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1. Introduction

We congratulate Durante, Dunson, and Vogelstein (2017) on
their excellent article. While the modeling of single networks
has received much attention, we agree with the authors that
the modeling of populations of networks has been largely over-
looked. Given that such data are increasingly common in fields
such as neuroscience, this article makes a timely contribution.
In this discussion, we consider a factorial generalization of the
proposed mixture of latent space models, and we suggest cases
in which factorial models may naturally capture our intuition
about the underlying generative process of the data. We com-
pare these two models using the human brain data studied in
the main article, and we suggest some avenues for future work.
Code to reproduce the figures in this discussion is available at
https://github.com/blei-lab/factorial-network-models.

2. Model

Durante, Dunson, and Vogelstein (2017) proposed a proba-
bilistic model for populations of networks. These populations
may be represented as collections of binary adjacency matrices,
{An}Nn=1, where matrix An ∈ {0, 1}V×V represents the con-
nectivity of the nth network. Entry An,[u,v] is set to one if
an edge is observed from vertex u to vertex v in network n;
otherwise it is set to zero. We assume the V vertices are the
same in all N networks. Moreover, the networks are undirected
(An,[u,v] ≡ An,[v,u]) and without self-loops (An,[v,v] ≡ 0). Thus,
it suffices to model only the lower triangular entries.

The authors build on the latent space model (LSM), a canon-
ical model in probabilistic network analysis (Hoff, Raftery, and
Handcock 2002; Hoff 2008). An LSM is defined by the following
parameters and latent variables: a bias zu,v ∈ R for each edge;
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an embedding xv ∈ R
D for each vertex; and a positive-definite

“scaling” matrix� = diag(λ), λ ∈ R
D
+, that determines the rel-

ative importance of the D latent dimensions. For convenience,
let Z = {{zu,v}Vu=1}u−1

v=1 denote the set of per-connection biases.
Given these parameters and latent variables, the edges are con-
ditionally independent Bernoulli randomvariables, and the like-
lihood of a network is

p
(
An |Z, {xv}Vv=1,�

) =
V∏
u=1

u−1∏
v=1

Bern
(
An,[u,v] | σ

(
zu,v + xTu�xv

))
,

(1)
where Bern(y | ρ) = ρy(1 − ρ)1−y is the Bernoulli likelihood
function and σ (x) = (1 + e−x)−1 is the logistic function. The
per-connection bias terms are only warranted whenN > 1; oth-
erwise, the model is over-parameterized. On top of this bias, the
probability of connection between vertices u and v increases
with the inner product between their embeddings xu and xv ,
weighted by thematrix�. In other words, the LSM is a low-rank
model of connection log-odds.

LSMs canmodel a variety of individual network structures—
simple Erdős-Rényi networks (Erdös and Rényi 1959), small-
world networks (Watts and Strogatz 1998), scale-free networks
(Barabási and Albert 1999), and stochastic block models (Now-
icki and Snijders 2001). But a population of networks may
exhibit a diversity of such connectivity patterns. The mixture of
latent space models (MoLSM), as suggested by Durante, Dun-
son, and Vogelstein (2017), is naturally suited to this type of het-
erogenous data.

Now let there be H separate mixture components, each
with a unique set of vertex embeddings x(h)

v ∈ R
D and its own

scaling factor λ(h). Furthermore, let hn ∈ {1, . . . ,H} denote the
mixture component to which the nth network is attributed. The
likelihood of a network is
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p
(
An |Z,

{{
x(h)

v

}V
v=1 ,λ(h)

}H

h=1
, hn

)

=
V∏
u=1

u−1∏
v=1

Bern
(
An,[u,v] | σ

(
zu,v + x(hn)T

u �(hn)x(hn)
v

))
.

(2)

To regularize the model, the authors use a sparsity-inducing,
multiplicative inverse gamma (MIG) prior on λ(hn),

λ
(h)

d =
d∏

d′=1

(
ν

(h)

d′

)−1
, ν

(h)
1 ∼ Gamma(a1, 1),

ν
(h)

d ∼ Gamma(a2, 1). (3)

This prior pushes λ
(h)

d toward zero for larger values of d, incen-
tiving the model to use as few dimensions as possible. Tuning a1
and a2 adjusts the strength of this prior.

For posterior inference in the MoLSM, Durante, Dunson,
and Vogelstein (2017) used Pólya-gamma augmentation to
develop a Gibbs sampler when x(h)

v and zu,v have Gaussian
priors. While the Bernoulli likelihoods are not conjugate with
these Gaussian priors, conditioning on the Pólya-gamma
auxiliary variables renders them so. These auxiliary variables
have straightforward and naïvely parallelizable updates as well,
making the overall algorithm highly efficient.

3. A Factorial Generalization

Mixture models are but one of many types of latent structure
that may underlie a population of data. A mixture model
attributes each data point (here, each network) to one mix-
ture component, and given this assignment, the likelihood is
a function of that component’s parameters (here, the latent
embeddings). Feature-based models offer an alternative gener-
ative story where each data point possesses a set of features and
the likelihood is a function of the parameters associated with
those features. In factorial feature models (Ghahramani 1995;
Ghahramani and Jordan 1997; Meeds et al. 2007; Ghahramani,
Griffiths, and Sollich 2007), the features are discrete, and in the
simplest case, binary. This offers an intuitive interpretation: each
data point possesses a subset of possible features that contribute
to its likelihood. Miller, Jordan, and Griffiths (2009) developed
factorial single network models; we derive a feature-based,
factorial latent space model for populations of networks, using
the MoLSM as our starting point.

Consider the embeddings and scalings of theHmixture com-
ponents. Specifically, let

x̃v =
[
x(1)T

v , . . . , x(H)T

v

]T
, (4)

λ̃ =
[
λ(1)T , . . . ,λ(H)T

]T
(5)

denote column vectors in R
D·H formed by concatenating the

embeddings and scaling factors of each mixture component,
respectively. Then, introduce a “mask” vector for each network
defined by

m̃n = [
I[hn = 1] · 1TD, . . . , I[hn = H] · 1TD

]T
. (6)

Here I[·] is an indicator that evaluates to one if its argument is
true and zero otherwise, and 1D is a column vector of length D
filled with ones. Themask represents themixture component hn
as a vector with exactlyD ones in the coordinates corresponding
to x(hn)

v and λ(hn). The likelihood in Equation (2) can now be
equivalently expressed as

p
(
An |Z, {̃xv}Vv=1, λ̃, hn

)
=

V∏
u=1

u−1∏
v=1

Bern
(
An,[u,v] | σ

(
zu,v + x̃Tu diag(̃λ� m̃n) x̃v

) )
, (7)

where � denotes element-wise multiplication. The mask effec-
tively turns on or off certain dimensions of the latent space
according to the network’s mixture assignment hn.

This suggests an extension: rather than restricting the model
to exactly H unique masks, instead allow each network to take
on any of the 2D·H possible binary masks. More generally, let
K denote the total number of latent factors (so far K = D · H).
Intuitively, the set of networks is characterized by K latent fac-
tors; in any given network, only a subset of those factors plays
a role in determining the edge probabilities. Unlike the mixture
model, in which only H different subsets of factors are allowed,
here any possible combination of factors can be chosen, making
this a strict generalization of the mixture model. Moreover, with
more flexibility in the choice of subset, it is likely thatK < D · H
dimensions will suffice. We call this the factorial latent space
model (fLSM).

With finite K, a natural prior is

p
(
m̃n | {ρk}Kk=1

) =
K∏

k=1

Bern(m̃n,k | ρk), (8)

p(ρk;α) = Beta
(
ρk | α

K , 1
)
, (9)

where α is a hyperparameter that controls the sparsity of the
mask matrices. One of the primary contributions of Durante,
Dunson, and Vogelstein (2017) is a Bayesian nonparametric
model that grows in complexity (number of mixture compo-
nents, number of latent dimensions per component) as the data
demand.We achieve similar flexibility here: asK goes to infinity,
the prior (8)–(9) converges to a Bayesian nonparametric prior
known as the Indian buffet process (Griffiths and Ghahramani
2005). Intuitively, each new network has nonzero probability of
introducing a new latent factor, that is, of increasing the dimen-
sionality of the embeddings.

Posterior inference in the factorial model requires modifi-
cations to the mixture model inference algorithm. Rather than
sampling a mixture identity hn for each network, we now must
sample the binary mask m̃n. Assuming a large but finite value
of K—which is akin to the “weak limit” approximation used by
Durante,Dunson, andVogelstein (2017)—wemayGibbs sample
each coordinate of the mask vector m̃n,k holding the remainder
m̃n,¬k fixed. These conditionals are of the same form as the class
conditional probabilities in the mixture model,

p
(
m̃n,k | m̃n,¬k,An,Z, {̃xv}Vv=1, λ̃, ρk

) ∝ Bern(m̃n,k | ρk)

×p
(
An |Z, {̃xv}Vv=1, λ̃, m̃n

)
. (10)

In sampling the binary masks, we effectively sample the num-
ber of factors active in a network. Sparsity inducing priors on λ̃k
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Figure . Train and test likelihood for various latent spacemodels (LSM) on brain network data as a function of latent dimensionality. Without a sparsity-inducingMIG prior,
the mixture of LSMs (MoLSM) tends to over-fit the data, and with a prior its performance shows an improvement of ≈ 0.01 nats/connection over the LSM. The factorial
LSM (fLSM) achieves high test performance by sharing embeddings across the entire population while letting individual networks use only a subset of the dimensions. It
provides a further≈ 0.01 nats/connection improvement over the MoLSM. Error bars denote±1 standard deviation.

are no longer necessary; they are superseded by the prior on the
binary masks.

Of course, we also pay a computational cost in generalizing
from mixtures to factorial models. In the mixture model, the
conditional distribution of hn could be computed exactly, but
the conditional distribution of m̃n in the factorial model may
take on 2K values, which will generally be intractable. Another
concern is that the coordinate-wise Gibbs sampler proposed
above will suffer poor mixing. For example, m̃n,k may be highly
correlated with {x̃v,k}Vv=1, making it hard to turn off or on a
factor while holding the embeddings fixed. Indeed, this is also
a concern in mixture models where mixture assignments and
parameters may be strongly coupled. In some models, it is pos-
sible to address this concern by integrating out the embeddings
when sampling the binary masks; such a collapsed sampler
would also benefit the mixture model. Unfortunately, due to the
quadratic form in the edge probabilities, this marginalization
does not appear to be straightforward, even after Pólya-gamma
augmentation. In the experiments below, however, we find
that the simple, uncollapsed Gibbs sampler suffices for these
data.

4. Experiments

We compared the performance of the standard latent space
model (LSM), the mixture of latent space models (MoLSM),
and the proposed factorial generalization (fLSM). We stud-
ied the same brain connectivity data as Durante, Dunson,
and Vogelstein (2017). This dataset contains N = 42 net-
works, each with V = 68 vertices. We held out 24,062 ran-
domly chosen edges for testing—approximately 25% of the
1
2NV (V − 1) = 95, 676 total number of edges—and trained
the models on the remaining edges. A simple independent
Bernoulli model (i.e., An,[u,v] ∼ Bern(pu,v )) achieves 77.8%
accuracy on the training data and 76.5% accuracy on the test
data, indicating that the networks are fairly stereotyped.

We measured performance as a function of number of latent
dimensions. For the LSM and fLSM, we varied the number of
latent dimensions from 2 to 20. For the MoLSM, we fixed the
number of mixture components to H = 10 and we varied the
number of dimensions per component from D = 2 to D = 20.
The MoLSM has H · D dimensions in total, but each network
can only use D latent factors. We also studied the effect of the
multiplicative inverse gamma (MIG) prior for the LSM and
the MoLSM, as opposed to a simple inverse gamma prior. (As
argued above, the fLSM already benefits from a sparsity induc-
ing prior on the number of components used by any network.)

We assessed the convergence of theGibbs sampler by inspect-
ing the log joint probability of the training data. We found that
the samplers typically converged in under 100 iterations for all
models. Thus, we fit each model with 500 iterations of Gibbs
sampling, and computed training and test likelihood estimates
by averaging over the last 250 iterations. For each sample of the
latent variables and parameters (Z, {̃xv}Vv=1, etc.), we computed
the log-likelihood (7) of the training and test data. To facilitate
comparison, we standardized these log-likelihoods by subtract-
ing the log-likelihood under an independent Bernoulli model
and normalizing by the number of entries. The MIG hyperpa-
rameters were set to a1 = 2.5 and a2 = 3.5, and the mixture
models were initialized with k-means clustering, as by Durante,
Dunson, and Vogelstein (2017). The fLSM hyperparameter was
set to α = K

2 + 1, such that the prior probability of each feature
is about 1

3 in expectation.
Figure 1 shows the log-likelihoods of the training and test

data relative to the Bernoulli baseline. We will consider each
column in turn, working from left to right. (i) The standard
LSM shows continued improvement in training log-likelihood
as the number of dimensions increases (red), though the test
likelihood plateaus after about 10 dimensions. (ii) Incorporating
anMIG prior biases the model toward using fewer components,
but this additional regularization is unnecessary for the stan-
dard LSM on this dataset (blue). (iii) By contrast, the mixture
model shows severe over-fitting in the absence of regularization



1546 S. W. LINDERMAN AND D. M. BLEI

Figure . Inferred factors of the LSM and their usage. Left: A sample from the posterior distribution of factor usage. The nth row corresponds to the binary vector m̃n , where
black denotes one andwhite denotes zero. Top: The average network 1

N
∑

n An exhibits strong block structure reflectingwithin-hemisphere connectivity. Right: Individual
contributions of a subset of factors, as given by x̄k x̄

T
k . Blue denotes increased probability of connection; red denotes decreased. Under the fLSM, each network n sums a

subset of these factors.

(yellow). Recall that here we are varying the number of dimen-
sions per component, and there are 10 components total. Some
mixture components only have two to five networks assigned to
them, which is not sufficient to accurately infer the embedding.
(iv) With an MIG prior (green), the MoLSM no longer exhibits
this over-fitting, and the test likelihoods exceed those of the
standard LSM by about 0.01 nats/connection. (v) Finally, the
fLSM (purple) seems to strike a nice balance. It selectively
uses factors, permitting network-to-network variability while
enforcing parameter sharing across the population. The fLSM
achieves highest performance: the baseline performance is
76.5% accuracy on test data, and the 0.05 nat improvement
yields 80.5% accuracy.

Figure 2 shows the inferred factors of the fLSM. The left
panel is a sample from the posterior distribution of factor usage
(i.e., a sample of {m̃n}Nn=1). The factors are sorted in decreasing
order of magnitude ‖x̄k‖2, where x̄k = [̃x1,k, . . . , x̃V,k]. The
first 12 factors are employed by almost all networks, but the
lower magnitude factors are used more variably. While this
model was given 20 latent dimensions, only 15 were used in this
sample. This variability likely reflects both heterogeneity in the
population and posterior uncertainty.

The right panels of Figure 2 show the average network (simi-
lar to Fig. 9 of Durante, Dunson, and Vogelstein 2017) and then
the contributions of a few of the individual factors, that is, x̄kx̄Tk .
Intuitively, the fLSM models the log-odds of a binary adjacency
matrix by summing a subset of these contributions. Note how
the highest magnitude factors encode the strong block structure
while the lower magnitude factors capture more subtle pat-
terns. One next step would be to compare factor usage to other
covariates of the patients. We expect that differences in network
connectivity arising from the features of an individual patient
(age, disease history, etc.) would be reflected in differences in
factor usage as well.

5. Conclusion

Durante, Dunson, and Vogelstein (2017) presented a mixture
of latent space models for capturing low-dimensional struc-
ture in populations of networks. Mixing over latent embeddings

handles network-to-network variability within the population
and provides promising results compared to other hierarchical
models that assume a single set of edge probabilities across all
networks. Their Bayesian nonparametric approach allows flex-
ible inference of the number of mixture components and latent
dimensions in a data-driven manner.

We present a generalization from the mixture model to a fac-
torial model in which the population of networks shares a set of
latent factors, but only a subset of those factors actively deter-
mines edge probabilities for any given network. For example, in
studying brain connectivity, the factorial model postulates that
a set of latent features determines the probability of fiber tracts
between two brain regions (e.g., age, diseases, drug use), and
each patient may possess a different subset of these features. By
contrast, the mixture model postulates a collection of different
“types” of patients, each with characteristic patterns of connec-
tivity. These twomodels are similar, but they may yield different
insights into the population of networks under study.

This suggests a number of avenues for future work. In
many cases, the network itself is not directly observable; rather,
we have access to only indirect measurements, like neural
spike trains, which provide statistical information about the
presence or absence of an edge between two vertices. In these
cases, we would like to perform joint inference of the network
and its underlying structure, as by Linderman and Adams
(2014) and Linderman, Adams, and Pillow (2016). In other
experiments, like longitudinal studies of brain connectivity, the
observed networks are not exchangeable draws from a latent
mixture or factor model, but rather a sequence of observa-
tions that we expect to be correlated over time, as in other
dynamic network models (e.g., Bassett et al. 2011; Linderman,
Stock, and Adams 2014). Likewise, while Durante, Dunson,
and Vogelstein (2017) mixed over complete network models, a
natural alternative is tomix over per-edge probabilities, as in the
mixed-membership stochastic blockmodel (Airoldi et al. 2008).
In such models, each vertex pair has an associated pair of latent
discrete “roles,” and the probability of connection is a function of
these underlying roles. Finally, as the authors mention, scaling
inference to larger networks is another area for future work.
Variational inference algorithms could be well suited to this
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challenge (Jordan et al. 1999; Blei, Kucukelbir, and McAuliffe
2017).
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We thank the Editors David Ruppert and Nicholas Jewell for
inviting this stimulating discussion. We are also grateful to the
discussants for their thoughtful remarks and the relevant gener-
alizations which add further value to our contribution. Indeed,
some novel methodologies proposed by the discussants—and
motivated by our mixture model for network data—are so
promising to deserve separate articles in their own.

A general comment, shared by all the discussants, is that
the core contribution of our article is twofold. First, we attempt
modeling of replicated networks, instead of a single network.
Second,we address this goal via a Bayesianmixturemodelwhich
is meant to be provably flexible, computationally tractable, and
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amenable to several natural generalizations. We are glad to
notice that this perspective has been warmly welcomed by
the discussants, while motivating insightful remarks and fur-
ther generalizations. Indeed, as Linderman and Blei suggest,
modeling of replicated networks has been largely overlooked
compared to inference on a single network, thereby requiring
increasing efforts toward addressing the new methodological
questions which arise from these settings.

In this respect, the discussions by Adrian Raftery (AR),
Tamara Broderick (TB), Mark Handcock (MH), Nicholas
Foti and Emily Fox (F&F), and Scott Linderman and
David Blei (L&B) provide a fascinating example of the new
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