to the words in a
randomized order), or lay resting with their eyes open in the scanner (rest
condition; 36 participants). We sought to demonstrate how HTFAmay be
used to efficiently discover and examine dynamic functional connectivity
patterns in (real) multi-subject fMRI datasets. This story listening dataset
was collected as part of a separate study, where the full imaging pa-
rameters, image preprocessingmethods, and experimental details may be
found (Simony et al., 2016). The dataset is available at http://arks.
princeton.edu/ark:/88435/dsp015d86p269k.

In contrast to the synthetic data we examined in Case Study 1, in real
datasets there are no “ground truth” parameter values to compare to the
recovered estimates. Instead, we sought to explore how well the patterns
HTFA discovered could be used to decode which specific moments in the
story participants were listening to. We also sought to explore whether
(and how) decoding performance varied with the properties of the
stimuli the participants experienced (see Materials and methods for a
description of the decoding procedure). We first used a cross-validation
procedure to determine the optimal number of nodes for efficiently
representing the data while still capturing the relevant structure (see
Materials and methods). We used all of the data from all of the experi-
mental conditions (intact, paragraph-scrambled, word-scrambled, and
rest) in this procedure– in other words, all of the experimental conditions
were effectively lumped together into a single dataset. The analysis
indicated that K ¼ 700 nodes was optimal.

The fitted model provided estimates for each participants' node lo-
cations, widths, and time-varying activities. Further, because the global
model connects the subject-specific models, we were able to compare
different participants’ activity patterns, even if their underlying nodes
were not in exactly the same locations. We reasoned that, on one hand,
this aspect of HTFA might improve our ability to capture cognitively
relevant patterns (relative to examining the voxel activities directly). On
the other hand, representing the brain images in the lower-dimensional
space captured by HTFA necessarily results in information loss relative
to the original voxel activity data. Effectively, HTFA blurs out high spatial
frequency details from the images, where the precise amount of blurring
depends on how large the nodes are and how many nodes there are
overall.

We next evaluated how well HTFA is able to capture cognitively
relevant brain patterns. We performed a decoding analysis, using cross-
validation to estimate (using other participants’ data) which parts of
the story each HTFA-derived brain activity pattern corresponded to (see
Materials and methods). We note that our primary goal was not to achieve
perfect decoding accuracy, but rather to use decoding accuracy as a
benchmark for assessing whether different neural features specifically
capture cognitively relevant brain patterns.

Separately for each experimental condition, we divided participants
into two groups. We then computed the average activity for each group,
for each of 241 overlapping 90 s (60 TR) time windows. (The 90 s win-
dow length we used in our analyses followed Simony et al., 2016.) This
yielded one activity pattern for each group of participants, for each time
window. Next, for each time window, we correlated the group 1 activity
patterns in that window with the group 2 activity patterns. Using these
correlations, we labeled the group 1 timepoints using the group 2 time-
points with which they were most highly correlated; we then computed
the proportion of correctly labeled group 1 time windows. (We also
performed the symmetric analysis whereby we labeled the group 2
timepoints using the group 1 timepoints as a template.) We repeated this
procedure 100 times (randomly re-assigning participants to the two
groups each time) to obtain a distribution of decoding accuracies for each
experimental condition. (There were 241 time windows, so chance

http://arks.princeton.edu/ark:/88435/dsp015d86p269k
http://arks.princeton.edu/ark:/88435/dsp015d86p269k
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performance on this decoding test is 1
241.)

As a baseline, we first used the participants' full-brain voxel activity
patterns (44,415 voxels; Y1:::S) to decode story timepoints. These voxel-
based decoders achieved reliably above-chance performance on data
from all four experimental conditions (tsð99Þi22; ps< 10�400; Fig. 4),
with the best average performance in the intact condition (11:2% accu-
racy) and the worst average performance in the rest condition (1:5%
accuracy). This shows that the original data (that we applied HTFA to)
contained information about the story times that our correlation-based
decoders could pick up on. Our finding that the decoders performed
slightly (but reliably) above-chance during rest was unexpected. This
may reflect reliable changes either in participants’ attentional states or
properties of the BOLD signal over the course of the resting state scans.

We compared the performance of the voxel-based decoders to the
decoding performance achieved using decoders trained on the HTFA
node weights – i.e. the inferred timepoint-by-timepoint activities of the
700 nodes derived for each participant (W1:::S). Like the voxel-based
decoders, these node activity-based decoders achieved reliably above-
chance performance on data from all four experimental conditions
(tsð99Þ > 21; ps< 10�40; Fig. 4A). The decoding performance of the
node-based and voxel-based decoders were similar (left 2 bars of each
group in Fig. 4A; decoding accuracies match within 1%) and neither
performed reliably better. We also ran analogous decoding analyses using
parcel activities derived from resting state fMRI data (Shen et al., 2013)
and factor weights derived from ICA with dual regression (Beckmann
et al., 2009). Each of these activity-based decoders performed similarly
(maximum difference in decoding accuracy across all experimental
conditions and methods: 2:2%); for detailed comparison statistics see
Table S1.

Although the above analysis shows that HTFA node activities achieve
decoding performance similar to voxel activities, the real strength of
HTFA is in its enabling efficient computations that involve dynamic
functional connectivity patterns (whereas these computations are in
some cases intractable in the original voxel space). Following the logic of
Simony et al. (2016), we reasoned that brain activities during story
listening should capture two sources of information. First, some activity
should reflect the story itself. Because every participant (within each
condition) listened to the same stimulus, this story-driven activity should
be similar across people. Second, some activity might reflect idiosyn-
cratic thoughts or physiological processes specific to each individual,
independent of the story. This non-story-driven activity should not be
similar across people. To home in on the former (story-driven) contri-
bution to functional connectivity, we used ISFC (Simony et al., 2016).
This approach measures the correlations between brain regions of
different individuals in each of several sliding windows (see Materials and
methods for details). The resulting ISFC patterns are analogous to stan-
dard within-brain functional connectivity patterns (which reflect the
correlational structure, across brain regions, within an individual's
brain), but they should reflect stimulus-driven activity. Decoders trained
and tested on these HTFA-derived ISFC patterns achieved reliably
above-chance performance on data from all experimental conditions
(tsð99Þ > 10; ps< 10�15; Fig. 4A). Although these ISFC-based decoders
were out-performed by the voxel-based and node activity-based de-
coders, it is important to note that the correlation-based features that the
ISFC-based decoders utilize are fundamentally different than node ac-
tivity patterns. We carried out analogous analyses using the parcel
activity-based decoders and ICA-based factor activation-based decoders
described above. The parcel-based analysis yielded similar results to
what we observed using HTFA (whereby ISFC-based decoders performed
reliably worse than activity-based decoders), and the ICA-based analyses
yielded no significant differences between ISFC-based and activity-based
decoders (Table S1).

Given the above results, we wondered whether the node activity-
based decoders and ISFC-based decoders might be picking up on
partially non-overlapping sources of cognitively relevant information. If
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so, decoders trained on a mix of activity-based and ISFC-based features
might outperform decoders trained on only a single class of features.

We therefore designed a fourth set of decoders whose predictions
were a 50-50 mix of the node activity-based decoders and the ISFC-based
decoders; see Materials and methods for additional details. These hybrid
decoders reliably out-performed the other decoders we examined on all
experimental conditions except the rest condition (intact, paragraph, and
word conditions: tsð99Þ > 14; ps< 10�8; Fig. 4A). This finding is consis-
tent with the notion that activity-based and ISFC-based patterns contain
different information about the story moments people were listening to.
We replicated this finding that a blend of activity-based and ISFC-based
decoders outperform solely activity-based or ISFC-based decoders using
atlas-derived parcel activations and ICA factor weights (Fig. 4A,
Table S1).

To follow up on this result, we set out to determine the optimal
mixing proportion of the two types of HTFA-derived features. We defined
a mixing parameter, ϕ, where ϕ ¼ 0 corresponds to activity-based
decoding; ϕ ¼ 1 corresponds to ISFC-based decoding; and 0 < ϕ < 1
reflects a weighted mixture of activity- and ISFC-based decoding. We
then re-ran the “mixture” decoding analysis in Fig. 4A using 21 linearly
spaced values of ϕ ranging between 0 and 1, inclusive. As shown in
Fig. 5A, the decoding accuracy (for the intact condition) peaked for
ϕ ¼ 0:25, corresponding to a mix of 75% activity-based and 25% ISFC-
based features.

These analyses indicate that HTFA enables the efficient imple-
mentation of more sophisticated decoders that would otherwise be
computationally expensive. These decoders (that incorporate correla-
tional information, or a mix of activity-based and correlation-based in-
formation) out-perform decoders trained only on raw voxel activity
patterns. Further, HTFA yields similar decoding performance to other
established methods (see Table S1 for detailed comparisons).

Case study 3: full-brain networks are modulated by movie viewing

As a secondary test of our results from Case Study 2, we ran an
analogous set of analyses on data collected as 17 participants viewed an
episode from the BBC television show Sherlock (Chen et al., 2017).
(Experimental and imaging methods may be found in Chen et al., 2017.)
As in Case Study 2, we used a cross validation procedure to determine the
optimal number of network nodes for the dataset (see Materials and
methods). This procedure revealed that K ¼ 900 nodes were optimal. We
then applied HTFA to the full dataset, which comprised (for each
participant) 43,371 voxel activities over 1976 TRs. The dataset is avail-
able at http://arks.princeton.edu/ark:/88435/dsp01nz8062179 .

As shown in Fig. 4B, all 10 classes of features we examined in Case
Study 2 could also be used for this movie viewing dataset to reliably
decode which timepoint participants were viewing (Fig. 4B;
tsð99Þ > 78; ps< 10�90). Following our approach in Case Study 2, we
divided the experiment into 60 TR sliding windows. Therefore chance
performance on this test is 1

1917 (1976� 60þ 1 ¼ 1917 unique sliding
windows).

We next carried out a series of analyses using HTFA, atlas-based
parcels, and ICA factors to determine which aspects of the activity and
connectivity patterns yielded the best decoding accuracy. As with Case
Study 2, we found that mixed activity-ISFC decoders outperformed solely
activity-based or ISFC-based decoders (for detailed performance statistics
see Table S2).

We also carried out an exploratory analysis to estimate the optimal
mixing proportions of HTFA node activity-based and ISFC-based features
(Fig. 5B). The decoders with ϕ ¼ 0:3 (reflecting a mixture of 70%
activity-based and 30% ISFC-based features) performed best. These an-
alyses provide additional evidence that the activity and connectivity
patterns contain partially non-overlapping information about the mo-
ments in the movie the participants were viewing.

http://arks.princeton.edu/ark:/88435/dsp01nz8062179
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Discussion

We proposed HTFA, a probabilistic approach to discovering and
examining full-brain patterns of dynamic functional connectivity in
multi-subject fMRI datasets. In Case Study 1, we used a synthetic dataset
to demonstrate HTFA's ability to recover known patterns in synthetic
data, and in Case Studies 2 and 3 we applied HTFA to real data, and
showed that the resulting patterns could be used to decode story listening
and movie viewing times. We also compared the performance of HTFA-
derived decoders to decoders trained on features from other estab-
lished methods, and we obtained similar decoding results.
Benefits and costs of our approach

HTFA was designed to provide an efficient means of examining dy-
namic full-brain connectivity patterns in multi-subject datasets. What
would it have taken to study the same ISFC patterns we examined in Case
Study 2 using voxel-based methods? After masking out non-gray matter
voxels and warping every subject's data to a common brain space (see
Materials and methods), each fMRI volume comprises 44,415 voxels.
Therefore each voxelwise ISFC matrix contains roughly 986 million
unique entries (V

2�V
2 ). Assuming single precision storage (4 bytes per

number), the ISFC matrix for each timepoint would require roughly
3.9 GB of memory. By contrast, each HTFA-derived ISFC matrix for 700
nodes requires fewer than 250 thousand unique entries (1MB). In gen-
eral, for decoders that combine activity-based and ISFC-based features,
the computational savings (in terms of representational compactness)
gained by using HTFA-derived networks (of K nodes) rather than the
original voxel data is given by V2þV

K2þK. For our Case Study 2, the HTFA-
derived ISFC analyses in Fig. 4A were approximately 4000 times more
computationally efficient than the corresponding voxel-based analyses
would have been. Following this logic, we achieved a similar computa-
tional efficiency savings for Case Study 3; Fig. 4B. We note that these
representational compactness benefits also apply to other dimensionality
reduction approaches (e.g. see Introduction). Although HTFA and other
dimensionality reduction approaches facilitate efficient computations of
full-brain correlation patterns, we note that with sufficient computing
power, optimized approaches have been developed for computing these
matrices directly (Wang et al., 2015).

Another benefit of HTFA's separation from voxel space is its ability to
naturally fill in missing observations (a property we exploit to determine
the optimal number of nodes). Techniques like probabilistic PCA
(Tipping and Bishop, 1999) can fill in missing voxel activities using the
data covariance matrix, provided that we observe at least some activities
from those missing voxels (in other images). However, suppose that all
activities from a given voxel were missing– or more realistically, suppose
that we wish to estimate what the activities would have been at any
arbitrary point in space. Because PCA does not explicitly represent the
voxels' spatial locations, neither PCA nor probabilistic PCA can accu-
rately predict activity patterns at these never-observed voxels. HTFA, by
contrast, naturally predicts the missing data by simply evaluating each
node's RBF at the corresponding location in space.

These missing data examples also provide insights into other benefits
of allowing nodes to exist in real space rather than considering only the
set of voxel locations. For example, HTFA allows for different subjects'
data to be sampled at different resolutions, or to contain different
numbers of voxels. In principle, different subjects’ data may even come
from different recording modalities (e.g. one subject may contribute
fMRI data and another may contribute EEG data). In this way, HTFA
provides a common framework for describing neural data in general that
transcends the specifics of the recording (modality, spatial or temporal
resolution, etc.). For additional discussion of the benefits of spatial-based
(rather than voxel-based) nodes see Gershman et al. (2011), and for an
example of how similar models may be used to analyze EEG data see
Gershman et al. (2014).
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Note that using HTFA to examine connectivity patterns may not al-
ways out-perform voxel-based approaches. In particular, to the extent
that the relevant patterns are high spatial frequency (at the level of single
voxels), those patterns will be better described by voxel-based ap-
proaches than RBF nodes. (Representing brain images as sums of RBFs
effectively blurs out the images in space, where the amount of blurring is
inversely proportional to the number of nodes.) To address this issue, we
developed an algorithm for estimating the minimum number of nodes
required to reliably describe the data up to a desired level of precision
(see Materials and methods).

Although we have focused in this manuscript on highlighting the
strengths of HTFA in particular, it is worth noting the strengths of related
approaches like the atlas-based segmentation and ICA with dual regres-
sion approaches that we compared with HTFA in Case Studies 2 and 3.
For example, atlas-based segmentation methods obey anatomical
boundaries well. This property is especially useful in applications aimed
at discovering or exploring specific anatomical features or patterns. ICA-
based approaches yield statistically independent features. This property
is especially useful in applications that leverage or assume statistical
independence between difference neural sources. HTFA, in turn, yields
spatially compact features (which are useful for network visualizations
and explorations) that partially overlap. This latter property may help
detangle the contributions of spatially overlapping, but functionally
distinct, activity patterns.

Concluding remarks

HTFA provides an efficient means of examining dynamic full-brain
functional connectivity patterns, thereby making it easier to study how
connectivity patterns relate to the cognitive processes they support.
Further, HTFA's compact representations of connectivity facilitate
studying connectivity with algorithms that are too expensive to use on
the original data.
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