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Abstract

Variational inference (VI) combined with data
subsampling enables approximate posterior infer-
ence over large data sets, but suffers from poor
local optima. We first formulate a determinis-
tic annealing approach for the generic class of
conditionally conjugate exponential family mod-
els. This approach uses a decreasing tempera-
ture parameter which deterministically deforms
the objective during the course of the optimiza-
tion. A well-known drawback to this annealing
approach is the choice of the cooling schedule.
We therefore introduce variational tempering, a
variational algorithm that introduces a tempera-
ture latent variable to the model. In contrast to
related work in the Markov chain Monte Carlo
literature, this algorithm results in adaptive an-
nealing schedules. Lastly, we develop local varia-
tional tempering, which assigns a latent temper-
ature to each data point; this allows for dynamic
annealing that varies across data. Compared to
the traditional VI, all proposed approaches find
improved predictive likelihoods on held-out data.

1 Introduction

Annealing is an ancient metallurgical practice. To form a
tool, blacksmiths would heat a metal, maintain it at a suitable
temperature, and then slowly cool it. This relieved its inter-
nal stresses, made it more malleable, and ultimately more
workable. We can interpret this process as an optimization
with better outcomes when temperature is annealed.
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The physical process of annealing has analogies in non-
convex optimization, where the cooling process is mim-
icked in different ways. Deterministic annealing (Rose et al.,
1990) uses a temperature parameter to deterministically de-
form the objective according to a time-dependent schedule.
The goal is for the parameterized deformation to smooth
out the objective function and prevent the optimization from
getting stuck in shallow local optima.

Variational inference turns posterior inference into a non-
convex optimization problem, one whose objective has many
local optima. We will explore different approaches based
on annealing as a way to avoid some of these local optima.
Intuitively, the variational objective trades off variational
distributions that fit the data with variational distributions
that have high entropy. Annealing penalizes the low-entropy
distributions and then slowly relaxes this penalty to give
more weight to distributions that better fit the data.

We first formulate deterministic annealing for stochastic
variational inference (SVI), a scalable algorithm for find-
ing approximate posteriors in a large class of probabilistic
models (Hoffman et al., 2013). Annealing necessitates the
manual construction and search over temperature schedules,
a computationally expensive procedure. To sidestep having
to set the temperature schedule, we propose two methods
that treat the temperature as an auxiliary random variable in
the model. Performing inference on this expanded model—
which we call variational tempering (VT)—allows us to use
the data to automatically infer a good temperature schedule.
We finally introduce local variational tempering (LVT), an
algorithm that assigns different temperatures to individual
data points and thereby simultaneously anneals at many
different rates.

We apply deterministic annealing and variational temper-
ing to latent Dirichlet allocation, a topic model (Blei et al.,
2003), and test it on three large text corpora involving mil-
lions of documents. Additionally, we study the factorial
mixture model (Ghahramani, 1995) with both artificial data
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and image data. We find that deterministic annealing finds
higher likelihoods on held-out data than stochastic varia-
tional inference. We also find that in all cases, variational
tempering performs as well or better than the optimal an-
nealing schedule, eliminating the need for temperature pa-
rameter search and opening paths to automated annealing.

Related work to annealing. The roots of annealing reach
back to Metropolis et al. (1953) and to Kirkpatrick et al.
(1983), where the objective is corrupted through the in-
troduction of temperature-dependent noise. Deterministic
annealing was originally used for data clustering applica-
tions (Rose et al., 1990). It was later applied to latent vari-
able models in Ueda and Nakano (1998), who suggest de-
terministic annealing for maximum likelihood estimation
with incomplete data, and specific Bayesian models such
as latent factor models (Ghahramani and Hinton, 2000),
hidden Markov models (Katahira et al., 2008) and sparse
factor models (Yoshida and West, 2010). Generalizing these
model-specific approaches, we formulate annealing for the
general class of conditionally conjugate exponential family
models and compare it to our tempering approach that learns
the temperatures from the data. In contrast to earlier works,
we also combine deterministic annealing with stochastic
variational inference, scaling it up to massive data sets.

Related work to variational tempering. VT is in-
spired by multicanonical Monte Carlo methods. These
Markov chain Monte Carlo algorithms sample at many tem-
peratures, thereby enhancing mixing times of the Markov
chain (Swendsen and Wang, 1986; Geyer, 1991; Berg and
Neuhaus, 1992; Marinari and Parisi, 1992). Our VT ap-
proach introduces global auxiliary temperatures in a similar
way, but for a variational algorithm there is no notion of
a mixing time. Instead, the key idea is that the variational
algorithm learns a distribution over temperatures from the
data, and that the expected temperatures adjust the statistical
weight of each update over iterations. Our LVT algorithm
is different in that the temperature variables are defined per
data point.

2 Annealed Variational Inference and
Variational Tempering

Variational tempering (VT) and local variational temper-
ing (LVT) are extensions of annealed variational inference
(AVI). All three algorithms are based on artificial tempera-
tures and are introduced in a common theoretical framework.
We first give background about mean-field variational infer-
ence. We then describe the modified objective functions and
algorithms for optimizing them. We embed these methods
into stochastic variational inference (Hoffman et al., 2013),
optimizing the variational objectives over massive data sets.

2.1 Background: Mean-Field Variational Inference

We consider hierarchical Bayesian models. In these models
the global variables are shared across data points and each
data point has a local hidden variable. Let x = x.y be
observations, z = z;.y be local hidden variables, and 3 be
global hidden variables. We define the model by the joint,

p(B.z.x)=p(B| o) [T, p(zi,xi| B),

where o are hyperparameters for the global hidden variables.
Many machine learning models have this form (Hoffman
et al., 2013).

The main computational problem for Bayesian modeling is
posterior inference. The goal is to compute p(f3,z]|x), the
conditional distribution of the latent variables given the ob-
servations. For many models this calculation is intractable,
and we must resort to approximate solutions.

Variational inference proposes a parameterized family of
distributions over the hidden variables ¢(f,z| v) and tries
to find the member of the family that is closest in KL di-
vergence to the posterior (Wainwright and Jordan, 2005).
This is equivalent to optimizing the evidence lower bound
(ELBO) with respect to the variational parameters,

Z(v) = Ey[logp(B,2,x)] —Eyllogg(B,z| V). (1)

Mean-field variational inference uses the fully factorized
family, where each hidden variable is independent,

q(B,z|v) =q(BI AT q(z| 91)-

The variational parameters are v = {1, ¢;.x }, where 4 are
global variational parameters and ¢; are local variational
parameters. Variational inference algorithms optimize Eq. 1
with coordinate or gradient ascent. This objective is non-
convex. To find better local optima, we use AVI and VT.

2.2 Annealed Variational Inference (AVI)

AVI applies deterministic annealing to mean-field varia-
tional inference. To begin, we introduce a temperature
parameter 7 > 1. Given T, we define a joint distribution as

(z.x|B)"/"p(B| o)

p
p(ﬁ,Z,X|T): C(T) >

2

where C(T) is the normalizing constant. We call
p(B,z,x|T) the annealed joint. In contrast to earlier work,
we anneal the likelihoods instead of the posterior (Ghahra-
mani and Hinton, 2000; Katahira et al., 2008; Yoshida and
West, 2010), which we will comment on later in this subsec-
tion. Note that setting 7 = 1 recovers the original model.

The normalizing constant, called the tempered partition
function, integrates out the joint,

c(r) = [ p(a.x8)"" p(B)dxdzap. ®
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For AVI, we do not need to calculate the tempered partition
function as constant terms do not affect the variational ob-
jective. For VT, we need to approximate this quantity (see
Section 3.3).

The annealed joint implies the annealed posterior. AVI
optimizes the variational distribution ¢(-) against a sequence
of annealed posteriors. We begin with high temperatures
and end in the original posterior, i.e., T = 1. In more detail,
at each stage of annealed variational inference we fix the
temperature 7. We then (partially) optimize the mean-field
ELBO of Eq. 1 applied to the annealed model of Eq. 2. We
call this the annealed ELBO,

ZLa(A,9:T) = Eyllogp(B|a)] —E4[logg(B | 1)]
+YV | (Bgllogp(xi,zi| B))/T —Eqllogq(zi | ¢:)]) -

We then lower the temperature. We repeat until we reach
T =1 and the optimization has converged.

“4)

As expected, when T = 1 the annealed ELBO is the tradi-
tional ELBO. Note that the annealed ELBO does not require
the normalizer C(T') in Eq. 3 because it does not depend on
any of the latent variables.

Why does annealing work? The first and third terms on the
right hand side of Eq. 4 are the expected log prior and the
log likelihood, respectively. Maximizing those terms with
respect to g causes the approximation to place its probability
mass on configurations of the hidden variables that best ex-
plain the observations; this induces a rugged objective with
many local optima. The second and fourth terms together
are the entropy of the variational distribution. The entropy is
concave: it acts like a regularizer that prefers the variational
distribution to be spread across configurations of the hidden
variables. By first downweighting the likelihood by 1/T,
we favor smooth and entropic distributions. By gradually
lowering T we ask the variational distribution to put more
weight on explaining the data.

Fig. 1 shows the annealed ELBO for a mixture of two one-
dimensional Gaussians, also discussed in Katahira et al.
(2008). At large T, the objective has a single optimum
and the algorithm moves to a good region of the objective.
The decreasing temperature reveals the two local optima.
Thanks to annealing, the algorithm is positioned to move to
the better (i.e., more global) optimum.

We noted before that in other formulations of annealing one
typically defines the annealed posterior to be p(z, 8 |x,T) =<
p(z,B|x)"/T, which anneals both the likelihood and the
prior (Neal, 1993). This approach has nearly the same affect
but can lead to practical problems. The temperature affects
the prior on the global variables, which can lead to extremely
skewed priors that cause the gradient to get stuck in early
iterations. As an example, consider the gamma distribution
with shape= 0.05. Annealing this distribution with 7 = 2
reduces the 50th percentile of this distribution by over five
orders of magnitude. By only annealing the likelihood and

Figure 1: AVI for a mixture model of two Gaussians. We
show the variational objective as a function of the two latent
Gaussian means U, | for temperatures (left to right) 7 =
20, T =13, T = 8.5 and T = 1. The red dot indicates the
global optimum.

leaving the prior fixed this problem does not occur.

Interplay of annealing and learning schedules. Our pa-
per treats annealing in a gradient-based setup. Coordinate
ascent-based annealing is simpler because there is no learn-
ing schedule and therefore the slower we anneal, the better
we can track good optima (as can be seen in Fig. 1). In con-
trast, when following gradients, the temperature schedule
and the learning rate schedule become intertwined. When
we anneal too slowly, the gradient descent algorithm may
approximately converge before the annealed objective has
reached its final shape. This leads to suboptimal solutions
(e.g., we found in experiments with latent Dirichlet alloca-
tion that annealing performs worse than SVI in many cases
when temperature is larger than 5). This makes finding good
temperature schedules in gradient-based variational anneal-
ing hard in practice (finding appropriate learning rates also
is hard by itself (Ranganath et al., 2013; Duchi et al., 2011)).

2.3 Variational Tempering (VT)

Since finding an appropriate schedule can be difficult in
practice, we focus on adaptive annealing schedules that learn
a sequence of temperatures from the data. We build on AVI
to develop VT, a method that learns a temperature schedule
from the data. VT introduces temperature as an auxiliary
variable in the model; it recovers the original model (and
thus original posterior) when the temperature is equal to 1.

Random temperatures. As was the case with AVI, VT
relies on physical heuristics. It mimics a physical system
where several temperatures coexist at the same time, hence
where temperature is a random variable that has a joint
distribution with the other variables in the system. We
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consider a finite set of possible temperatures,
I1=N<h<--<Ty.

A finite, discrete set of temperatures is convenient as it
allows us to precompute the tempered partition functions,
each temperature leading to a Monte Carlo integral whose
dimension does not depend on the data (this is described in
Section 3.3).

Multinomial temperature assignments. We introduce a
random variable that assigns joint distributions to tempera-
tures. Conditional on the outcome of that random variable,
the model is an annealed joint distribution at that tempera-
ture. We define a multinomial temperature assignment,

y ~ Mult(x).

We treat 7 as fixed parameters and typically set ,, = 1/M.

Tempered joint. The joint distribution factorizes as
p(x,z,B,y) = p(x,z,B|y)p(y). We place a uniform prior
over temperature assignments, p(y) = [[Y_, m»". Condi-
tioned on y, we define the tempered joint distribution as

1

C(];) p(xi?zi|ﬁ)1/rv.

p(x,z,Bly) = p(B)

=

i=1

This allows us to define the model as

—-

m=1 C(T;") i=1

M T, Ym
p(x,z,B,y)=pB) [] ( P(xhzilﬁ)l/Tm) .

The tempered ELBO.

We now define the variational objective for the expanded
model. We extend the mean-field family to contain a factor
for the temperature,

q(z,B,y1¢,4,1) = q(z|¢9)q(BIA)q(y|r),

where we introduced a variational multinomial for the tem-
perature with variational parameter r, ¢(y|r) = [TM_, ri.

Using this family, we augment the annealed ELBO. It now
contains terms for the random temperature and explicitly
includes logC(T). The tempered evidence lower bound
(T-ELBO) 4 = £r(A,0,r) is

Zr = Eyllogp(B)]+Eqflogp(y)] — Eyllogg(B)]
‘HEq[1/7}}ZiEq[logP(xi7Zi|ﬁ)] (5)
—E,[logC(Ty)] — LiEy[logq(zi)] — E,4llogq(y)]-

When comparing the T-ELBO with the annealed ELBO
in Eq. 4, we see that expected local inverse temperatures
E,[1/Ty) = YME, [ym/T,) in VT play the role of the (global)
inverse temperature parameter in AVI. As these expected
temperatures typically decrease during learning (as we

show), the remaining parts of the tempered ELBO will ef-
fectively be annealed over iterations. In VT, we optimize
this lower bound to obtain a variational approximation of
the posterior.

The tempered partition function. We will now comment
on the role of log C(7;) which appears in the T-ELBO (see
Eq. 5). In contrast to annealing, we cannot omit this term.

Without C(Ty), the model would place all its probability
mass for m around the highest possible temperature Tj;. To
see this, note that log likelihoods are generally negative,
thus E,[log p(x,z|B)] < 0. If we did not add —log C(T;) to
the T-ELBO, maximizing the objective would require us to
minimize E[1/7;].

The log partition function in the T-ELBO prevents temper-
atures from taking their maximum value. It is usually a
monotonically increasing function in 7. This way logC(T;)
penalizes large values of T.

2.4 Local Variational Tempering (LVT)

Instead of working with global temperatures, which are
shared across data points, we can define temperatures unique
to each data point. This allows us to better fit the data and to
learn annealing schedules specific to individual data points.
We call this approach local variational tempering (LVT).

In this approach, 7; is a per-data point local temperature,
and we define the tempered joint as follows:

=

p(x.2.B.T) > p(B)[ ] [plxi2lB) "p(T)] . (©)

i=1

In the global case, the temperature distribution was limited
to discrete support due to normalization. Here we have
more flexibility, p(7;) can have discrete (multinomial) or
continuous support (e.g. 1/T could be beta-distributed).

The model can also be formulated as p(x,z,,T) =
p(B)TIY., p(xi,z:|B/T;) p(T;), where we see that tempera-
ture downweights the global hidden variables and there-
fore makes the local conditional distributions more entropic.
The advantage of this formulation is that we do not have
to compute the tempered partition function as the local-
tempered likelihood is in the same family as the original
one (Section 3). On the downside, the resulting model is
non-conjugate.

Local temperature describes the likelihood that a particular
data point came from the non-tempered model. Outliers
can be better explained in this model by assigning them
a high local temperature. 7; therefore allows us to more
flexibly model the data. It also enables us to learn a different
annealing schedule for each data point during inference.



Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, David Blei

3 Algorithms for Variational Tempering

We now introduce the annealing and variational tempering
algorithms for the general class of local and global hidden
variables discussed in Section 2.1. Our algorithms are based
on stochastic variational inference (Hoffman et al., 2013), a
scalable Bayesian inference algorithm that uses stochastic
optimization.

3.1 Conditionally Conjugate Exponential Families

As in (Hoffman et al., 2013), we focus on the conditionally
conjugate exponential family (CCEF). A model is a CCEF
if the prior and local conditional are both in the exponential
family and form a conjugate pair,

p(Bla) = h(B)exp{a t(B)—ay(a)}, (7
p(zi,xi|B) h(zi,xi)exp{B " t(zi,x;) —ai(B)}.

The functions () = (B,—a;(B)) and t(x;,z;) are the suffi-
cient statistics of the global hidden variables and of the local
contexts, respectively. The functions a,(-) and a;(-) are
the corresponding log normalizers (Hoffman et al., 2013).
Annealed and tempered variational inference apply more
generally, but the CCEF allows us to analytically compute
certain expectations.

We derive AVI and VT simultaneously. We consider the
annealed or tempered ELBO as a function of the global
variational parameters,

L(WT) & LA 9(AT)T),
O(A;T) 2 argmﬁxg(l,qﬁ;T).

We have eliminated the dependence on the local variational
parameters by implicitly optimizing them in ¢ (A;T). This
new objective has the same optima for A as the original
tempered or tempered ELBO. Following Hoffman et al.
(2013), the T-ELBO is

fT(a&T) = Eq[l/z}]Zi(El][t(xiazi)} + a)vlag()“)
— 2 "Vjag(A) +ag(R) = Eq[log C(T;)] — Eq[logq(y)].

The annealed ELBO is obtained when replacing E,y)[1/7)]
by 1/T and dropping all other y—dependent terms.

3.2 Global and Local Random Variable Updates

To simplify the notation, let 1/T either be the determin-
istic inverse temperature for AVI, or E[1/7;] for VT, or
a data point-specific expectation E[1/T;] as for LVT. Fol-
lowing Hoffman et al. (2013), the natural gradient of the
annealed ELBO with respect to the global variational pa-
rameters A is

N
1
Vil = a+), ?Eq[t(x,',zi)] —A.
i=1

Algorithm 1 Annealed or tempered SVI

Initialize A(©) randomly. Initialize 7 > 1.
Set the step-size schedule p;.
repeat
Sample a data point x; uniformly. Compute its local
variational parameters,

RN

_ By " 4]
¢ =—""—F——.
5: Compute the intermediate global parameters as if x;
was replicated N times,
h=at 1Bolr(x" "))
6: Update the current estimate of the global variational
parameters,

N

A1 =(1=p)A+pi .
7: Annealing: reduce T according to schedule.
8: Variational Tempering: update 7 with Eq. 9/10.
9: until Forever

The variables #(x;,z;) are the sufficient statistics from Eq. 7.
Setting the gradient to zero gives the corresponding coor-
dinate update for the globals. Because of the structure of
the gradient as a sum of many terms, this can be converted
into a stochastic gradient by subsampling from the data set,
Vi, Z=a+ %Eq[t(xfm,zlm)] — A, where t(xEN),zEN)) are
the sufficient statistics when data point x; is replicated N
times. The gradient ascent scheme can also be expressed as

the following two-step process,

~

-
M1 =

1
ot Bl (5],

(I=p)A +pi s ()

We first build an estimate A, based on the sampled data
point, and then merge this estimate into the previous value
A where p, is a decreasing learning rate. In contrast to SVI,
we divide the expected sufficient statistics by temperature.
This is similar to seeing less data, but also reduces the
variance of the stochastic gradient.

After each stochastic gradient step, we optimize the an-
nealed or tempered ELBO over the locals. The updates for
the local variational parameters are

1
Pnj = ?Eq[m(x,,,Z(nﬁj),ﬁ)]-

Above, 7; is the natural parameter of the original (non-
annealed) exponential family distributions of the local varia-
tional parameters (Hoffman et al., 2013). As for the globals,
the right hand side of the update gets divided by temperature.
We found that tempering the local random variable updates
is the crucial part in models that involve discrete variables.
This initially softens the multinomial assignments and leads
to a more uniform and better growth of the global variables.
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3.3 Updates of Variational Tempering

We now present the updates specific to VT. In contrast
to annealed variational inference, variational tempering
optimizes the tempered ELBO, Eq. 5. As discussed be-
fore, the global and local updates of AVI are obtained
from the global and local updates of VT upon substitut-
ing Ey(,)[1/Ty] — 1/T. Details on the derivation for these
updates are given in the Supplement on the example of LDA.

The temperature update follows from the tempered ELBO.
To derive it, consider the log complete conditional for y that
is (up to a constant)

1 Ton
102p(m|-) =y | = ¥ log p(xi, 21| B) +log = | .
0gp(Yml*) = Ym (Tmzi' og p(xi,zi|B) + OgC(Tm)>

The variational update for a multinomial variable is

o< exp{ 4 L, llogp(xi.zilB)] +log s b ©)

Let us interpret the resulting variational distribution over
temperatures. First, notice that the expected local likeli-
hoods E[p(x,z|B)] enter the multinomial weights, multi-
plied with the vector of inverse temperatures. This way,
small likelihoods (aka poor fits) favor distributions that place
probability mass on large temperatures, i.e. lead to a tem-
pered posterior with large variances. The second term is
the log tempered partition function, which is monotonically
growing as a function of 7. As it enters the weights with a
negative sign, this term favors low temperatures.

This analysis shows that the distribution over temperatures
is essentially controlled by the likelihood: large likelihoods
lead to distributions over temperature that place its mass
around low temperatures, and vice versa. As likelihoods
increase, the temperature distribution shifts its mass to lower
values of T'. This way, the model controls its own annealing
schedule. Algorithm 1 summarizes variational tempering.

Estimation of the tempered partition function. Let us
sketch how we can approximate the normalization constants
C(T,,) for a discrete set of T;,. At first sight, this task might
seem difficult due to the high dimensionality of the joint.
But note that in contrast to the posterior, the joint distri-
bution is highly symmetric, and therefore calculating its
normalization is tractable.

In the supplement we prove the following identity for the
considered class of CCEF models,

N
)= [ap @] ( ] dudel? -0
i=1

20 [ 4 p(B)exp~Na(B)/ -+ Nas(B/ )}

The dimension of the remaining integral is independent
of the size of the data set; it is therefore of much lower

dimension than the original integral. We can therefore ap-
proximate it by Monte-Carlo integration. We found that 100
samples are typically enough, each integral typically takes
a few seconds in our application. We can alternatively also
replace the integral by a MAP approximation (see Supple-
ment A.2). Note that the normalization constants can be
precomputed.

3.4 Updates of Local Variational Tempering

For multinomial local temperature variables, the updates are
given in analogy to Eq. 9:

i > exp{ - Bqllog p(xi,lB/T) +log ]} (10)
Thus, the likelihood’s parameter gets divided by 7.

In local variational tempering, the global variable is not con-
jugate due to temperature-specific sufficient statistics. For
mean-field variational inference, the variational distribution
over the globals would need sufficient statistics of the form
t(B) = (B, —a(B/Ti).—ai(B/T2). - ,—ai(B/Tyn)) which
is not conjugate to the model prior, thus we approximate to
create a closed-form update.

The first sufficient statistics 3 is shared between our chosen
variational approximation and the optimal variational update
for the locally tempered model. The second parameter in
the variational approximation scales with the number of
data points. In the optimal variational update, these data
points get split across temperatures. As an approximation,
we assign these all to temperature 1. This results in the
following variational update:

A= a+E/TEGN, V). (11)

1

This looks the same as the first line in Eq. 8 but assigns a
different weight to each data point. Thus, in short, we match
the first component of the sufficient statistics and pretend it
came from a non-tempered model.

4 Empirical Evaluation

For the empirical evaluation of our methods, we compare
our annealing and variational tempering approaches to stan-
dard SVI with latent Dirichlet allocation on three massive
text corpora. We also study batch variational inference, AVI,
and VT on a factorial mixture model on simulated data and
on 2000 images to find latent components. We consider the
held-out predictive log likelihood of the approaches (Hoft-
man et al., 2013). To show that VT and LVT find better local
optima in the original variational objective, we predict with
the non-tempered model.! Deterministic annealing provides

'Even higher likelihoods were obtained using the learned tem-
perature distributions for prediction, implying a beneficial role for
the tempered model in dealing with outliers and model mismatch,
similar to McInerney et al. (2015). We use the non-tempered model
to isolate the optimization benefits of tempering.
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Figure 2: Log predictive likelihoods. We compare SVI (Hoffman et al., 2013), against VT (this paper), LVT (this paper)
and AVI (this paper) for different temperature schedules (A = length of the annealing schedule in effective traversals of the

data). Right: temperature schedules for the ArXiv data set.

a significant improvement over standard SVI. VT performs
similarly to the best annealing schedule and further inspec-
tion of the automatically learnt temperatures indicate that it
approximately recovers the best temperature schedule. LVT
(which employs local temperatures) outperforms VT and
AVTI on all text data sets and was not tested on the factorial
model.

Latent Dirichlet allocation. We apply all competing meth-
ods to latent Dirichlet allocation (LDA) (Blei et al., 2003).
LDA is a model of topic content in documents. It consists
of a global set of topics 3, local topic distributions for docu-
ments 6, words wg,, and assignments of words to topics z.
Integrating out the assignments z yields the multinomial for-

mulation of LDA p(w, 8,60) = p(B)p(6) [Tua (Lx OaxBiw,, )-
Details on LDA can be found in the Supplement.

Datasets. We studied three datasets: 1.7 million articles
collected from the New York Times with a vocabulary of
8,000 words; 640,000 arXiv paper abstracts with a vocabu-
lary of 14,000 words; 3.6 million Wikipedia articles with
a vocabulary of 7,702 words. We obtained vocabularies by
removing the most and least commonly occurring words.

Hyperparameters and schedules. We used K = 500 topics
and set 1 and o to 1/K (we also tested different hyperpa-
rameters and found no sensitivity). Larger topic numbers
make the optimization problem harder, thus yielding larger
improvements of the annealing approaches over SVI. We
furthermore set batch size B = 100 and followed a Robbins-
Monro learning rate with p; = (T+¢) ™%, where 7 = 1024,
k = 0.7 and ¢ is the current iteration count (these were
found to be optimal in (Ranganath et al., 2013)). For SVI
we keep temperature at a constant 1. For VT, we distributed
100 temperatures 1 < T;, < 10 on an exponential scale and
initialized ¢(y,) uniformly over the T,,. We precomputed
the tempered partition functions C(7,,) as discribed in the
Supplement. For annealing, we used linear schedules that
started in the mean temperature under a uniform distribu-
tion over T,,, and then used a linearly decreasing annealing
schedule that ended in T = 1 after tfA € {0.01,0.1,1} ef-
fective passes. We updated T every 1000 iterations. For

LVT, we employed 100 per-document inverse temperatures
evenly spaced between 0 and 1.

Results We present our results for annealing and variational
tempering. We test by comparing the predictive log likeli-
hood of held out test documents. We use half of the words
in each document to calculate the approximate posterior
distribution over topics then calculate the average predictive
probability of the remaining words in the document (follow-
ing the procedure outlined in (Hoffman et al., 2013)).

Figure 2 shows predictive performance. We see that an-
nealing significantly improves predictive likelihoods with
respect to SVI across datasets. In the plot, we index tem-
perature schedules by #A, indicating the number of passes
through the dataset. Our results indicate that slow anneal-
ing approaches work better (#A=1 is the best performing
annealing curve). VT automatically chooses the tempera-
ture schedule and is able to recover or improve upon the
best annealing curve for arXiv and the New York Times.
Variational tempering for Wikipedia is close to that of the
best annealing rate, and better than several other manual
choices of temperature schedule. In all three cases, LVT
gives significantly better likelihoods than AVI and VT.

Factorial mixture model. We also carried out experiments
on the Factorial Mixture Model (FMM) (Ghahramani, 1995;
Doshi et al., 2009). The model assumes N data points X, €
RP, K latent components t; € RP, and a K x N binary
matrix of latent assignment variables Z,;. The model has
the following generative process (Doshi et al., 2009):

X, = Zznk“k + &, an ~ Bem(ﬂk)v (12)
k

Wi~ A (0,04), & ~A(0,0,).

The variables Z,; indicate the activation of factor y; in data
point n. Every Z,; is independently O or 1, which makes
the model different from the Gaussian mixture model with
categorical cluster assignments. The factorial mixture model
is more powerful, but also harder to fit.

We are interested in learning the global variables u;. We
show in the Supplement that the log partition function for
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Figure 3: Factorial mixture model (FMM). Left: Evidence lower bound (ELBO) of toy data at 7 = 1 for VI (Jordan et al.,
1999), annealed VI (AVI, this paper) and variational tempering (VT, this paper). Middle: Log predictive likelihoods on Yale

faces. Right: Expected temperatures on Yale faces, as a funct

the factorial mixture model is

1 K
logC(T) ENDlogT—&-NZlog(?r,:/T—i-(l—nk)l/T).
k=1

For details on the inference updates, see (Doshi et al., 2009).

Datasets and hyperparameters. We carried out exper-
iments two data sets. The first artificial data set that was
generated by first creating 8 components (; by hand. These
are 4 x 4 black and white images, i.e. binary matrices,
each of which we weighted with a uniform draw from
[0.5,1]. (These are shown in Fig. 4.) Given the L, we
generated 10,000 data points from our model with ¢,, = 0.1,
and m, = 0.3. We set o = 0.35. Our linear annealing
schedule started at 7 = 10 and ended in 7 = 1 at 10 and
100 iterations, respectively. The second data set contained
2000 face images (Yale Face Database B, cropped version?)
from 28 individuals with 168 x 192 pixels in different poses
and under different light conditions (Lee et al., 2005). We
normalized the pixel values by subtracting the mean and
dividing by the standard deviation of all pixels. We chose
0, = oy = 0.5 which we found to perform best. Our anneal-
ing curves start at 7 = 6 and end in 7 = 1 after 5 and 50
iterations, respectively. Since both datasets were compara-
tively small, we used batch updates.

Results. Fig. 4 shows the results when comparing varia-
tional inference, annealed VI, and VT on the artificial data.
The left plot shows the ELBO at T = 1. As becomes ap-
parent, AVI and VT converge to better local optima of the
original non-tempered objective. The plots on the right are
the latent features i that are found by the algorithm. Vari-
ational tempering finds much cleaner features that agree
better with the ground truth than VI, which gets stuck in a
poor local optimum. Fig. 3 shows held-out likelihoods for
the Yale faces dataset. Among the 2000 images, 500 were
held out for testing. VT automatically finds an annealing
schedule that comes close to the best linear schedule that we
found. The plot on the right shows the different temperature
schedules.

Zhttp://vision.ucsd.edu/ leekc/ExtYaleDatabase/Ext YaleB.html

ion of iterations for VI, AVI (linear schedules) and VT.

Figure 4: FMM on toy data. The shapes on the bottom
show the latent global variables as found by (a) variational
inference (Jordan et al., 1999) and (b) variational tempering
(this paper). Figure (c) shows the ground truth that was used
to generate the data.

5 Conclusions

We presented three temperature based algorithms for varia-
tional inference: annealed variational inference and global
variational tempering, and local variational tempering. All
three algorithms scale to large data, result in higher predic-
tive likelihoods, and can be generalized to a broader class of
models using black box variational methods. VT requires
model-specific precomputations but results in near-optimal
global temperature schedules. As such, AVI and LVT may
be easier to use. An open problem is to characterize and
avoid new local optima that may be created when treating
temperature as a latent variable in variational inference.
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