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Abstract

Common approaches to gene signature discovery in single-cell
RNA-sequencing (scRNA-seq) depend upon predefined structures
like clusters or pseudo-temporal order, require prior normalization,
or do not account for the sparsity of single-cell data. We present
single-cell hierarchical Poisson factorization (scHPF), a Bayesian
factorization method that adapts hierarchical Poisson factoriza-
tion (Gopalan et al, 2015, Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence, 326) for de novo discovery of
both continuous and discrete expression patterns from scRNA-seq.
scHPF does not require prior normalization and captures statistical
properties of single-cell data better than other methods in bench-
mark datasets. Applied to scRNA-seq of the core and margin of a
high-grade glioma, scHPF uncovers marked differences in the
abundance of glioma subpopulations across tumor regions and
regionally associated expression biases within glioma subpopula-
tions. scHFP revealed an expression signature that was spatially
biased toward the glioma-infiltrated margins and associated with
inferior survival in glioblastoma.
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Introduction

Recent advances in the scalability of single-cell RNA-sequencing

(scRNA-seq) offer a new window into development, the cellular

diversity of complex tissues, cellular response to stimuli, and

human disease. Conventional methods for cell-type discovery find

clusters of cells with similar expression profiles, followed by statisti-

cal analysis to identify subpopulation-specific markers (Darmanis

et al, 2015; Levine et al, 2015; Zeisel et al, 2015; Shekhar et al,

2016). Studies of cell fate specification have benefitted from innova-

tive methods for inferring pseudo-temporal orderings of cells, allow-

ing identification of genes that vary along a trajectory (Trapnell

et al, 2014; Haghverdi et al, 2015; Setty et al, 2016). By design,

these approaches discover expression programs associated with

either discrete subpopulations or ordered phenotypes like differenti-

ation status. However, in addition to cell type and developmental

maturity, a cell’s transcriptional state may include physiological

processes like metabolism, growth, stress, and cell cycle; wide-

spread transcriptional alterations due to copy number variants; and

other co-regulated genes not specific to a discrete subpopulation or

temporal ordering. Such expression programs are of particular inter-

est in diseased tissue, where the underlying population structure

may be unknown and druggable targets might vary independently

of cell type or maturity.

Matrix factorization is an appealing approach to decomposing

the transcriptional programs that underlie cellular identity and state

without a predefined structure across cells. In this class of models,

both cells and genes are projected into the same lower-dimensional

space, and gene expression from each cell is distributed across
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latent factors that approximate a vector basis for its transcriptional

profile. Genes’ weights over the latent factors are discovered simul-

taneously and can be used to identify expression programs. For

example, previous studies have defined gene expression programs

from scRNA-seq data using principal component analysis (PCA) or

non-negative matrix factorization (NMF; Islam et al, 2011; Patel

et al, 2014; Tirosh et al, 2016a; Chung et al, 2017; Puram et al,

2017). However, a combination of biological regulation, stochastic

gene expression, and incomplete experimental sampling leads to

sparsity in scRNA-seq data. This creates challenges in downstream

analysis. Conventional methods like PCA and NMF are sensitive to

false-negative dropout events in which a transcript is experimentally

undetected despite its presence in a cell (Pierson & Yau, 2015; Prab-

hakaran et al, 2016). Further, sparsity may vary across both cells

and genes, complicating the normalization that most computational

methods require (Prabhakaran et al, 2016; Vallejos et al, 2017).

Here, we describe single-cell hierarchical Poisson factorization

(scHPF), a Bayesian factorization method that uses hierarchical

Poisson factorization (Gopalan et al, 2015) to avoid prior normaliza-

tion and explicitly model variable sparsity across both cells and

genes. We compare scHPF to popular normalization and dimension-

ality reduction methods as well as algorithms explicitly designed for

scRNA-seq. scHPF has better predictive performance than these

methods, more closely captures expression variability in datasets

generated by multiple experimental technologies, and has better

computational performance than other methods designed for

scRNA-seq. Finally, we apply scHPF to single-cell expression pro-

files obtained from the core and invasive edge of a high-grade

glioma. scHPF identifies both expected and novel features of tumor

cells at single-cell resolution and uncovers an expression signature

associated with poor survival in glioblastoma.

Results

Single-cell hierarchical Poisson factorization

scHPF uses hierarchical Poisson factorization (Gopalan et al, 2015)

for de novo identification of gene expression programs from

genome-wide unique molecular counts. In scHPF, each cell or gene

has a limited “budget” which it distributes across the latent factors.

In cells, this budget is constrained by transcriptional output and

experimental sampling. Symmetrically, a gene’s budget reflects its

sparsity due to overall expression level, sampling, and variable

detection. The interaction of a given cell and gene’s budgeted load-

ings over factors determines the number of molecules of the gene

detected in the cell.

More formally, scHPF is a hierarchical Bayesian model of the

generative process for an N × M count matrix, where N is the

number of cells and M is the number of genes (Fig 1). scHPF

assumes that each gene g and cell i is associated with an inverse-

budget gg and ξi, respectively, that probabilistically determines its

observed transcriptional output. Since both gg and ξi are positive-

valued, scHPF places Gamma distributions over those latent vari-

ables. We set gg and ξi’s hyperparameters empirically (Materials

and Methods, Fig EV1).

For each factor k, gene and cell loadings over factors bg,k and hi,k
are drawn from a second layer of Gamma distributions whose rate

parameters depend on the inverse budgets gg and ξi for each gene

and cell. Setting these distributions’ shape parameters close to zero

enforces sparse representations, which can aid downstream inter-

pretability. Finally, scHPF posits that the observed expression of a

gene in a given cell is drawn from a Poisson distribution whose rate

is the inner product of the gene’s and cell’s weights over factors.

Importantly, scHPF accommodates the over-dispersion commonly

associated with RNA-seq (Anders & Huber, 2010) because a

Gamma-Poisson mixture distribution results in a negative binomial

distribution; therefore, scHPF implicitly contains a negative bino-

mial distribution in its generative process. Previous work suggests

that the Gamma-Poisson mixture distribution is an appropriate noise

model for scRNA-seq data with unique molecular identifiers (UMIs;

Ziegenhain et al, 2017; preprint: Wagner et al, 2018).

Given a gene expression matrix, scHPF approximates the poste-

rior distribution over the inverse budgets and latent factors given

the data using coordinate ascent variational inference (Jordan et al,

1999; Blei et al, 2017; Materials and Methods). After fitting the

model’s variational posterior, we define each gene and cell’s score

for a factor k as the expected values of its factor loading bg,k or hi,k
times its inverse-budget gg or ξi, respectively, which scales scHPF’s

inferred loadings by its inferred budgets. We select the number of

factors based on the convergence of the negative log likelihood and

representation of major cell types (Materials and Methods).

Importantly, scHPF identifies factors de novo from genome-wide

expression measurements. In this work, datasets include all protein-

coding genes observed in at least ~ 0.1% of cells, typically > 10,000

genes (Appendix Table S1). In contrast, some previously published

dimensionality reduction methods for scRNA-seq depend on prese-

lected subsets of ~ 1,000 highly variable genes (which likely repre-

sent subpopulation-specific markers; Risso et al, 2018) or exclude

genes observed in < 5–10% of cells (Pierson & Yau, 2015).

Benchmarking against alternative methods

We compared scHPF’s predictive performance to that of PCA, NMF,

and factor analysis (FA), as well as two methods developed

ξi

θi

ηg

βg

Xi,g

a c

a’, b’ c’, d’

N M

Figure 1. scHPF models the data matrix Xi,g using a set of per-cell latent
factors hi and per-gene latent factors bg.

scHPF places hierarchical priors over the latent factors through the latent
variables ξi and gg, which probabilistically determine the observed
transcriptional output for the cell or gene.
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specifically for scRNA-seq: zero-inflated factor analysis (ZIFA; Pier-

son & Yau, 2015) and zero-inflated negative binomial-based wanted

variation extraction (ZINB-WaVE; Risso et al, 2018). These methods

have been used for expression program discovery without a prede-

fined structure across cells (Patel et al, 2014; Pierson & Yau, 2015;

Tirosh et al, 2016a; Chung et al, 2017; Puram et al, 2017). We

assessed each method across three datasets in different biological

systems and obtained with different experimental platforms

(Appendix Table S1). The peripheral blood mononuclear cell

(PBMC) data from 10× Genomics are a mixture of discrete cell types

(Zheng et al, 2017a; Data ref. Zheng et al, 2017b), whereas the

Matcovitch et al’s microglial dataset samples from multiple time-

points along a developmental process (Matcovitch-Natan et al,

2016a; Data ref. Matcovitch-Natan et al, 2016b). Additionally, we

profiled 9,924 cells from a patient-derived glioma neurosphere line

(TS543), in which physiological processes like cell cycle, rather than

discrete cell types or differentiation status, drive expression variabil-

ity. The datasets originate from different biological systems and

experimental technologies including droplet-based 10× Chromium

(Zheng et al, 2017a), MARS-seq (Jaitin et al, 2014), and an auto-

mated microwell platform (Yuan & Sims, 2016).

For each dataset, we tested conventional methods with three

different normalizations: log-transformed molecular counts, counts

per median (rate normalization), and log-transformed counts per

median (log-rate normalization). ZIFA was only evaluated using log-

transformed normalizations as recommended by its authors, and

ZINB-WaVE was applied directly to molecular counts. We did not

apply ZINB-WaVE to the nearly 10,000-cell TS543 dataset due to the

method’s prohibitive computational cost (Table 1). With only one

exception, scHPF had the best predictive performance on held-out

test data across all datasets and normalizations (Fig 2A). scHPF’s

superior performance was robust across a range of values for K, the

number of factors (Fig EV2). Notably, while ZINB-WaVE had better

predictive performance than scHPF on PBMCs, it had the highest

mean-squared error of any method on the Matcovitch et al’s dataset.

Because scHPF and ZINB-WaVE performed comparably in terms

of predictive performance on the PBMC dataset, we carefully exam-

ined their respective factorizations in terms of computational

expense and biological interpretability. For a single initialization

with K = 10, training ZINB-WaVE took 7.38 h and had a peak

memory consumption of 17.8 Gb (Table 1). Using two threads

reduced ZINB-WaVE’s runtime to just under 4 h, but nearly doubled

its memory consumption to 31.5 Gb. In contrast, our scHPF imple-

mentation took 2.5–10.7 min, depending on the number of threads

available, and ~ 1.6 Gb of memory (Table 1). scHPF’s superior

performance is in part due to optimized compilation and automatic

parallelization with the Python Numba library (Lam et al, 2015). In

addition, unlike ZINB-WaVE, scHPF only needs to consider non-

zero matrix entries during training (Materials and Methods), which

imparts a considerable theoretical advantage over methods that

must iterate through (and in some cases store) every matrix entry.

We compared the interpretability of scHPF and ZINB-WaVE’s

low-dimensional representations of cells in the PBMC data. Cluster-

ing using a conventional pipeline identified major PBMC types

including monocytes, dendritic cells, T cells, and B cells (Materials

and Methods, Fig EV3A). scHPF factors were in excellent agreement

with clustering results (Fig EV3B and C). Each major cell type had

an associated dominant factor, and there were relationships

between factors associated with related cell types. In contrast,

factors obtained using ZINB-WaVE did not exhibit the same close

relationship to basic cell types in the data. While there were domi-

nant factors for monocytes and B cells, smaller clusters did not

relate to ZINB-WaVE factors in an interpretable way.

In bulk RNA-seq, modeling over-dispersed gene expression data

has proven essential to downstream analysis (Anders & Huber,

2010). In scRNA-seq, expression data are over-dispersed both across

genes in individual cells and for individual genes across cells. We

evaluated how well different factorization methods captured single-

cell expression variability using a posterior predictive check (PPC).

PPCs provide insight into a generative model’s goodness of fit by

comparing the observed dataset to simulated data generated from

the model. More formally, PPCs sample simulated replicate datasets

Xrep from a generative model’s posterior predictive distribution and

use a modeler-defined test statistic to evaluate discrepancies

between Xrep and the true data, Xobs (Gelman et al, 2013). For each

dataset, normalization, and generative factorization method (scHPF,

PCA, FA, and ZIFA), we sampled ten replicate expression vectors

per cell. After converting samples from models on normalized data

back to molecular counts (Materials and Methods), we computed

the coefficient of variation (CV) for all genes in each cell and each

gene across all cells. Finally, we averaged each cell and gene’s CVs

across the ten replicate simulations. In all three datasets, scHPF

more closely matched the observed data’s variability than other

methods (Fig 2B, Appendix Fig S2). We noticed that many samples

from PCA and FA had physically impossible negative values. When

we corrected these values by clipping them to zero, PCA and FA’s

estimates of variability across cells collapsed toward zero (Fig 2C).

This collapse suggests that PCA and FA’s ability to model over-

dispersion in scRNA-seq data depends on placing probability mass

on negative gene expression levels.

Application to spatially sampled scRNA-seq from
high-grade glioma

As a demonstration, we applied scHPF to 6,109 single-cell expres-

sion profiles from the core and invasive edge of a high-grade glioma.

High-grade gliomas (HGGs), the most common and lethal brain

Table 1. Runtime and peak memory consumption at different levels
of parallelization for ZINB-WaVE and scHPF on the PBMC dataset with
K = 10.

Parallelization Runtime
Peak
Memory

ZINB-WaVE 1 vCPU 442.58 min
(7.38 h)

17.8 Gb

ZINB-WaVE 2 vCPU 237.76 min
(3.96 h)

31.5 Gb

scHPF 2 vCPU 10.66 min 1.6 Gb

scHPF 8 vCPU 6.13 min 1.6 Gb

scHPF 16 vCPU 2.47 min 1.7 Gb

scHPF (10 trials) 8 vCPU 52.90 min 1.6 Gb

scHPF (10 trials) 16 vCPU 36.45 min 1.6 Gb

ZINB-WaVE’s high memory consumption precluded running it with more
than two threads on this dataset.
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malignancies in adults (Ostrom et al, 2017), are highly heteroge-

neous tumors with complex microenvironments. In HGG, malignant

cells invade the surrounding brain tissue, forming diffusely infil-

trated margins that are impossible to fully remove surgically (Gill

et al, 2014). Although malignant cells in margins seed tumor recur-

rence and are the targets of post-operative therapy, most molecular

characterization has focused on HGG cores. To investigate the tran-

scriptional differences between cells in glioma’s core and margins,
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Figure 2. scHPF captures statistical properties of scRNA-seq data better than alternative factorization methods.

A Ratio of mean-squared error (MSE) of different factorization methods on withheld test sets to scHPF’s. scHPF’s MSE was calculated after normalizing its predictions.
Error bars show standard error of the mean across three train/validation/test splits; center values show the mean (Materials and Methods).

B Posterior predictive checks of expression variability in PBMCs. Box plots show the coefficient of variation (CV) for gene expression within single cells across all genes
(left) and for single genes across all cells (right) in both the true distribution (green) and posterior predictive simulations. X-axes limits are set to include all CVs from
the true distribution and scHPF, and as many CVs from other methods as possible. Accompanying bar graphs show the maximum distances between the cumulative
distributions of the true and simulated CV values (the Kolmogorov–Smirnov (KS) statistic, lower is better).

C Same as (B), but clipping impossible negative posterior predictive samples to zero.
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Figure 3. scHPF agrees with conventional analysis for regionally identified scRNA-seq of a high-grade glioma (HGG).

A t-Distributed stochastic neighbor embedding (tSNE; Maaten & Hinton, 2008) plot of cells from the core (navy) and margin (light blue) of an HGG reveals both
malignant and non-malignant subpopulations (Materials and Methods). Labels were determined using malignancy score, clustering, and differential expression
(Appendix Figs S2 and S3, Materials and Methods).

B tSNE representation of putative glioma cells colored by cluster highlights astrocyte-like, OPC-like, neuroblast-like, and cycling subpopulations.
C tSNE representation of all tumor cells colored by scHPF cell scores for one of two astrocyte-like factors. Nine out of the top 30 highest scoring genes are highlighted.
D Same as (C), but for a cell cycle factor identified by scHPF. The five top-scoring genes in the factor are listed.
E Main heatmap shows hierarchical clustering of cells’ scores for each factor. Top colorbar indicates the cell’s region: core (navy) or invasive edge (light blue). Second

colorbar shows putative neoplastic status. Bottom colorbar indicates cluster.
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we used an MRI-guided procurement technique (Gill et al, 2014)

and scRNA-seq to profile 3,109 cells from an HGG core and 3,000

cells from its margin. While recent efforts are beginning to shed

light on the differential expression between glioma’s core and

margins (Gill et al, 2014; Darmanis et al, 2017), few studies involve

this kind of spatial sampling.

Glioma cells typically resemble glia at the level of gene expres-

sion, and our prior work characterizing HGGs with scRNA-seq

revealed co-occurring malignant subpopulations resembling astro-

cytes, oligodendrocyte progenitors (OPCs), and neuroblasts (Yuan

et al, 2018). Consistent with these findings, clustering and aneu-

ploidy analysis (Materials and Methods, Appendix Figs S2 and

S3) revealed malignant subpopulations that expressed markers of

astrocytes, OPCs, neuroblasts, and dividing cells as well as non-

malignant populations of myeloid cells, oligodendrocytes,

endothelial cells, and pericytes (Fig 3A and B, Appendix Figs S2

and S3). In the spatially resolved samples, malignant subpopula-

tions had dramatically different abundances across regions

(Appendix Fig S3H). Astrocyte-like glioma cells were over twofold

more abundant in the margin biopsy, while OPC-like and cycling

populations were nearly threefold and fourfold better represented

in the core biopsy. All seventeen neuroblast-like glioma cells

localized to the tumor core.

Applied to the same dataset, scHPF identified at least one factor

associated with every cell type, as well as physiological processes

like translation, cell cycle, and stress response (Figs 3C and D, and

EV4, Appendix Table S2). Cell’s scHPF scores were largely uncorre-

lated with technical variables (Appendix Fig S4); however, two

factors associated with physically larger cell types (dividing and

endothelial) were modestly correlated with the number of molecules

and genes per cell. Hierarchical clustering of cells’ scores across

factors recapitulated both Louvain clustering and malignant status

(Fig 3E), and factors associated with malignant subpopulations had

regional biases across glioma cells that were consistent with

glioma subpopulations’ differential abundance across regions

(Appendix Fig S5A). In addition, we could use scHPF’s factorization

as a low-dimensional input to t-distributed stochastic neighbor

embedding (tSNE; Maaten & Hinton, 2008) or uniform manifold

approximation and projection (UMAP; McInnes et al, 2018) to

produce visualizations that were consistent with conventional

clustering (Fig EV5). Taken together, these results show that scHPF

captures the major features identified by standard analyses of this

dataset.

Some scHPF factors’ scores varied within the subpopulations

identified by clustering. For example, two myeloid-associated

factors that ranked pro-inflammatory cytokines and S100-family

genes highly (Fig EV4A), respectively, were correlated across all

cells (r = 0.66, P < 10�100) but anticorrelated within the myeloid

cluster (r = �0.59, P < 10�71). Together, they appeared to represent

a continuum of immune activation (Fig 4A–C). This phenotypic

gradient within an individual tumor is reminiscent of the variable

myeloid states observed across different patients in previous studies

of glioma (Tirosh et al, 2016b; Müller et al, 2017; Venteicher et al,

2017; Yuan et al, 2018).

While scHPF factors had regional biases that reflect overall

compositional differences between the core and margin biopsies,

glioma cells’ scHPF factor scores also exhibited regional biases

within the malignant subpopulations defined by clustering (Fig 4D–

F, Appendix Fig S5A). For example, OPC-like glioma cells in the

tumor core had significantly higher scores for the neuroblast-like,

OPC-like, and cell cycle factors than their counterparts in the margin

(Bonferroni corrected P < 10�84, P < 10�6, and P < 10�6, respec-

tively, by the Mann–Whitney U-test), whereas OPC-like glioma cells

in the margin had higher scores for the two astrocyte-like factors

(P < 10�49 and P < 10�69 for astrocyte-like factors 2 and 1, respec-

tively). These differences were driven by the highest scoring genes

in each factor (Appendix Fig S5B), and astrocyte-like glioma cells

followed a similar pattern. An alternative method of determining

cellular subpopulations, where cells were assigned to the subpopu-

lation with which their highest scoring factor was associated, also

preserved the regional biases (Appendix Fig S5C). This analysis

suggests that, in this case, cells in the same malignant subpopula-

tions but different tumor regions may have subtly different lineage

resemblances.

As cells from the HGG margin remain after surgery and seed

aggressive recurrent tumors, we investigated whether regionally

biased transcriptional signatures derived from scHPF factors were

associated with survival in The Cancer Genome Atlas (TCGA)

(Verhaak et al, 2010). Restricting the analysis to glioblastoma

(GBM), we identified patients enriched and depleted for the top

genes in each factor (Materials and Methods, Appendix Fig S6 for

analysis of sensitivity to effect size thresholds). Survival analysis

revealed significantly shorter overall survival (~ 1 year median

difference) for patients enriched for a margin-biased scHPF astro-

cyte-like signature (Fig 4G and H), which included astrocytic

markers ALDOC, CLU, and SPARCL1 (Bachoo et al, 2004; Zhang

et al, 2014, 2016), as well as cystatin super-family members CST1

though CST5 (Figs 3C and EV4A). Cystatin C (CST3) is highly

expressed in mature human astrocytes (Bachoo et al, 2004; Zhang

et al, 2016) and is induced in Alzheimer’s disease and epilepsy

(Steinhoff et al, 2001; Pirttilä et al, 2005; Gauthier et al, 2011),

raising the possibility that astrocyte-like glioma cells may be

responding to the same cues or stresses that reactive astrocytes

encounter in these disorders. Although it is difficult to determine

which cells are responsible for an expression signature in bulk

RNA-seq data, top scHPF astrocyte-like factor 1 genes were better

correlated with molecular markers of tumor cells than other cells

in the tumor microenvironment (Appendix Fig S7), suggesting

that glioma cells express those genes.

Discussion

Conventional approaches to analyzing scRNA-seq data use prede-

fined structures like clusters or pseudo-temporal orderings to iden-

tify discrete transcriptional programs associated with particular

subpopulations and pseudo-temporally coupled gene signatures.

However, gene expression programs may vary independently of

these structures across complex populations. scHPF complements

conventional approaches, allowing for de novo identification of tran-

scriptional programs directly from a matrix of molecular counts in a

single pass. By explicitly modeling variable sparsity in scRNA-seq

data and avoiding prior normalization, scHPF achieves better

predictive performance than other de novo matrix factorization

methods while also better capturing scRNA-seq data’s characteristic

variability.
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In scRNA-seq of biopsies from the core and margin of a

high-grade glioma, scHPF recapitulated and expanded upon

molecular features identified by standard analyses, including

expression signatures associated with all of the major subpopula-

tions and cell types identified by clustering. Importantly, some

lineage-associated factors identified by scHPF varied within or

across clustering-defined populations, revealing features that

were not apparent from cluster-based analysis alone. Clustering

analysis showed that astrocyte-like glioma cells were more

numerous in the tumor margin while OPC-like, neuroblast-like,

and cycling glioma cells were more abundant in the tumor core.

scHPF not only recapitulated this finding, but also illuminated

regional differences in lineage resemblance within glioma

subpopulations. In particular, both OPC-like and astrocyte-like
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Figure 4. scHPF identifies finely resolved and novel, regionally associated features of HGG.

A Scores for myeloid factor 1 (y-axis) versus myeloid factor 2 (x-axis) for cells in the myeloid Louvain cluster (crimson) and all other cells (gray).
B, C Expression of pro-inflammatory cytokines CCL3 (B) and CCL4 (C) for cells in the myeloid subpopulation shows a gradient of activation.
D–F Factor score bias between the core (navy) and margin (light blue) in all glioma cells (D), OPC-like glioma cells (E), and astrocyte-like glioma cells (F). Mean cells

scores in each region are scaled to sum to 100. Biases are driven by the top genes in each factor (Appendix Fig S6D–F).
G, H Kaplan–Meir curves show overall survival differences in TCGA for donors enriched (red), not enriched (purple), depleted (blue), or neither enriched nor depleted

(green) for the 25 top-scoring genes in astrocyte-like factor 1 (Materials and Methods, Appendix Fig S6 for different effect size cutoffs). P-values were computed
using a log-rank test and Mdn survival indicates median overall survival.
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glioma cells in the tumor core had a slightly more neuroblast-

like phenotype than their more astrocyte-like counterparts in the

margin. Finally, we discovered a margin-biased gene signature

enriched among astrocyte-like glioma cells that is highly deleteri-

ous to survival in GBM.

Massively parallel scRNA-seq of complex tissues in normal,

developmental, and disease contexts has challenged our notion of

“cell type” (Wagner et al, 2016), particularly as highly scalable

methods provide ever-increasing resolution. Further, gene expres-

sion programs essential to tissue function may be highly cell type-

specific or might vary continuously within or across multiple cell

types. Conventional graph- and clustering-based methods provide

invaluable insight into the structure of complex cellular populations,

and much can be learned from projecting single-cell expression pro-

files onto these structures. scHFP effectively models the nuanced

features of scRNA-seq data while identifying highly variable gene

signatures, unconstrained by predefined structures such as clusters

or trajectories. We anticipate that scHFP will be a complementary

tool for dissecting the transcriptional underpinnings of cellular iden-

tity and state.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog number

Experimental models

TS543 Memorial Sloan Kettering

Radiographically guided biopsies of high-grade glioma Columbia University Medical Center

Oligonucleotides and sequence-based reagents

Template switch oligo
(AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG)

IDT

SMRT PCR primer (AAGCAGTGGTATCAACGCAGAGT) IDT

Custom P5 nextera pcr primer
(AATGATACGGCGACCACCGAGATCTACACGCCTGTCC
GCGGAAGCAGTGGTATCAACGCAGAGT*A*C)

IDT

Custom read 1 sequencing primer (GCCTGTC
CGCGGAAGCAGTGGTATCAACGCAGAGTAC)

IDT

Chemicals, enzymes and other reagents

10× Tris Buffered Saline (TBS) solution Sigma T5912

Exo I NEB M0293S

SuperaseIN ThermoFisher AM2696

Maxima H- Reverse Transcriptase ThermoFisher EP0752

KAPA HiFi HotStart ReadyMix Kapabiosystems KK2602

Calcein AM cell-permeant dye ThermoFisher C3100MP

2-Mercaptoethanol ThermoFisher BP176-100

Fluorinert Oil Fluorinert® FC-770 Sigma F3556-25ML

Buffer TCL Qiagen 1031576

Heparin Stem Cell Technologies 7980

NeuroCult NS-A Proliferation Supplement Stem Cell Technologies 05751

NeuroCult NS-A Basal Medium Stem Cell Technologies 05750

Human recombinant epidermal growth factor (EGF) Stem Cell Technologies 78006.1

Human recombinant basic fibroblast growth factor
(bFGF)

Stem Cell Technologies 78003

Dow Corning Sylgard 184 Silicone ESSEX BROWNELL DC-184-1.1

Software

samtools v1.3 https://github.com/samtools/samtools/tree/1.3

bwa-mem v0.7.12 https://github.com/lh3/bwa/tree/0.7.12

bedtools v2.17.0-1 https://launchpad.net/ubuntu/+source/bedtools/2.17.0-1

STAR v2.5.0 https://github.com/alexdobin/STAR/tree/2.5.0b

8 of 14 Molecular Systems Biology 15: e8557 | 2019 ª 2019 The Authors

Molecular Systems Biology Probabilistic factorization of scRNA-seq Hanna Mendes Levitin et al

Published online: February 22, 2019 

https://github.com/samtools/samtools/tree/1.3
https://github.com/lh3/bwa/tree/0.7.12
https://launchpad.net/ubuntu/+source/bedtools/2.17.0-1
https://github.com/alexdobin/STAR/tree/2.5.0b


Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog number

Other

Nextera XT DNA Library Preparation Kit (24 samples) Illumina FC-131-1024

Nextera XT Index Kit (96 Indexes, 384 Samples) Illumina FC-131-1002

Dropseq beads (barcoded mRNA capture beads) ChemGenes MACOSKO-2011-10

Ampure beads Beckman Coulter A63880

Qubit® dsDNA HS Assay Kit Life Technologies Q32851

High Sensitivity DNA chips kit Agilent Technologies 5067-4626

ZR-DuetTM DNA/RNA MiniPrep Zymo Research D7001

NextSeq 500/550 High Output v2 kit (150 cycles) Illumina FC-404-2002

NextSeq 500/550 High Output v2 kit (75 cycles) Illumina FC-404-2005

PhiX Sequencing Control Illumina FC-110-3001

Methods and Protocols

Single-cell hierarchical Poisson factorization
The generative process for single-cell hierarchical Poisson factoriza-

tion, illustrated in Fig 1, is as follows:

1 For each cell i:

a Sample capacity ni �Gammaða0; b0Þ
b For each factor k:

i Sample weight hi;k �Gammaða; niÞ
2 For each gene g:

a Sample capacity gg �Gammaðc0;d0Þ
b For each factor k:

i Sample weight bg;k �Gammaðc;ggÞ
3 For each cell i and gene g, sample observed expression level

xi;g �PoissonðhibTg Þ;
where x is a discrete scRNA-seq expression matrix.

For de novo gene signature identification, we define each cell c’s

score for each factor k as

cell scorei;k ¼ E½nijx� � E½hi;kjx�

and each gene g’s score for each factor k as

gene scorei;k ¼ E½gg jx� � E½bg;kjx�:

This adjusts factor loadings for the learned transcriptional output

of their corresponding cell or gene. Finally, we rank the genes in

each factor by their scores to identify de novo patterns of coordi-

nated gene expression (e.g. Fig EV4A). Cell’s scores, for example,

those plotted Figs 3C and D, and EV4B–D, indicate a cell’s associa-

tion with the factor.

Inference
We use coordinate ascent variational inference to approximate p(ξ, h,
g, b|x), the posterior probability of the model parameters given the

data (Gopalan et al, 2015). To enable inference, we define a condi-

tionally conjugate version of the model with an additional layer of

latent variables. For each cell i and gene g, we add K latent variables

zi,g,k ~ Poisson(hi,kbg,k) such that xi,g = Σkzi,g,k. Because the sum of

independent Poisson random variables is a Poisson random variable

with rate equal to the sum or the component rates, this alternative

model preserves the marginal distribution of observed molecular

counts. In the context of scRNA-seq, the auxiliary variables assign

each observed molecule to a factor and can be thought of as the

contribution of each factor to the observed molecular count xi,g.

Under the augmented model, we posit a mean-field variational

family over the latent variables:

qðh; b; n; g; zÞ ¼
Y
i;k

qðhi;kjci;kÞ
Y
g;k

qðbg;kjkg;kÞ
Y
i

qðnijjiÞ
Y
g

qðgg jsgÞ
Y
i;g

qðzi;g j/i;gÞ

We set variational parameters to have the same form as their

complete conditionals. Thus, ci,k, kg,k, ji, and sg are Gamma distribu-

tions with their own shapes and scales. φi,g is a multinomial because the

complete conditional of a bank of Poisson variables, given their sum, is

a multinomial with a parameter proportional to the Poisson rates.

We fit the variational parameters to minimize the Kullback–

Leibler (KL) divergence between the variational distribution and the

true posterior using the algorithm described in Gopalan et al

(2015), with some small modifications we have found helpful for

scRNA-seq data. In the following optimization algorithm, we denote

the shape and rate parameters of the variational approximation by

the superscripts shp and rte, respectively. Our implementation

terminates when the change to the marginal log likelihood is

< 0.001% twice in a row, checking every 10 iterations. Hyperpa-

rameters and initializations are described in the next section.

A. Set the shape parameters of the gene and cell capacities, where K

is the number of factors:

jshpi ¼ a0 þ Ka

sshpg ¼ c0 þ Kc

B. Repeat until convergence:

1 For each gene g, set the gene weights and capacity:

kshpgk ¼ c þ
X
i

xig/igk
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krtegk ¼ sshpg

srteg
þ
X
i

cshpik

crteik

srteg ¼ d0 þ
X
k

kshpgk

krtegk

2 For each cell i, set the cell weights and capacity:

cshpik ¼ aþ
X
g

xig/igk

crteik ¼ jshpi

jrtei
þ
X
g

kshpgk

krtegk

srteg ¼ c0 þ
X
k

cshpik

crteik

3 For each cell i and gene g such that xi,g > 0, set the multino-

mial:

/ig / expfWðcshpik Þ � log crteik þWðkshpgk Þ � log krtegkg

For scRNA-seq data, we have found that φig’s update order (rela-

tive to the other variational parameters) can affect symmetry break-

ing. In particular, performing (3) as the first step of the first iteration

(before (1) and (2)) can result in redundant factors with similar

weights across cells and genes.

After optimizing the variational parameters, we use the varia-

tional distribution as a proxy for the posterior p(ξ, h, g, b|x) in

downstream analysis. For example, we use the variational approxi-

mation’s means to calculate the cell and gene scores defined in the

previous section. We can also work with the distributions directly,

such as when we sample from them to perform the posterior predic-

tive checks in Fig 2B and Appendix Fig S1.

Hyperparameters and initialization
Hyperparameters a0, b0, c0, and d0 are set to preserve the empirical

variance-to-mean ratio of the total molecules per cell or gene in the

Gamma distributions from which ξ and g are drawn. Specifically,

we set

b0 ¼ a0 � E½molecules per cell�
Var½molecules per cell�

and

d0 ¼ c0 � E½molecules per gene�
Var½molecules per gene� :

To preserve sparsity, we fix a and c to 0.3 and a0 and c0 to 1. In

this scheme, we find the algorithm largely insensitive to small

changes in the hyperparameters.

We initialize the variational distributions for ξ, h, g, b to their

priors times a random multiplier between 0.5 and 1.5. For each cell

i and gene g such that xi,g > 0, we initialize the (normalized) multi-

nomial φig from a symmetric Dirichlet.

We note that, in original HPF paper, the rate hyperpriors for

capacities ξ and g were defined as a0/b0 and c0/d0, whereas we define

them directly as b0 and d0. Those who wish to use the original nota-

tion while preserving the empirical variance-to-mean ratio should

invert the fractions above when setting b0 and d0.

Scalable inference on sparse scRNA-seq matrices
Because the likelihood of observed data under scHPF depends only

on non-zero expression values, we only need to consider non-zero

entries during training (Gopalan et al, 2015). This facilitates fast,

memory-efficient inference on sparse scRNA-seq dataset. Training

scHPF has O(NK + MK + TK) computational complexity, where N is

the number of cells, M is the number of genes, K is the number of

factors and T is the number of non-zero matrix entries. In typical

scRNA-seq datasets, TK is the dominant term but is still much

smaller than NM for reasonable values of K. In theory, this gives

scHPF a computational advantage over methods which must iterate

through (and may also store) all NM matrix entries.

Selection of number of factors
In actually usage, such as the for the high-grade glioma demon-

stration in this paper, we select the number of factors K such that

(i) the model’s log likelihood has converged (Appendix Fig S8A)

and (ii) each well-defined cell type in the dataset is most strongly

associated with at least one factor with which no other cell type is

most strongly associated (Appendix Fig S8B–D). For benchmarking

experiments, to avoid biasing results toward any one method, we

set the number for factors to the smallest multiple of five greater

than the number of clusters for the PBMC and Matcovitch et al’s

datasets, and to five for TS543 (Appendix Table S1). However,

predictive performance was robust to a range of values for K

(Fig EV2).

Normalization for benchmarking
Log-normalization was applied by adding 1 to molecular counts and

then taking the logarithm, base 2. Counts per median (rate normal-

ization) was calculated by normalizing the molecular counts in each

cell to sum to 1 and then multiplying all values by the median

number of molecules per cell. For log-rate normalization, we

performed the log-normalization procedure described above on rate-

normalized data.

Other factorization methods

• We applied PCA, NMF, and FA using the scikit-learn python pack-

age, with default parameters (Pedregosa et al, 2011). Methods

were tested on log, rate, and log-rate-transformed data.

• ZIFA was cloned from https://github.com/epierson9/ZIFA. To fit

the model, we used the block_ZIFA implementation with parame-

ter p0_thresh=1 and otherwise default settings. Per its authors’

specifications, we applied ZIFA to log- and log-rate-normalized

data only.

• We ZINB-WaVe applied using the zinbFit function from the zinb-

wave R package. In accordance with the default parameter values,

we included both cell and gene intercept terms. ZINB-WaVe was

run on unnormalized count data.

Benchmarking procedure
Prior to training, we randomly selected 4% of non-zero expression

values to use as a held-out test set and 2% as a validation set.
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The remaining data were used as a training set. By holding out

only a small portion of data, we aimed to minimally impact data-

sets’ native sparsity structure. As these test and validation sets

were small compared to the training set, we evaluated methods’

predictive performance on at least three randomly chosen parti-

tions of the data into training, validation, and test sets. We ran

each method-normalization pair with ten random initializations on

each training set and selected the run with the lowest mean abso-

lute error on the corresponding validation set. Due to ZIFA’s long

runtime (~ 23 h per initialization on TS543), we only ran it with

one initialization per training set and for only one value of K.

Similarly, ZINB-WaVe’s high computational resource requirements

precluded running it on both TS543 and on more than one value

of K for other datasets.

Posterior predictive checks
We generated posterior predictive samples from scHPF by sampling

latent representations hi and bg from the variational posterior and

using their inner product as the rate of a Poisson, from which we

sampled counts. For PCA, FA, and ZIFA, we sampled latent repre-

sentations and expression values according to their underlying

generative models (Bishop, 2006). For each method, normalization,

and dataset, we sampled ten N × M datasets. Samples from models

on normalized data were inverse transformed back to molecular

counts before calculating column and row coefficients of variation.

For example, samples from PCA on log-normalized data were added

to �1 and then exponentiated (base 2) before calculating coeffi-

cients of variation. Each gene and cell’s coefficients of variation

were averaged across ten replicate posterior predictive simulations.

The Kolmogorov–Smirnov test statistic was calculated using the

python package scipy.

Estimating memory consumption
We estimated methods’ peak memory consumption using the Linux

top utility.

Preparation of TS543 glioma neurospheres
TS543 cells were plated at density 1 × 104 viable cells/cm2 and

grown as neurospheres with NeuroCultTM NS-A basal medium

supplemented with NeuroCultTM NS-A proliferation supplement,

20 ng/ml EGF, 10 ng/ml bFGF, and 0.0002% heparin (Stem Cell

Technologies). When diameters of neurospheres reached to approxi-

mately 100 lm, neurospheres were dissociated to single cells with

mechanical force by pipetting 30–50 times.

Radiographically guided biopsies of high-grade glioma
Human glioma surgical specimens were procured from de-identified

patients who provided written informed consent to participate in

these studies through a protocol approved by the Columbia Institu-

tional Review Board (IRB-AAAJ6163). Radiographically guided biop-

sies were obtained as described in Gill et al (2014). Briefly, the

patient studied here presented with FLAIR hyperintense, non-

contrast-enhancing tissue along the surgical trajectory based on MRI

between the craniotomy site and gadolinium contrast-enhancing

border of the lesion. This region was biopsied and comprised the

tumor margin specimen described above. A region of the contrast-

enhancing core of the lesion was also biopsied and comprised the

tumor core specimen.

Whole-genome sequencing
Low-pass whole-genome sequencing (WGS) was conducted as

described in Yuan et al (2018). Briefly, we homogenized tissue

with a Dounce and extracted DNA and RNA with a ZR-Duet Kit

(Zymo) according to the manufacturer’s instructions. For the

normal control, DNA and RNA were extracted using the same kit

from peripheral blood mononuclear cells. WGS libraries were

constructed by in vitro transposition using the Illumina Nextera XT

kit and sequenced on an Illumina NextSeq 500 with 2 × 75 base

paired-end reads to a depth of ~ 1×. Reads were aligned to the

hg19 build of the human genome using bwa-mem, and the cover-

age for each chromosome was quantified using bedtools after

collapsing PCR duplicates with samtools. To generate the bulk

WGS heatmap in Appendix Fig S3E, we divided the normalized

coverage of each chromosome in the tumor sample by that of the

normal sample, normalized the resulting ratio by the median ratio

across all chromosomes, and multiplied by two to estimate average

copy number of each chromosome in the tumor sample. Note that

we do not have consent to share the raw WGS data from these

patients.

Microwell-based scRNA-seq
Single-cell RNA-seq for TS543 and HGG samples was conducted as

described in Yuan et al (2018) using a microwell array-based plat-

form (Yuan & Sims, 2016).

• Freshly dissociated cells were live stained (Calcein AM, C3100MP,

Thermo Fisher Scientific) on ice for 15–30 min.

• The stained cells (500 cells/ll) were then pipetted into a microw-

ell array device. The cells were allowed to settle into the microw-

ells for 3 min. Any un-trapped cells were flushed out with TBS

(Tris-buffered saline, T5912, Sigma) buffer.

• Barcoded mRNA capture beads (500 beads/ll) were then loaded

into the microwells followed by a TBS buffer flush.

• The cell and bead-loaded device was then connected to a

computer-controlled reagent delivery and temperature control

system. Lysis buffer [1% 2-mercaptoethanol (BP176-100, Fisher

Scientific), 99% buffer TCL (1031576, Qiagen)] and perfluorinated

oil (F3556-25ML, Sigma-Aldrich) were infused through the device

in rapid succession to physically isolate individual microwells and

lyse the trapped cells. The device was kept at 50°C for 20 min to

further promote cell lysis and then at 25°C for 90 min for mRNA

capture.

• Wash buffer supplemented with RNase inhibitor [0.02 U/ll
SUPERaseIN (AM2696, Thermo Fisher Scientific) in wash buffer

(20 mM Tris–HCl pH 7.9, 50 mM NaCl, 0.1% Tween-20)] was

then flushed through the device to unseal the microwells and

remove any uncaptured mRNA molecules. Reverse transcription

mixture (1× Maxima RT buffer, 1 mM dNTPs, 1 U/ll SUPERa-

seIN, 2.5 lM template switch oligo, 10 U/ll Maxima H Minus

reverse transcriptase (EP0752, Thermo Fisher Scientific), 0.1%

Tween-20) was infused into the device followed by incubation at

25°C for 30 min and then at 42°C for 90 min.

• The beads were then extracted from the device and washed

sequentially with TE/SDS buffer (10 mM Tris–HCl, 1 mM EDTA,

0.5% SDS), TE/TW buffer (10 mM Tris–HCl, 1 mM EDTA, 0.01%

Tween-20, pH 8.0), and nuclease-free water. The beads were then

treated with Exonuclease I reaction mixture [1× Exo-I buffer, 1 U/

ll Exo-I (M0293L, New England Biolabs)] at 37°C for 30 min and
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then washed sequentially with TE/SDS buffer (10 mM Tris–HCl,

1 mM EDTA, 0.5% SDS), TE/TW buffer (10 mM Tris–HCl, 1 mM

EDTA, 0.01% Tween-20, pH 8.0), nuclease-free water and split

into multiple 50 ll PCRs (1× Hifi Hot Start Ready mix (KK2601,

Kapa Biosystems), 1 lM SMRTpcr primer). Twelve amplification

cycles [95°C 3 min, four cycles of (98°C 20 s, 65°C 45 s, 72°C

3 min), eight cycles of (98°C 20 s, 67°C 20 s, 72°C 3 min), 72°C

5 min] were performed on a thermocycler. PCR product was

pooled and purified using SPRI paramagnetic bead technology

(Ampure, Beckman) with a bead-to-sample volume ratio of 0.6:1.

• Purified cDNA was then tagmented and further amplified using

the Nextera kit for in vitro transposition (FC-131-1024, Illumina)

with 0.6 ng cDNA used as input. The i5 index primer is replaced

by a custom P5 Nextera PCR primer for the selective amplification

of 50 end of cDNA (corresponding to the 30 end of mRNA). Two

rounds of SPRI paramagnetic bead-based purification (Ampure,

Beckman) with a bead-to-sample volume ratio of 0.6:1 and 1:1,

respectively, were performed sequentially on the Nextera PCR

product to obtain sequencing-ready libraries.

• The resulting single-cell RNA-seq libraries were spiked with 20%

PhiX library (FC-110-3001, Illumina) and sequenced on a

sequencer (NextSeq 500, Illumina). A custom read 1 sequencing

primer was used.

scRNA-seq data preprocessing
Reads for TS543 and HGG samples were aligned using STAR and

processed into molecular count matrices as described in Yuan et al

(2018). For all benchmarking and scHPF analyses, we only consid-

ered protein-coding genes that were expressed in at least 0.1% of

cells in the dataset, rounded to the next largest multiple of 5

(Appendix Table S1).

Identification of malignant glioma cells
We identified malignantly transformed cells by two orthogonal

methods. First, we clustered cells’ scRNA-seq profiles (see Cluster-

ing and visualization) and defined putative malignant cells using

the genes most specific to each cluster (Appendix Figs S2 and S3A).

Next, we performed PCA of cells’ whole-chromosome expression

and found that the first principal component, which we call the

malignancy score, separated putatively transformed cells from non-

malignant cells (Appendix Fig S3B–D). For further validation, we

computed putative glioma cells’ average chromosomal expression

profiles relative to putative non-malignant cells and found that they

were in good agreement with aneuploidies identified by low-

coverage whole-genome sequencing of bulk tissue from the tumor

core (Appendix Fig S5E).

Clustering and visualization
Clustering, visualization, and identification of cluster-specific genes

were performed similarly to (Yuan et al, 2018), with an updated

method for selecting genes detected in fewer cells than expected given

their apparent expression level (likely markers of cellular subpopula-

tions). Briefly, for variable gene selection only, we normalized the

molecular counts for each cell to sum to 1. Genes were then ordered

by their normalized expression values. For each gene g, we calculated

fg, the fraction of cells in the dataset that expressed g, and fmax
g , the

maximum fg in a rolling window of 25 genes centered on g. fmax
g

approximates the fraction of cells in which we expect to observe

transcripts given g’s overall expression in the dataset. The scaled dif-

ference between fg and fmax
g defines g’s dropout score:

dropout scoreg ¼
jfg � fmax

g jffiffiffiffiffiffiffiffiffi
fmax
g

q :

We selected marker genes with dropout scores that are either

> 0.15 or at least six standard deviations above the mean,

inclusively.

To cluster and visualize the data, we computed a cell by cell

Spearman’s correlation matrix using the marker genes identified

above. Using this matrix, we constructed a k-nearest neighbors

graph (k = 20), which we then used as input to Louvain clustering

with Phenograph (Levine et al, 2015). After clustering, we identified

genes most specific to each cluster using a binomial test (Shekhar

et al, 2016). The same similarity matrix, transformed into a distance

matrix by subtracting its values from 1, was used as input to tSNE

for visualization.

Regional biases
P-values for both factors and top-scoring genes in each factor were

calculated using the Mann–Whitney U-test and Bonferroni corrected

for the total number of factors.

Survival analysis
TCGA data for glioblastoma were downloaded from GDAC Fire-

hose. Normalized expression values were log2(RSEM + 1)-trans-

formed, and each factor’s expression program was defined as its

25 highest scoring genes. We then calculated each program’s mean

relative expression for each donor, and z-scored these values

across donors. For each program, donors with z-scores greater

than a threshold t were considered enriched, and all others were

defined as not enriched. Patients with z-scores < �t were consid-

ered depleted. For Fig 4G and H, we set t = 1.5. Appendix Fig S6

shows the analysis with a range of threshold values. Kaplan–Meier

curves and log-rank test P-values were generated with the Lifelines

v0.11.1 Python module.

Data availability

The datasets produced in this study are available in the following

database: scRNA-seq data: Gene Expression Omnibus GSE116621

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11662

1). Code is available at: https://github.com/simslab/scHPF.

Expanded View for this article is available online.
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