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Spatially resolved gene expression profiling provides insightinto tissue
organization and cell-cell crosstalk; however, sequencing-based spatial
transcriptomics (ST) lacks single-cell resolution. Current ST analysis
methods require single-cell RNA sequencing data as areference for rigorous
interpretation of cell states, mostly do not use associated histology images
and are not capable of inferring shared neighborhoods across multiple
tissues. Here we present Starfysh, acomputational toolbox using a deep
generative model that incorporates archetypal analysis and any known

cell type markers to characterize known or new tissue-specific cell states
without asingle-cell reference. Starfysh improves the characterization of
spatial dynamics in complex tissues using histology images and enables
the comparison of niches as spatial hubs across tissues. Integrative analysis
of primary estrogen receptor (ER)-positive breast cancer, triple-negative
breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led

to the identification of spatial hubs with patient- and disease-specific

cell type compositions and revealed metabolic reprogramming shaping
immunosuppressive hubs in aggressive MBC.

Inmulticellular organisms, the function of diverse cell typesis strongly
influenced by their surroundings. Uncovering the spatial organization
and communication between cell types intissues provides insight into
their development, response to stimuli, adaptations to their micro-
environment or transformation into malignant or diseased states'.
By sampling the entire transcriptome, ST has enabled unbiased gene
expression mapping in a spatially resolved manner, providing an
opportunity to study the spatial arrangement of cells and microenvi-
ronments’. These technologies have been employed in diverse fields,
including organ development, disease modeling and immunology®~.

However, sequencing-based methods (Visium, DBiT-seq®, Slide-seq’
and so on) are limited in cellular resolution due to technical limita-
tions, includingartifacts from lateral RNA diffusion”. Hence, measure-
ments from capture locations (spots) involve mixtures of multiple cells,
leading to analytical challenges in dissecting the cellular disposition,
particularly in complex cancerous tissues.

Accurate characterization of cell types and refined statesis critical
for comparing their spatial organization and communication across
tissues. Thisis essential, for example, when studying changesin cellular
wiring during development or disease progression. Intumor tissues, the
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mixing of signals from patient-specific tumor cells and immune cells
hinders the comparison of anti-tumor immune mechanisms between
patients or disease subtypes. Most existing computational methods for
analyzing ST data (Cell2location®, DestVI°, Tangram'’, Stereoscope”,
RCTD", BayesPrism"andso on) require paired and annotated single-cell
data as references to overcome this challenge and are not capable of
integrating tissue samples. The references, whether from the same
tissue or public databases, could introduce biases without accounting
for sample or batch variation and variable cell density across spots.
Indeed, using a single-cell atlas reference has been shown to increase
deconvolution error compared to reference-free approaches'.

Importantly, accessto pairedsingle-cell datamay notbe cost-effective
or practical, especially in cases like clinical core biopsies. This limitation
further motivates the development of reference-free methods capable of
integrating prior knowledge of cell type markers and data from multiple
tissues to improve statistical power. Reference-free methods including
STdeconvolve', Smoother” and CARD* deconvolve spots into latent
factors. However, some factors cannot be explicitly mapped to refined
cellstatesin complextissues. Additionally, these methods are not scalable
anddonotallowtheintegration of multiple ST datasets. Batch correction
methods designed for single-cell RNA sequencing (scRNA-seq) are also
not feasible inintegrating ST samples dominated by sample-specific cell
types such as tumor cells. While some methods use histology images to
align spots between replicate tissues® or predict high-resolution gene
expression from histology, they fail toleverage spatial dependencies and
paired histology to improve cell state deconvolution.

To address this need, we developed a comprehensive toolbox for
multimodal analysis and integration of ST datasets dubbed ST analysis
using reference-free deep generative modeling with archetypes and
shared histology (Starfysh). With joint modeling of transcriptomic
measurements and histology images, Starfysh infers the proportion
of fine-grained and context-dependent cell states while obtaining cell
type-specificgene expression profiles for downstream analysis. Integra-
tion of gene expression and histology accounts for tissue architecture,
celldensity, structured technical noise and spatial dependencies between
measurements, whichimprove the characterization of cell states and their
arrangement. By integrating multiple tissues, Starfyshidentifies shared
or sample-specific niches and underlying cell-cell crosstalk.

Theinnovation of our machine learning approachisinincorporat-
ingarchetypal analysis and known cell type markers as priors within a
deep generative model that maps transcriptomic features and histol-
ogy from multiple tissues to a joint latent space. Archetypes, which
capture spots with the most different expression profiles, construct
or refine cell type markers, in contrast to conventional clustering of
spots, which obtain markers corresponding to aggregated cell types”.
Archetypes empower Starfysh to characterize new or context-specific
cell states and present a hierarchy among them.

Starfysh shows successful, robust deconvolution without requir-
ing single-cell references on simulated data and accurately recapitu-
lated cell state proportions in breast tumor datasets'®, Additionally,
we profiled tumor samples from ER" patients, patients with TNBC and
patients with MBC to demonstrate Starfysh’s utility for spatial map-
ping ofintertumoral and intratumoral heterogeneity and studying the
role of microenvironmental niches in determining localized immune
response. Starfysh’s archetypal analysis characterized patient-specific
tumor cell states and their spatial arrangement within the primary
tumor, revealing how the underlying biology of tumor states and envi-
ronmental signals alters the immune response. We further identified
metabolic reprogramming and communication enriched in the rare
and aggressive MBC subtype by integrating our data with previously
published ST datasets. Starfysh thus presents a powerful analytical
platformfor systematicinterrogation and comparative studies of com-
plextissuesin health and disease through the lens of ST and histology.

Results

Starfysh performs reference-free deconvolution of cell types
Starfyshis anend-to-end toolbox for multimodal analysis and integra-
tion of ST datasets (Fig. 1a). In short, Starfysh features reference-free
deconvolution of cell types and fine-grained cell states, enhanced
by integrating paired histology images, if available. To facilitate the
comparison of tissues, Starfysh identifies common or sample-specific
spatial‘hubs’, defined as niches witha unique composition of cell states.
To uncover mechanisms underlying cell communication, Starfysh con-
ducts downstream analyses of these hubs and identifies key spatially
variable genes, cell states and colocalization networks.

To circumvent the need for matched or external single-cell refer-
ences, Starfysh leverages two key concepts to determine spots with
the most distinct expression profiles as ‘anchors’ that pull apart and
decompose spots in the latent space (Fig. 1b). First, Starfysh incor-
porates a compendium of known or custom cell state marker gene
sets. Assuming that spots with the highest expression of a gene set
corresponding to a cell state are likely to have the highest proportion
of that cell state, these spots form an initial set of anchors. Second,
because cell state markers can be context dependent or not well char-
acterized, Starfysh uses archetypal analysis to adapt the anchors.
Archetypes can also discover new cell states and their hierarchical
relationships (Methods). This feature is paramount in characteriz-
ing context-specific cell states, for example, patient-specific tumor
cells, their phenotypic plasticity and dynamic crosstalk within the
microenvironment.

Inspired by successful implementations of deep generative
models in single-cell omics analysis (scvi-tools”, scVI?, totalVI?,
scArches?, trVAE?, scANVI**, MrVI¥), Starfysh jointly models ST and
histology as data observed from a shared low-dimensional latent

Fig.1|Starfysh overview and performance on simulated data. a, Overview of
the Starfysh workflow. From left to right: Starfysh input (ST dataset, signature
gene lists for cell types or cell states and paired histology image (optional)),
deconvolution (Starfysh defines anchor spots representative of cell types or
states with the aid of archetypal analysis and infers cell type or state proportions
and densities by accounting for ST technical artifacts), sample integration and
downstream analysis (upon deconvolution, Starfysh jointly integrates multiple
samples and characterizes spatial ‘hubs’ and further infers cell-cell interactions
within each hub). NK, natural killer; PET, peripheral T. b, Left: UMAP of ST data
with2,500 spots, 29,631 genes and 5 cell types simulated from mixtures of
scRNA-seq data of breast tumor tissues, colored by the proportion of most
enriched cell typein the ground truth. Starfysh collectively uses signature gene
sets and archetypal analysis to identify anchor spots, refine marker gene sets and
discover potential new cell states. Right: comparison of ground truth cell type
proportions and densities in simulated data and the Starfysh reconstruction
(Methods and Supplementary Fig. 2a). ¢, Graphical representation of the

deep generative model integrating transcriptomic data and paired histology

images to infer ajoint latent space. d, Benchmarking Starfysh against other
methods on the simulated dataset: Pearson correlation of ground truth and
estimated proportions per cell type in data. The performance of each method

is summarized by computing the average root-mean-squared error (RMSE)
across spots against the ground truth (Methods). Additional benchmarking and
robustness analysis results are shown in Supplementary Fig. 2c-e. Benchmarking
onreal breast tumor ST data is shown in Supplementary Fig. 3a-d (Methods).
corr., correlation; ref-free, reference free; sc-ref, reference with scRNA-seq data.
e, Spatial distribution of marker expression from breast tumor Xenium data
used for generating spot-level ground truth to compare to inferred proportions
from Starfysh applied to matched Visium data (Methods). DCIS and invasive
tumor marker and cell types are shown. Other cell types and details are shown
inSupplementary Fig. 4a-e. CEACAM6, CEA cell adhesion molecule 6; FASN,
fatty acid synthase. f, Expert annotations of two distinct subsets of DCIS (red
and yellow) are aligned with Starfysh-predicted archetypes (without the use of
signatures that distinguish them).
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representation while incorporating anchors as priors. Specifically, we
definelatent representations of spots as mixtures of cell states guided
by anchors (Fig. 1c, Supplementary Fig. 1a and Methods). To test the
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performance of Starfysh, we simulated ST data from real scRNA-seq
data from primary breast tumor tissues'® with different levels of cell
type granularity (Supplementary Fig. 1b-d and Methods). Starfysh
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successfully recovered cell type proportions and cell density (Fig. 1b
and Supplementary Fig. 2a-e).

Starfysh integrates histology to correct for artifacts in transcrip-
tomic measurements by considering spatial dependencies between
spots and incorporating tissue structure, which improves cell density
estimation and neighborhood characterizationin complextissues. The
integration of two data modalities is accomplished using the product
of experts (PoE?), which calculates the joint posterior distribution for
gene expression and images (Fig. 1c and Methods). We simulated ST
data with spatial dependencies using a Gaussian process model® and
simulated images by training a ResNet18 (ref. 27) encoder followed by a
variational autoencoder on paired ST expression and histology images
(Supplementary Fig.1c and Methods). Simulated ST data harbored cell
clumps and histology patternsresembling real tissues (Supplementary
Fig.2a). The PoE integrates latent factors from transcriptomic and his-
tology dataand shows significantlyimproved performance in predict-
ingthe proportion of cell types and reconstructing high-density regions
(Supplementary Fig. 2b). We benchmarked Starfysh against existing
toolsand found the deconvolution performance of Starfyshtobe com-
parable to state-of-the-art methods that require a single-cell reference
including DestVI’, Cell2location®, Tangram' and BayesPrism" (Fig. 1d).
Additionally, compared to reference-free methods such as CARD",
BayesTME*and STdeconvolve', Starfysh shows a significantimprove-
mentindeconvolving both major and finer cell types (Supplementary
Fig. 2d,e; Mann-Whitney U-test, P<1x107). Applied to published ST
data from a TNBC breast tumor sample (patient CID44971)*%, Starfysh
also shows substantialimprovementin disentangling fine-grained cell
states (Mann-Whitney U-test, P=1.70 x 10™) and scalability compared
to other methods (Supplementary Fig. 3a-g and Methods).

We further validated the assumptions and performance of
Starfysh with archetypal analysis using a recent breast tumor ST
dataset and matched single-cell RNA in situ Xenium data®. The
multicellular-resolution ST spots were mapped to single cells anno-
tated by Xenium profiling through image registration (Methods).
Starfysh outperforms other reference-free methods: given the same
input signature gene sets from this public dataset, Starfysh obtained
an improved deconvolution for major cell types matching Xenium
profiles (Supplementary Fig.4a-f). We also used these data to confirm
thatarchetypes detect ‘purest spots’, thatis, dominantin one cell type
(Supplementary Fig. 5a,b). In fact, archetypal analysis guided Starfysh
todelineate refined cell states of ductal carcinomain situ (DCIS) with-
out prior knowledge of markers distinguishing them: archetypes 10
and 2 correspond to expert-annotated subtypes DCIS1(lowgrade) and
DCIS 2 (high grade) respectively, whereas competing reference-free
methods failed to recover them (Fig. 1e,fand Supplementary Fig. 5b,c).

Asanillustration of generalizability to other tissue types, Starfysh
successfully decomposed cell types and delineated the spatial microen-
vironmentin the mouse brainand humanlymphnodes (Supplementary
Fig. 6a-f), recapitulating the findings of Cell2location, which uses a
single-cell reference®. Inaddition to dissecting single tissues, Starfysh
was capable of integrating ST data from a diverse cohort of prostate
cancer and tracking microenvironment alterations under clinical treat-
ments (Supplementary Fig. 7). Starfysh successfully identified multiple
prostate cancer-enriched niches (hubs shown with dashed lines), along
with a unique microenvironment characterized by an abundance of
cancer-associated fibroblasts (CAFs; hub 0O, pink), which is resistant
toandrogen-deprivation (AD) therapy. These findings align with those
reported by Marklund et al.’® and underscore Starfysh’s capability to
delineate more specific cell type behavior (Methods). Altogether, these
results highlight Starfysh’s ability to derive signal corresponding to
structured tissues like the cerebral cortex, pinpoint smaller cells such
as tumor-infiltrating immune cells and construct hierarchies of cell
types. Such distinctions are impossible with other methods but are
crucial forunderstanding heterogeneousimmune responsesin healthy
and pathological tissues®.

Starfysh dissects the spatial heterogeneity of breast tumors

We further explored the spatial dynamics of immune response in pri-
mary breast adenocarcinomas using Starfysh, motivated by hetero-
geneity inimmune cell composition of tumors, which has been linked
to variable patient response, for example, to immunotherapy* . We
previously showed that the tissue of residence is a determinant of the
diversity ofimmune phenotypic states and that T cells and myeloid line-
age cells exhibit continuous phenotypic expansion in the tumor com-
pared to matched normal breast tissues®. Heterogeneous T cell states
were defined by combinatorial expression of genes reflecting responses
to various microenvironmental stimuli while being tightly associated
with T cell receptor (TCR) utilization®. These data thus suggested that
TCR specificities may contribute to the spatial organization of T cells
through the disposition of cognate antigens, facilitating their exposure
to niches differing in the extent of inflammation, hypoxia, expression
of activating ligands and inhibitory receptors, and nutrient supply.

To investigate this hypothesis, we performed ST profiling of eight
primary tumors fromanER" patient, a patient with classic TNBC and two
patients with metaplastic TNBC breast cancer (MBC) (two biological
replicates each) (Supplementary Table1and Methods). The resulting
data, alongside published datasets'® from a total of six ER* patients and
patients with TNBC breast cancer (one biological replicate per patient),
were analyzed using Starfysh.

Wefirst dissected the spatial heterogeneity inanindividual TNBC
tumor and characterized 29 diverse cell states, including normal epi-
thelial, cancer epithelial, immune cells (naive CD4" T cells, effector
memory CD4" T cells, myeloid-derived suppressor cells (MDSCs),
macrophages, CD8" T cells) and stromal cells (endothelial, perivas-
cularlike (PVL), immature PVL). Importantly, given the heterogeneity
of tumor cells*®, Starfysh defined patient-specific tumor cell states by
aligning spots enriched for known tumor cell gene sets with archetypes
that capture extreme phenotypic states, resulting in refined anchors
that guided the deconvolution of spots (Fig. 2a-d and Supplemen-
tary Fig. 8). The process of identifying anchors for regulatory T (T,,)
cells and two tumor cell states is illustrated in Fig. 2a-d, showing an
improved separation of cell states after updating gene sets accord-
ing to archetypes. Additionally, the estimated cell density and the
reconstructed image were consistent with the histology (maximal
information coefficient = 0.33; compared to 0.18 for shuffled pixels
in histology) (Fig. 2e and Methods).

To understand the association between tumor cell phenotypes
and the tumor microenvironment (TME), we defined spatial ‘hubs’ as
groups of spots with similar composition by applying PhenoGraph®
toinferred compositions of spots (Fig. 2f). This analysis revealed that
heterogeneous tumor cell states reside in different spatial hubs with
more basal-like tumor cells enriched in hub 1, while a second state
expressing a subset of MBC-like markersis presentin hub 5. These two
states correspond totwobranchesintheinferred latent space (Fig. 2g).
This analysis also uncovered regions with varying composition of
infiltrating immune cell types exemplified by hub 4 and hub 7 com-
posed of T.,-enriched spots (Fig. 2f,g). These results showed Starfysh’s
capability to elucidate intratumoral transcriptional heterogeneity
and characterize diverse and patient-specific tumor cell states, in part
determined by their spatial context and colocalization with immune
subsets.

Starfysh shows a spatially covarying tumor-immune
transition

Further analysis of spots enriched for tumor cells using diffusion
maps®**’ revealed a continuous transition from basal to MBC-like tumor
cell states corresponding to aspatial gradient (Fig. 2h and Supplemen-
tary Fig. 9a). The inferred trajectory (pseudospace axis) is associated
with upregulation of extracellular matrix (ECM) organization and
ECM-receptor interaction pathways and loss of cytokine-mediated
signaling-related gene expression, and glycolysis (Fig. 2i,j). The

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-024-02173-8

a b e . . .
Spots enriched for cell states Mapping archetypes P2A_TNBC Estimated density Reconstructed histology
Y, ) Lt 2% CAF MSC/ICAF like
%% ® LumA like 10%
. ,',;’ @ Lum like o Treg
| TSR @ MBC like Basal like
f2 @ Normal epithelial MBC like
o, - Normal epithelial
© CAF MSC/iCAF like Lum like
L LumB like
Archetypes
c Cell state-specific archetypes f Spatial hubs Spatial distribution of anchors
3 @ arch 0 arch7 @ arch14 -
b @arch1 @archs arch_15 <
@arch2 @arch10 @ arch16 2 <
‘- Pty arch3 @ archl @ arch.17 N N
”# @arch4 © arch12 @ arch.20 : 5 5
2 @arch5 @arch13 @ arch.2i W £ £
ool S S
P = =
- '?° * 3 ® HubO @ Hub3 @ Hub7
f‘ i‘. r “Sagn - . . Estimated proportion
Hub 1 Hub4 @ Hub8
@Hub2 @ Hub5 @ Hub9
® Hub6 @ Hub10 015 030
Anchors
d @ Tumor P2A1 g > .
® Tumor P2A_2 2
@ Tumor P2A_3 - <, W o2
@ Tumor P2A 4 o < < -
@ Normal epithelial c “*‘:“‘1 N &
o, I 5 5
© CAF MSC/ICAF like > ‘ E E
N ~ =
o
“ g 3
Characterize cell states and intratumoral heterogeneity
UMAP1on z
. .
i ) HIF1 signaling pathway ECM protein
® HubO @ Hub3 ¢} Pseudospace 1.00 s 21 Lt 5 4]
Hib1 @ Hubs sresson | T TTNIN [ -
expression _KEGG GO-BP/Hallmark 5 11 L. 5inl20e% Yo' o . 5 2
Basal tumor state O Hub2 e TAA 10 o I R / / 3§ .‘W ' 8 1
; 1 2 14
MBC tumor state 08 I HIF1 signaling 5 s o] v
~ Conversion e pathway B0 T — = T T T T T
24 3 of tumor state 1 Cytokine-mediated o . 3-5 10 o . 3»5 10
2 “w. to state 2 1.00 signaling pathway seudospace seudospace
S 9 - Glycolysis Cytokine-mediated signaling pathway Mesenchymal marker
£ 075 @ c <
<] c g s 41
° Q Focal adhesion 2 2
c 050 & § 4
s 2 ECM-receptor S S 5
3 025 S interaction 2 K 1
£ ol 8 £ : £,
[} organization o o
Diffusion component 1 EMT
Pseudospace
k L H*kkk
0.05 (O M2 macrophage &
A 'y B
1.0 ¢
—
E 0.5
%; AV '
0 ‘-
g ; o~ ™ o v
] S 5§ 35 88 c
<] T £ £ 2=
I3 Cluster
& Clones
*k Kk
A
4 es
— |
2 3 ec
[
g -]
§
3 2
1 0 Pseudospace 1.00
-~ ~ ® o w1
33353 3
o Pseudospace  1.00 o Pseudospace  1.00 Pseudospace 1.00 T 22 2
Cluster
*kkk
n Tumor cell state heterogeneity o [¢] P A
Sample-specific TAAs T Interpatient heterogeneity Kkkk kkkk I 1
T 3 umor
A il = | archetypes !
»
2 2 a P1_ER s E
@ == g £ _| 8
g @ ¢35 1x107 4 / CID4290 s os
5 4 z:2 e CID4535 5
gl 8 3 - P2 TNBC °
5| | [P ES : g
G| 4 5 8 E @
2 ° 5= &R CID4465 Z o
-1 )): 5 o CID44971 K]
» ] — MBC 1142243F S
5 1160920F K E
popom z score of ° ! P3_MBC 03 T T T T T T T 1
VOEOXOXXO00QOQ -4
“zlggug zlg:\zlgggggg gene expression 2=10 P4 MBC S s o ENoTEETTE
R e N - ER" TNBC  MBC ER TNBC ER
wu Sl <D wmw IS Kendall" lati vs vs Vs Vs Vs Vs
S8IS endall’s T correlation
2R3¢a9 feeacaa ER TNBC ~ MBC TNBC MBC MBC
N i
S8 272 -05 0 05 10
s © o

upregulation of epithelial-mesenchymal transition (EMT)-related
and collagen genes, which are associated with metastatic potential***,
asagradientreproducedinthe adjacent tissue samplere-enforces the

concept thatintratumoral heterogeneity is a continuum rather than
abruptly demarcated cell states. Indeed, projecting allanchors enriched
for tumor gene sets as ‘tumor-associated anchors’ (TAAs) showed that
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Fig. 2| Characterizing spatial tumor heterogeneity in breast carcinoma.

a, UMAP projection of ST data from the P2A_TNBC sample. Gray dots represent
spots; seven example cell states are highlighted in color. See all cell states in
Supplementary Fig. 8. MSC, mesenchymal stem cell; iCAF, inflammatory-like
cancer-associated fibroblast. b, Mapping archetypes to cell states shownina.

¢, Archetypal communities associated with cell states in a (Methods). d, Spots
enriched for cell states are combined with archetypes to achieve a refined anchor
set, for example, for patient-specific tumor states. e, Histology for sample P2A_
TNBC, reconstructed histology and cell density using Starfysh. f,g, Spatial hubs,
distribution of anchors and inferred proportions for two tumor cell statesand T,
cellsin the spatial context (f) and UMAP of Starfysh latent factors (g). h, Diffusion
map analysis of tumor-enriched spots. The dominant trajectory was inferred with
SCORPIUS” and is shown in the tissue context (pseudospace axis). i, Spatial hubs
(top) and pseudospace (middle) for spots sorted along the trajectory inferred
inh. Heatmaps of expression of gene modules correlated with projections of
cells along the trajectory and pathways enriched with gene set enrichment
analysis (GSEA; bottom). GO-BP, Gene Ontology Biological Process; KEGG, Kyoto
Encyclopedia of Genes and Genomes. j, Expression of marker genes in pathways
showniniinspots projected onthe trajectory. Lines and shading represent

local polynomial regression fitting with confidence intervals. k, Changesin

the proportion of cell states along the pseudospace axis. Data are presented as
mean +s.d. Tey, centralmemory T cell; Ty, effector memory T cell. I, Expression
of gene sets enriched in any intratumoral hub. n =419,382,371,521and 363

spots were examined. Box plots indicate the median (center lines), interquartile
range (hinges) and 1.5x interquartile range (whiskers). One-way ANOVA test was
performed across hubs, P<1x 107 for EMT and stemness. m, Tumor clonality
and phylogeny predicted by inferCNV. n, Heatmap of expression of the top 20
genes (rows) differentially expressed in TAAs (columns), grouped by sample.

o, Overlap between the top N marker genes differentially expressed in TAAs in any
pair of patients. p,q, Kendall’s 7 correlation between rankings of genes according
to differential expression scoresin TAAs (p) and grouped by patient subtype (q).
Correlations among samples from the same (S) and different (D) patients are
shown. Box plots indicate the median (center lines), interquartile range (hinges)
and 1.5x interquartile range (whiskers). Two-sided independent two-sample ¢-test
was performed on Kendall’s 7 correlations. Pvalues =3.30 x 107,5.06 x 107,
2.01x107%,1.76 x107%,5.30 x 10 **and 7.20 x 10°¢, respectively. ***P < 0.0001,
n=96 examined in each subgroupingq.

they are uniformly distributed along the pseudospace axis (Fig. 2h),
representing different stages of this transformation.

Wethensoughttoinvestigate whether differentimmune cell states
are associated with regions with varying tumor phenotypes. Remark-
ably, we found a compositional shift from central memory and precur-
sorexhausted T cell states* to effector memory, terminally exhausted
and T, states, as colocalized tumor cells lose basal properties along
the pseudospace axis, while activated T cells are observed at the tumor
margins (Fig. 2k). These observations indeed suggest that different
T cell states are associated with various niches of the TME shaped by
varying nutrient supply, oncogenic signals and tumor cell differentia-
tion states. In parallel, tissue-repair (M2) macrophages, which have
been implicated in promoting invasion, migration and proliferation
of TNBC cells**, were elevated toward the periphery.

The tumor state transformation axis coincides with a loss of
stemness, a gain in EMT and downregulation of WNT signaling gene
sets (Fig. 2l and Supplementary Fig. 9b,c). Examining tumor clonality by
applyinginferCNV* suggests distinct copy number profiles associated
with basal and mesenchymal-like phenotypic states residing in differ-
ent locations (Fig. 2m and Supplementary Fig. 9d). To further investi-
gate tumor-immune colocalization, we adopted a TCR amplification
protocol*® in an MBC tumor (P4A_MBC), identifying a dominant T cell
clonespatially distributed across the tissue (Supplementary Fig.10a-d).
Deconvolved cell states from Starfysh suggest that spots associated with
this clonotype varied in T, celland precursor exhausted T cell propor-
tions, determined by their location (Supplementary Fig. 10e,f). This
resultaccords with other studies on conversion of naive CD4" T cell clones
into T, cells” and T, cellsimplicated in promoting T cell exhaustion*.

Inaddition to characterizing intratumoral heterogeneity, Starfysh
also quantifies intertumor heterogeneity. By performing differential

gene expression analysis, we identified markers characterizing TAAs in
allbreast tumor samples. Marker gene sets for tumor states inbiological
replicates originating from the same patient tumor were overlapping as
expected, while distinct modules of non-overlapping markersillustrate
intrapatient heterogeneity (Fig. 2n). Quantifying the overlap in top
marker genes of tumor states across patients of the same subtype, we
observedgreater divergence inmarkers representing MBC tumor states,
implicating higherintertumoral heterogeneity in MBC samples than that
in TNBC and ER* samples (Fig. 20), consistent with the known morpho-
logical heterogeneity of MBCs*’. The heterogeneity between TNBC and
MBCwas further supported by comparing rankings of TAA differentially
expressed genes, where we found alower correlation between patients
with MBC and TNBC thanin samples of the same subtype (Fig. 2p,q).

Starfysh defines spatial hubs from integrated breast tumors

To demonstrate the potential of Starfysh in deriving commonalities
among heterogeneous samples and disease subtypes, we performed an
integrated analysis of all 14 samples from ten patients (n = 37,517 spots)
(Supplementary Table 3and Methods). Uniform manifold approximation
and projection (UMAP) dimensionality reduction of ST data without Star-
fyshrevealed no overlap among patients, partly due to patient-to-patient
variation, given that replicate samples overlapped (Fig. 3a). Moreover,
the aggregation of patient-specific tumor cells with other cell types
withinspots hindered the comparison of shared immune states and spa-
tial neighborhoods between patients. While batch correction methods
designed for single-cell datafailed in correcting the variations between
patients (Supplementary Fig. 11a,b), Starfysh successfully integrated
all datasets in ajoint latent space (Fig. 3b and Supplementary Figs. 11c
and12).Ityielded greater mixing of immune states quantified with the
entropy of the local distribution of patients (Methods) yet preserved

Fig. 3 | Characterizing tumor-immune hubs from the integration of samples.
a,b, UMAP visualization of ST data from four MBC, six TNBC and four ER* samples
(n=37,517 spots) before (a) and after (b) Starfysh integration on the joint

latent space of ¢. ¢, UMAP visualization of Starfysh-inferred proportions from
integration of spots from all samples colored by the proportions of atumor cell
state and an exampleimmune cell state (T,.,) in the integrated space. d, UMAP of
integrated space colored by Shannon’s entropy per spot and box plots of entropy,
grouping spots by disease subtype. Box plots indicate the median (center lines),
interquantile range (hinges) and 1.5x interquartile range (whiskers).n = 32,409
immune cell-enriched spots and 5,108 tumor cell-enriched spots. n = 47,493, 467
and 74 in basal-, MBC-, LumA- and LumB-enriched spots. Two-sided independent
two-sample t-test was performed on the entropy of each group comparison. P
value =7.89 x107*°in comparison between immune cells and tumor cells;
Pvalues=1.08 x1072,2.04 x107%,2.30 x107%%,1.99 x10™*,2.31 10" and 2.14 x 10>

for basal versus MBC, MBC versus LumA, LumA versus LumB, basal versus LumA,
MBC versus LumB and basal versus LumB. ***P < 0.001, ****P < 0.0001.

e, UMAP of integrated space colored by hubs identified by clustering spots based
oninferred cell type proportions. f, Spatial hub distribution for each sample.

g h, Spatial arrangement of hubs (g) and pathological histology annotation of
sample 44971_TNBC (h). Inferred hubs align well with annotated DCIS (red hub),
lymphocyte-infiltrated (olive green hub) and stroma (yellow hub) regions. TIL,
tumor-infiltrating lymphocyte. i, MIC for alignment of hubs with histology. Box
plotsindicate the median (center lines), interquantile range (hinges) and 1.5x
interquartile range (whiskers).n=1,162 spots in both hubs and shuffled hubs. Two-
sidedindependent two-sample t-test was performed. Pvalue =1.30 x102.*P < 0.05.
j, Paired histology and spatial arrangement of hubs for TNBC and ER" patient
samples showing consistencies between replicates of the same patients and with
histology. k, Number of spots assigned to intratumoral hubs in each patient.
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differences between patient-specific tumor cells (Fig. 3c,d). Overall, this
analysis showed that MBC tumors have the highest heterogeneity, while
luminal (Lum)A tumors display lower heterogeneity than other subtypes.

To understand similarities and differences in the organization
of cell states among patients, we identified spatial hubs from the
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integration of all samples (Fig. 3e). The majority of hubs were detected
in more than one patient (Fig. 3f). The distribution of hubs, however,
varied between disease subtypes and patients. The spatial arrangement
of hubs showed a marked similarity to expert-annotated histology,
includinginrare normal epitheliumregions, tumor-infiltrated regions
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and immune cell-enriched regions (Fig. 3g,h), which was quantified
using the maximum information coefficient (MIC) (Fig. 3i and Meth-
ods). As expected, hub distributions had similar patterns between
replicates, that is, adjacent sections of tumor tissues (for example,
P1A_ER, P1B_ER), whereas hubs dominated by tumor cells were different
between patients (for example, P1, P2) (Fig. 3j k).

Hypoxia shapes animmunosuppressive nichein MBC
Byintegrating ST datasets, we systematically compared tumor hetero-
geneity and its interplay with tumor-immune characteristics across
breast cancer subtypes. In particular, we investigated potential dif-
ferences in cellular organization in MBC compared to other TNBCs™.
MBC isarareand aggressive form making up 1-2% of all breast cancer*°
and typically characterized as TNBC due to lack of expression of ER,
progesterone receptor (PR) and human epidermal growth factor 2
receptor (HER2). However, MBCs have worse prognosis and greater
resistance to chemotherapy than conventional TNBC***"*2, A hallmark
of MBC is morphological heterogeneity, reflected in its name***, This
distinguishing feature alongside enrichment in macrophages and
immunosuppressive T, cells** motivates the spatial characterization
of tumor-immune crosstalk inthe MBC TME to help guide the develop-
ment of new therapeutic approachestailored to MBC’s unique biology.

In our comparative analysis of TNBC and MBC tumors, we defined
spatial hubs among ten samples encompassing these subtypes (Supple-
mentary Fig.13aand Methods) and partitioned themintointratumoral,
peritumoral and stromal categories according to spatial arrangement
around tumor regions (Fig.4a and Supplementary Fig.13b-d). Distinct
intratumoral hubs across samples highlight tumor cell heterogeneity
among patients (for example, hub 11; Figs. 3k and 4a,b). To understand
phenotypic differences in MBC tumor states, we projected TAAs onto
theinferredjoint space fromintegration of all samples (Methods) and
applied diffusion map analysis. This revealed tumor state transition
trajectory from a TNBC-enriched state to an MBC-specific state cor-
related with tumor growthregulation and reduced glycolytic processes
(Fig. 4c,d). MBC-specific states were associated with inflammatory
response, hypoxia, EMT and tumor necrosis. The expression of EMT-
and hypoxia-related genes, along with sample distribution on this
trajectory confirmed their enrichment in MBC intratumoral hubs
(Fig.4e,f). Oncogenic pathways like PI3K-AKT, anti-inflammatory and
glucose-deprivation pathways were enriched in MBC intratumoral
hubs, while G2/M and pro-inflammatory pathways were downregulated
(Supplementary Fig.13e), suggesting animmunosuppressive environ-
mentin MBC intratumoral regions.

In parallel, we observed an increase in hypoxia approaching MBC
intratumoral hubs, accompanied by enrichment in T, and PVL cells
in MBC (Fig. 4d-g). In fact, enrichment of T, cells colocalizing with

exhausted T cells (as determined by the spatial correlation index>) in
intratumoral hubs was detected only in MBC (Supplementary Fig. 14a
andMethods), implicating T, infiltration asa potential hallmark of MBC.

To identify communication patterns used by MBC tumor-
infiltrating T, cells, we predicted receptor-ligand interactions that may
mediate crosstalk between T, cellsand other cell states inintratumoral
hubs using CellPhoneDB* (Fig. 4h, Supplementary Fig. 14b,c and Meth-
ods), revealing immunosuppressive pathways related to FGF2, FGFR1
and CD44 expressioninvolvedin MBC. Notably, FGF2is a protumor angi-
ogenesis factor and induces drug resistance in chemotherapyinbreast
cancer”. The receptor FGFR1induces the recruitment of macrophages
andMDSCsinthe tumor*®, while CD44 is aknown marker of breast cancer
stem-like cells and stabilizes T, persistence and function*’. We observe
diffused expression of these receptors with distance from T,,-enriched
spotsin MBC (Fig. 4i), further supporting theirinvolvementinintratu-
moral T,.,communication. These results demonstrate complex crosstalk
inresponse to theimmunosuppressive signals generated by T, cells.

Asidefrom T, cells, otherimmunosuppressive cells such asM2-like
macrophages, MDSCs and CAFs were also uniquely enriched in MBC
intratumoral hubs compared to TNBC ones (Fig. 4g). Previous stud-
ies have shown that hypoxia affects EMT in cancer by regulating EMT
signaling pathways, EMT-associated microRNA and long noncoding
RNA networks®®. Both hypoxiaand EMT were reported to modulate the
TME by recruitingimmunosuppressive cell types such as T, cells®**, in
line with our observation (Fig.4g), implicating hypoxia as amajor factor
contributingto MBC. Hypoxiais also known to confer therapy resistance
byinducingcell cycle arrest and inhibiting apoptosis and mitochondrial
activity®. Therefore, a tumor subpopulation surviving hypoxia may
contribute to resistance to chemotherapy and radiotherapy.

Gene enrichmentanalysisin MBC intratumoral hubs consistently
revealed EMT, hypoxia, ECM and PI3K-AKT signaling in MBC samples
(Fig.4jand Supplementary Fig.14d,e). Notably, the genomic landscape
of MBCs shows frequent mutations in TP53 and the PI3K-AKT-mam-
malian target of rapamycin (mTOR) pathway®*“*, Our data thus suggest
possible coordination of nutrient uptake including glucose through
hypoxia-inducible factor 1 (HIF1) and PI3K-AKT pathways®®, supporting
enhanced growth and proliferationinintratumoral MBC hubs®, while
this metabolic reprogrammingis associated withimmunosuppressive
crosstalk.

Spatial organization and interactions in the stromal breast
TME

To dissect the stromal TME responding to unique microenvironment
niches, such as gradients of hypoxia in MBC, we characterized the
cellular composition of peritumoral and stromal regions (Fig. 4a).

Intriguingly, T,.,-enriched hubs 3 and 4 were present in all samples

Fig. 4 |Intratumoral inflammation and heterogeneity in MBC epithelia.

a, Classification of spatial hubs according to distance from tumor hubs and
matched histology. Percentage of spots from MBC and TNBC subtypes in each
hub. One-sided independent two-sample ¢-test was performed for comparisons
of proportionsin each hub. Pvalues =3.05x1072,1.48 x1072,0.43,2.74 x10™*,
9.13x107,0.63,0.94,0.77,3.80 x1072,4.65 x107%,1.05x 10 *and 3.84 x 1072,
sequentially.*P< 0.05,**P < 0.01, **P < 0.001, ***P < 0.0001. NS, not significant.
b, The spatial arrangement of hubs. ¢, Diffusion map analysis reveals a
continuous trajectory between TAAs across different MBC and TNBC patient
samples. Archetypes are shown, with black stars representing the most distinct
states for TAAs. The dominant trajectory was inferred with SCORPIUS™. d, Top
row: spots ordered by inferred pseudotime using SCORPIUS based on diffusion
componentsin c. Second row: pseudotime for spots sorted along the trajectory
inferred in c. Bottom: heatmaps of expression of gene modules with positive or
negative correlation with the projection of cells along the trajectory and select
pathways enriched with GSEA. e, Expression of EMT- and hypoxia-relevant gene
sets shows highly correlated dynamics along pseudotime. Data are presented
asmean values * s.d. f, Percentage of TNBC and MBC spots along the inferred

pseudotime. g, Comparison of inferred intratumoral cell state proportions
across tumor subtypes. Ty, terminal exhausted T cells; myCAF, myofibroblast-
like cancer-associated fibroblasts. Box plots indicate the median (center
lines), interquantile range (hinges) and 1.5x interquartile range (whiskers).
n=5,366and1,888 intratumoral spots for TNBC and MBC, respectively. Two-
sided independent two-sample t-test was performed. P<1x107%°,1.20 x107%,
4.21x1072%,8.06 x107°,4.80 x 10™*® and 3.26 x 1077, sequentially. h, Predicted
significant receptor-ligand interactions between T, cells (sender) and other
cell types (receiver) in MBC intratumoral regions. Prex, precursor exhausted
Tcells; pDC, plasmacytoid dendritic cells; cDC, conventional dendritic cells;
Bm, memory B cells; Bn, naive B cells. i, FGFR2 and CD44 expression averaged
across spots in each tumor subtype after binning according to k-nearest
neighbors (kNN) graph path length from T,.,-enriched spots in intratumoral
hubs. Data are presented as mean values + s.d. j, Enrichment analysis for MBC
intratumoral hubs. Differentially expressed genes were identified using the
Wilcoxon test in Scanpy, and significant pathways (false discovery rate < 0.05,
Benjamini-Hochberg) are shown with GSEA’s default permutation-based test.
UV, ultraviolet. Dn, downregulated.
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but showed unique patternsin each disease subtype (Supplementary
Fig. 13f). For example, they enveloped tumor hubs or were spatially
scattered in TNBC tumors (Fig. 4a,b; for example, hubs 3 and 4 in
P2A_TNBC). This feature of tumor hubs enveloped with T,,-enriched
regions was also identified in ER* tumor samples (P1A_ER, P1B_ER in
Fig.3jwith T.,-enriched hubs 0 and 2). By contrast, in MBC, they were
concentrated at certain locations close to intratumoral hubs (Fig. 5a

and Supplementary Fig.12). In addition to the spatial shifts of T cell

states, endothelial cells (CAFs; Fig. 4g) were also enriched inhubs 3 and
4in MBC, suggestive of heightened angiogenesis in the stromal TME of
MBC, which was particularly apparentin histology of the region, likely
as an adaptation to hypoxia (Fig. 5a,b).

To validate Starfysh’s predictions, we performed co-detection-
by-indexing (CODEX) profiling on MBC tissues with 23 antibodies (Sup-
plementary Fig.15a-d and Supplementary Table 6). As a multiplexed
imaging technology, CODEX measures single-cell protein expression.
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The profiled tissues were resectioned adjacent to those profiled with
ST and showed similar tissue architecture in histology. Aligning the
segmented and annotated single-cell CODEX data with ST data con-
firmed the predicted spatial organization of major and rare cell types.
For example, CODEX-profiled regions enriched for T, cells and plas-
mablastsaligned with hub 7in ST samples, adjacent to theintratumoral
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regions (Figs. 5c and 4a,b and Supplementary Fig. 15¢e). The cellular
components of vasculature indicated by CD31 expression also matched
predicted endothelial and perivascular cells in ST data. We further
assembled the single-cell CODEX into spot-level resolution and com-
pared proportions of cells across TME regions. We identified adecline
in tumor cells from intratumoral to stromal regions and a unique
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Fig. 5| Spatial heterogeneity of the stromal breast TME. a, Spatial
arrangement of hubs and corresponding histology indicate blood cells and
vessels around hypoxic hubs (hubs 3 and 4) in MBC. b, Contour map and bar
plots showing expression gradients of EMT- and hypoxia-related gene sets.
Top:sample P3A_MBC; bottom: sample P4A_MBC. One-way ANOVA test was
performed onbox plots of inferred T, proportions and expression of EMT-and
hypoxia-related gene sets for regions in MBC. Pvalues =1.46 x 10%°,1.04 x 107
and 0.12, respectively. Box plots indicate the median (center lines), interquantile
range (hinges) and 1.5x interquartile range (whiskers).n = 5,366 and 1,888 spots
inintratumoral regions, 5,608 and 7,104 spots in peritumoral regions, and

7,524 and 1,463 spots in stromal regions for TNBC and MBC, respectively. Intra,
intratumoral; Peri, peritumoral. ¢, A subset of CODEX markers, histology and
segmented single cells from CODEX images aligned with Visium for sample
P4A_MBC and sample P4B_MBC. DAPI, 4,6-diamidino-2-phenylindole; DC,
dendritic cell; HSPC, hematopoietic stem and progenitor cell. d, Comparisons of

tumor and plasmablast-T,., percentages between inferred results in Visiumand
aligned CODEX inintratumoral, peritumoral and stromal hubs. n = 584,1,863 and
652 spotsinintratumoral, peritumoral and stromal hubs; n = 83 and 3,090 spots
inthe T,,—plasmablast hub and other hubs. A one-way ANOVA test across regions
was performed. Pvalue = O for all Visium-related box plots, Pvalues = 6.25 x10°°
and 0.03 in tumor-like proportions in P4A_MBC and P4B_MBC samples, and
Pvalues =5.06 x 10 and 0 in plasmablast and T, cell proportions in P4A_MBC
and P4B_MBC samples. Box plots indicate the median (center lines), interquantile
range (hinges) and 1.5x interquartile range (whiskers). e, MIC between hubs
identified from Visium and hubs found in CODEX. n = 4 samples for Visium and
CODEX, respectively. A one-sided independent two-sample ¢-test was performed.
Pvalue =1.67 x 102 Box plots indicate the median (center lines), interquantile
range (hinges) and 1.5x interquartile range (whiskers). An ANOVA test was
performed for comparisons. *P < 0.05, ****P < 0.0001. f, Summary diagram.

enrichmentof T, cells and plasmablasts at the tumor border (Fig. 5d).
Wethen compared cellneighborhoods defined accordingto CODEX to
spatial hubs in ST and found a significant correlation (Fig. 5e and Meth-
ods). Overall, Starfysh enabled characterization of the spatial TME in
MBC differing from TNBC and ER" cancer (summarized in Fig. 5f). Our
analysis suggests that the enriched tumor-suppressive cells in MBC
intratumoral regions underlying heightened hypoxiaand EMT poten-
tialand angiogenesis in the MBC TME likely oppose pro-inflammatory
responses and limit CD8" T cell infiltration (Supplementary Fig. 15f).

Discussion

Byincorporating archetypal analysis and prior knowledge of cell state
markersin a deep generative model, Starfysh dissects the spatial het-
erogeneity of complex tissues from ST and histology, without relying
on single-cell references. It refines cell states using archetypes and
deconvolves themusing a generative model enhanced with histologi-
cal data, providing information on tissue architecture, cell density
and spatial dependencies between measurements. Starfysh excels in
integrating multiple heterogeneous tissue samples and identifying
shared or tissue-specific cell states and spatial hubs. These key features
make Starfysh an ideal tool to discover spatial hubs from integrated
large-scale datasets, increasing power to detect features of complex
and rare diseases that could drive future therapeutic strategies.

Applied to breast tumors, Starfysh elucidated the role of spatial
heterogeneity in shaping continuous phenotypic expansion of tumor-
infiltrating immune cells®. It revealed a correlation between tumor
cell state transitions and immune cell distribution, supporting the
hypothesis that tumor cell spatial orientation influences immune
differentiation.

We demonstrate the power of Starfysh inintegrating multiple tis-
sues using our generated and previously published ST datasets. This
integration allowed for quantification ofintratumoral and intertumoral
heterogeneity and identification of spatial hubs with similar cell state
compositions. A key application of this integration was comparing
rare, chemoresistant metaplastic breast tumors to other breast can-
cer subtypes. Notably, we found intratumoral infiltration of T, cells,
M2-like macrophages and MDSCs in MBC, shaping an immunosup-
pressive niche enriched in EMT and hypoxia. Crosstalk with T, cells
was predicted to be mediated through FGF2, FGFR1 and CD44 signal-
ing pathways, which would be top candidates for future functional
studies. Indeed, FGFR signaling is known to maintain EMT-mediated
drug-resistant populations®®. Enrichment of p53 and PI3K-AKT path-
ways in MBCs also suggests reprogramming of metabolic activity in
MBC tumors. Our data thus motivate further investigation of FGFR
inhibitors® as well as other approaches for targeting glucose metabo-
lism’® and immunosuppressive T, cells for the treatment of MBCs.

In addition to spatial characterization of the TME specific to this
rare subtype of breast cancer, the integrationidentified a stromal hub
shared across breast cancer subtypes while exhibiting varying spatial

patterns. Within this stromal hub, we observed compositional shifts
with the replacement of T, cells with activated CD8" T cells in MBC
compared to other TNBCs. Additionally, our observation of enriched
endothelial cells in MBC stroma alludes to mechanisms of local adap-
tation to hypoxic regions through possible vascular formation. Alto-
gether, these results imply that the underlying biology of the tumor
impacts stromal response and immune infiltration.

Overall, Starfysh has proven effective in analyzing complex ST,
integrating patient samples with distinct microenvironments and
sources, and has demonstrated robustness in characterizing spa-
tial interactions within and across samples. These features enabled
extraction of biological insights from a limited cohort of patients
with breast cancer. Inarecent study, we applied Starfysh to disentan-
gle the spatial dynamics of activated and exhausted T cell subsets in
Slide-seqV2 (ref. 71) data from anti-PD-1-treated melanoma tumors’,
showingits applicability to other ST technologies and cancer systems.
Infuture work, incorporation of archetypal analysis in the probabilistic
framework and extensions to multiomic integration with proteomics
or chromatin accessibility will improve our ability to achieve com-
prehensive characterization of spatial heterogeneity. Additionally,
integration with high-resolutionimages can explicitly account for cell
morphology.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-024-02173-8.
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Methods

Starfysh model

Model overview. Deep generative models parameterized by neural net-
works have proven effectiveinanalyzing single-cellRNA expression data
(scvi-tools”, scVI?, totalVI?, scArches?, trVAE®, scANVI**, MrVI* and
so on). However, the presence of multiple cell types in each spot in ST
datamakes it difficult for these models to disentangle cell type-specific
features. To overcome this limitation, Starfyshintroduces agenerative
model with aspecial variational family that is structured to model the
presence of multiple cell states per spotin ST data. The Starfysh genera-
tive model leverages gene set signatures (either existing signatures or
signatures computed with archetypal analysis) as an empirical prior
to help disentangle cell types’. We first detail the generative model of
Starfyshand thenintroduce its structured variational family.

Starfysh generative process. Starfysh models the vectors of gene
expression x; € R¢(with Gthenumber of observed genes) for each spot
iwith agenerative model. The generative model (Fig.1c) is parameter-
ized by K, representing the expected number of cell states in the data.
The determination of K canbe automated through archetypal analysis
beforehand, or anexpert can provide guidance on the K most important
cell states in the sample. Each cell state k € [K] is characterized by a
low-dimensional latent variable, u; € R? (with D defaulting to ten
dimensions), capturing the specific mechanisms underlying that cell
state. Moreover, each cell state khas ascalar variable, g, > 0, indicating
its variability and heterogeneity.

Subsequently, Starfysh models each spot i with a specific low-
dimensional representation z,. In the context of single-cell data, each
cell state k would usually be represented by alow-dimensional vector
zcentered around u,, with a standard deviation of g,. However, for ST
data, where each spot captures a mixture of cells with different cell
states, Starfysh associates each spotiwitha proportion vector, ¢, € AX,
representing the proportions of each cell state in that spot. Starfysh
then constructs the low-dimensional representation z;with a mixture
distribution that combines the cell state proportions c¢; and the cell
state-specific representations uy: z;lc;, t; 0 ~ N(X, Cycllis X4 Cix0r)-

Following this, z;is transformed using a neural network fto obtain
the normalized mean expression of each gene for spot i, whichis further
scaled by the library size [.. The observed raw transcript count x,, for
geneginspotiisthensampled from a negative binomial distribution
centered around the upscaled mean.

Cellstate proportions, ¢, are also considered as random variables
with a carefully crafted prior. Each cell state k € [K] needs to be associ-
ated with a preliminary gene set signature, s;, which can be provided
by the user or automatically discovered through archetypal analysis.
By calculating the signature scores in each spot, denoted as A(x;, s),
Starfysh establishes a prior distribution over the cell state proportions
in each spot. Specifically, the proportions of cell states c;are sampled
fromaDirichlet distribution withaprior parameter a[A(x;, s)];ci- FOr
instance, if spot i highly expresses known marker genes for cell state k,
thenalarger value of A(x;, s,) will favor the probability of allocating cell
state kfor spotiaccording to the empirical Dirichlet prior parameter.
The parameter a modulates the prior strength and represents the belief
in the signature gene sets: a larger value corresponds to a stronger
prior, while asmaller value results in a less constraining prior.

The generative model is defined as p(u,c,z,,x) = 1‘[',f=1p(uk)1'[;’=1
p(copzilc;, wpl)p(xlz;, ), with

» p(u) =Normal (0,101/,)

« p(c; a,A) =Dirichlet (a-A), where a controls the prior strength on
the signature scores A.

+ p(zjc;, u; 0) = Normal(}, citty, -, Ci0x) » Where the parameters oy
represent cell state-specific heterogeneity.

+  p(l;l) = logNormal(f;, 1), where [;is the locally averaged library size
observed in spot i’s spatial neighborhood.

* plxiz, )= HgG:lP (Xielli ;)

« pxll, z; 6, f) = NegativeBinomial ({f(z), 6,), where 6, denotes
gene-specificdispersions andfis aneural network with asoftmax
output.

Inthe generative process, the parameters A, a, [;are fixed. The prior
strengthais set by default to 50. Robustness analysis on a demonstrates
that the model consistently outperforms the signature prior given a
reasonable range (a > 1) (Supplementary Fig. 2¢). The optimal choice
ofthe prior strength term depends on the specific dataset and markers.
The locally averaged library size is computed as [; = ﬁ Yien; g X
where N, is the set of spots physically located adjacent to spotiand also
includesi. The cell state heterogeneities g, are initialized as 1, and the
genedispersions 6,areinitialized atrandom. Finally, the neural network
fhas by default one linear layer followed by a softmax. g;, 6, and fare
alllearned during the inference.

Integration with histology images. Although histology hematoxylin-
and-eosin (H&E) images are usually provided along with ST data (for
example, the commercial Visium platform), current methods fail to
use such modality in deconvolving cell types. Histology, however,
provides useful information about morphology, tissue structure, cell
density and spatial dependency of cells. Integrating histology and tran-
scriptomesin ajoint model is challenging, as the two data modalities
arevery different: the genome-level transcripts are high-dimensional
vectors, whereas the histology data consist of multichannel images.
Thus, itis essential to address the mismatch of these two types of data
while preserving cell type-specific information of gene expression
and cell morphology-specific information of histology images. The
integrative approachin Starfyshis formulated with adeep variational
information bottleneck®.

The original H&E images are first normalized to [0, 1] per channel.
Thealignmentbetween H&E images and ST spot i produces the histol-
ogy image patches y; € RPP*¢ (with P as the side length of the patch
and C as the number of image channels, for example, C=3 for RGB
images and C=1 for grayscale images). We set P=26 by default to
approximate the number of pixels surrounding each spot. The image
patch y;is then flattened in the Starfysh model and assumed to be
generated from the same latent variable z;that informs gene expression
(Fig. 1c and Supplementary Fig. 1a) with a distribution p(y,|z;) param-
eterized by two neural networks g, g,, for meanand variance of distri-
bution for y, respectively. Both consist of a linear layer followed by a
batch normalization layer. They define:

p (yilz;)) = Normal ( g,(2),8+(2))) -

Construction of the empirical prior. For cell states expected toreside
in the tissue, Starfysh first filters out marker genes that are either
unavailablein the ST dataor not expressedinany spotsto obtain binary
variable s, € RS, k=1{1,..., K}. Next, two priors are calculated before
running Starfysh, including a prior for the cell state proportions that
reflects their spot enrichment and a prior for the library size:

1. Prior for the cell type proportion:
A(x, s;) is defined as the enrichment score™ of the marker genes
for cell state k at spot i. The score is first calculated with the
Scanpy function ‘scanpy.tl.score_genes’, which computes the
marker genes’ average expression and subtracts from it the
average expression of a reference gene set G’ randomly sampled
from binned expressions:
A0S0 = =T Xig Stg — g Lgecr - We further trans-
formed the scores using the function ReLU(x) = max(0, x) to
ensure the positive constraints of Dirichlet parameters and make
them comparable across spots (with € defaulting as 1 x107%):

A(x;, s¢) = ReLUA™Y (x;, 5p)) + €

A(Xi’sk)

A Si) = 2AOG, s
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For each cell state, the prior assigns unique enrichment scores across
allspots, and we thus can define the anchor spots R € RSX specifying
the ranking of each spot i based the enrichment score A(:, k) for each
state k, which canbe updated with archetypal analysis detailed below.
2. Priorfor the library size:
Starfysh also considers the spatial dependency of spots when
generating the prior for library size. [, = ‘il Yien, 2igXier where N;
is the set of spots physically located around the spot i, which
includes all spotsj such that|r; — r;| < w, where w is an adjustable
parameter for window size (default set to 3). r; is the spatial
coordinates for spot .

Archetypal analysis. Marker genes that represent cell states may
be context dependent or unknown. To address these limitations and
improve the characterization of tissue-dependent cell states, we devel-
opedageometric preprocessing step, leveraging archetypal analysis”,
to refine marker genes and identify new cell states.

Archetypal analysis fits a convex polytope to the observed data,
finding the prototypes (archetypes) that are most adjacent to the
extrema of the data manifold in high dimension. Previous works”® 7
have applied archetypal analysis to scRNA-seq data to characterize
meaningful cell types. In the context of ST, we hypothesize that the
archetypes are closest to the purest spots that contain only one or the
fewest number of cell states, while the rest of the spots are modeled as
the mixture of the archetypes.

We applied the PCHA algorithm’ to find archetypes that best
approximate the ‘extrema’ spots on a low-dimensional manifold.
Specifically, let X € RS*Cbe the normalized spot (S) by gene (G) expres-
sion from the original spatial count matrix. We further selected the
first P=30 principal components (X’ € RS*") to denoise the data. We
denote matrices W € R**?, B € RPSand H = BX' € RP*?, where Drepre-
sents the number of archetypes. The algorithm optimizes the param-
eters of W and B alternately, minimizing |X' — WH| = |X' — WBX'|
subjecttoW.; > 0 & 2?:1 W.;=1andB.; >0& ZleB:,,- = 1,where Sspot
counts and Darchetypes are convex combinations of each other™. We
applied Fisher separability analysis® to infer the intrinsic dimension
as its lower bound and iterated through different K values until the
explained variance converges. We also implemented a hierarchical
structure to fine tune the archetypes’ granularity with a resolution
parameter r (ref. 81) (default set to 100). For archetypea,, i € 2,..., D, if
it resides within a Euclidean distance of r from any archetype
a,je<l,..., i—1,wemergea;withthe closest a.. Thearchetypes distant
from each other are kept after the shrinkage iteration and used in
subsequent steps.

We define archetypal communities as the r-nearest neighbors
(same as the resolution parameter) to each archetype by construct-
ing D clusters. Next, for each cluster i, we identify the top 30 marker
genes by performing a Wilcoxon rank-sum test between in-group and
out-of-group spots with Scanpy®. We then refine cell state markers
by assigning archetypal communities to the closest cell states. First,
we align D archetypal communities with the best one-to-one matched
K cell states with stable marriage matching®® and then append the
archetypal marker genes to the given cell state. Next, we update the
anchor spotsaccording to the updated gene list. Alternatively, to find
new cell states, we rank the archetypal clusters from the most distant
to the least distant to the anchor spots of known cell states, and the
archetypal clusters distant from all anchor spots represent potential
new states for further study.

The overall archetypal analysis algorithm in Starfysh is summa-
rized as follows:

1. Estimate the intrinsic dimension of the count matrix, and find k
archetypes that identify the hypothesized purest spots.

2. Findthe N-nearest neighbors of each archetype, and construct
archetypal communities.

3. Find the most highly and differentially expressed genes for each
archetypal community, and select the top n genes (default,
n=30) as the ‘archetypal marker genes’.

4. Ifthesignature gene sets are provided, align the archetypal
communities to the best matched known cell types, update the
signature genes by appending archetypal marker genes to the
aligned cell type and recalculate the anchors.

5. Ifthesignature gene sets are absent, apply the archetypes and
their corresponding marker genes as the signatures.

We found that archetypes alone are sufficient for disentangling
major cell types but not fine-grained cell states (Supplementary
Fig. 3e); however, when used as empirical priors to the deep genera-
tive model, they can guide the successful deconvolution of cell states
(Supplementary Fig. 3a).

Starfysh structured variational inference. Starfysh uses variational
inference to approximate the posterior. We first describe the inference
procedure withoutintegrating the histology variable y,. The posterior
on variables u, (cell states representations) are approximated by
mean-field distributions g(u,), while the posterior on the variables c;
and /; (cell state proportions and library size) are approximated by
amortized mean-field distributions g(c;lx;) and g(/]x;). Next, for each
spot i, we use a specially structured variational distribution g(zjc; x;)
thatuses cell state proportions to sample thelatent variables z,. Because
each spot contains multiple cell states with proportions ¢, the struc-
tured variational distribution is assumed to decompose as acombina-
tion of cell state-specific terms (denoted by {(k, x;) for each cell state k),
weighted by the proportion of cell states c;. The variational family
factorizesintheformg(u, c,z, [|x) = H:zlq(uk)ﬂleq(c,- x)glilx)q(zilcix; )
parametrized by new variational parameters m, and v, and neural
networks A, y and as follows:

q(ug) = Normal(my, uy)
qllilx;) = Normal(/l,,(xi),/lu(xi))
q(cilx;a) = Dirichlet(a~ V(Xi))

qzlci, x;) = Normal(ZkCik Gk, X7), 2 Ci - (a(k,xi))~

Insummary, for each cell state k, the function {(k, x;) deconvolves
the contribution of cell state k to the latent representation of z,. Each
z;is a combination of the cell state contributions {(k, x;) weighted by
the proportions c;. The cell state proportions are inferred with the
neural network y, which is guided toward the prior to match the cell
type gene sets. The prior strength parameter a also premultiplies the
neural network y to obtain aposterior of similar strength, which helps
for the gradient optimization.

Next, the standard variational inference that maximizes the evi-
dence lower bound (ELBO) is performed®*. The ELBO in our case can
be written as:

ELBO(@) = Eqgzcuu |log 2oietete) |

q(z,c.Lulx)

= Eq@zetulogpxiz, )]
~Eacloaw [DKL(Q(ZIC, 0lp(zla, c;a))]
Dy (qclx@llp(ca, A)
Dy () Ip(D) ~ D (q(@)llp(@)),

where D, (p || q) is the Kullback-Leibler divergence between distribu-
tionpandgq, definedas Dy, (p1lg) =E, [log p(x)/q(x)]. We find the g that
maximizes the ELBO by running stochastic gradient descent.

Starfysh structured variational inference with histology integration.
To integrate the histology in the inference method, we model the
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approximate posterior over the latent low-dimensional representation
zwith the PoE distributions (Supplementary Fig. 1a). For each spot i, we
denote the view-specific encoders g6, (z/c, x;) and g8, (z)ly,) from the
correspondingexpressionx;andimage patchy, respectively. The expres-
sion view gy, (z;|c;, X;) = Normal(yy, 6;?) is the same as described. For the
histology view, z;is approximated by amortized mean-field distribution
Ge,(zi ¥1) = Normal(u,, 0,%) = Normal(§,(v,), §,(v;)) with a single-layer
neural network &. For the joint latent variables z;, the posterior distribu-
tiong(zjc; x; y;) isparameterized as a product of view-specific Gaussian
distributions as described in the original method?:

/0% + 1p/0,2

zilci, X1, ) = .
qB( ilCi A yl) 1/012 " 1/0_22

The previous ELBO can be updated with this new variational
approximation for the joint modeling of histology and transcriptome.
We leverage the information bottleneck approach® to optimize the
joint ELBO as well as the view-specific marginal ELBOs through asingle
objective function Ly = Lioine + @ * Limarginay Where:

pxy,z,lc,u50)

Fioint = ELBO(gp) = qu(z,l,c,ulxy) log Geloulny)

= qu(z\x‘y)qg(l\x) lng()dZ’ b+ qu(zlxy) Ing(ylz)
— Egy(eopPr (Go(zle, x. p)lIpCzlc, w0))
gmarginal = ELBO(qBI) + ELBO(qBZ)-

The variational family for the joint objective functionis factorized
as qo(z, L, ¢, upx,y) = qo(21x,y)q9(| )q0(clx)qo(u)} Hyperparameter a (set by
default as 5) balances the weights between joint and view-specific
objectives®. The expression view ELBO(gs,) remains the same with
above, and the histology view ELBO(gy, ) is written as:

p,z,6,u50)
s, (21)

= Egy, (i 108PO1D) — Eq, e, Pk (46, @ WPzl c;0)).

ELBO(qu) = quz(zw) lOg

The same conditional prior p(zic, u; 0) is applied across the joint
and view-specific ELBOs. We find the {gy, g5,, g5,} that maximize %,y
by running stochastic gradient descent.

Starfysh implementation. The Starfysh model is implemented as a
Python package using PyTorch® with the Adam®® optimizer. The model
by defaultis trained for 200 epochs with alearning rate at 0.001. Dur-
ing the training, the learning rate decays, guided by an exponential
scheduler with the multiplicative factor set as 0.98. Kaiming initializa-
tionisapplied to all neural network parameters. Hyperparameters are
adjustablein the package.

Prediction of cell state-specific expression. To predict cell
state-specific expression, we use the decoder in which the parameters
have been learned and optimized by the variational inference. The
proportionc;isadjusted to1for aspecific cell state and O for other cell
states. Reconstructed expression and histology are considered as cell
state-specific expression and histology.

Integration of multiple samples. To effectively integrate multiple
samples, Starfysh initially identifies anchors in each sample by com-
bining spots enriched for cell types and archetypal communities.
The gene markers for each sample are then updated based on the
newly defined anchors. Subsequently, we aggregate the gene mark-
ers for each cell type across all samples. These updated markers are
used to calculate priors for the cell state proportions when fitting
to all samples simultaneously. Priors for library size are separately
calculated for spots in each sample. Finally, transcriptomic counts
along with their corresponding histological patches are incorpo-
rated as inputs to train an integrated model, synergizing data across
samples.

Simulation of ST data

We construct our ST simulations using mixtures of sScRNA-seq data pre-
viously collected from primary TNBC tumor tissues (CID44971 TNBC)'
with different levels of cell type granularities.

Spatially dependent simulation. To address spatial dependencies
among neighboring spots, we adopt the pipeline from Cell2location®.
Specifically, synthetic ST spots are defined ona 50 x 50-pixel grid. For
the major cell type simulation, we select five cell types (CAFs, cancer
epithelial cells, myeloid cells, normal epithelial cells, T cells) from the
reference scRNA-seq data and simulate their spatial proportions with
separate 2D Gaussian process models (Supplementary Fig. 2a). We
further assign an expected library size for each spot with ay distribu-
tionfitted from the real ST dataset, representing the spatial variation
of capturerates among spots. For each spot, we then sample single-cell
transcriptomes from thereference by searching for candidate cells with
alibrary size closest to the expected library size. We follow the same
procedureto generate another ten-cell type simulation with finer cell
states: basal cells, inflammatory CAFs, myofibroblast CAFs, endothelial
cells, immature PVL cells, central memory T cells, T, cells, activated
CDS8'T cells, memory B cells and plasmacytoid dendritic cells.

Simulation with paired histology images. We further generate
pseudo-histology images paired with the aforementioned major cell
type simulationto verify multimodelintegration. Specifically, we design
asupervised encoder-decoder neural network model (Supplementary
Fig. 1c), with real ST expression as input and their histology images as
output. First, the expression matrix is projected to a low-dimensional
latent space with aResNetl8 encoder, and the histology imageisrecon-
structed withastandard linear decoder with dimension transformation.
Two thousand image patches and corresponding expression matrices
weretrained from14 ST samples, and anextra 500 images patches were
used for held-out validation. The learning rate was set as 0.001 with
the Adam optimizer for training. Mean-squared loss was used to fit the
predictions to the real ST images. The final paired synthetic histology
images were generated by running the trained model.

Signature gene set retrieval in simulated data. For fair benchmarking
not favoring Starfysh, we build the signature gene setsin an unbiased
fashion by choosing the top 30 differentially expressed genes for each
cell type (highest log (FC) scores) across 20 breast cancer sCRNA-seq
samples reported by Wu et al.’s.

Benchmarking of Starfysh and comparison to other methods
with simulated ST data

We benchmarked Starfysh against reference-based (DestVI, Cell2lo-
cation, Tangram, BayesPrism) and reference-free (CARD, BayesTME,
STdeconvolve) deconvolution methods with the aforementioned simu-
lations. For the reference-based method, we used paired scRNA-seq data
forsample TNBC sample CID44971as the reference. For reference-free
methods without inferred cell state annotations, we report the best
alignment with the ground truth proportions upon permutation.

Foreach deconvolution, we trained Starfysh with three independ-
entrestarts and selected the model with the lowest ... The variational
mean g(cylx; a) isused as the inferred cell state proportions.

For BayesPrism, we followed the tutorial on the BayesPrism web-
site: https://www.bayesprism.org/pages/tutorial_deconvolution. We
subsetted the common protein-coding genes between the scRNA-seq
and ST data with highly variable gene selection by default. We ran the
BayesPrism Gibbs sampler ‘run.prism’ with four cores and extracted
the updated cell type fractions 8, for deconvolution.

For Cell2location, we followed the tutorial on the Cell2location
website: https://cell2location.readthedocs.io/en/latest/notebooks/
cell2location_tutorial.html. We trained the reference regression with
1,000 epochs and spatial mapping models with10,000 epochs, inwhich
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ELBO losses were ensured. The normalized 5% quantile values of the
posterior distribution wy = Z‘”—’; were used for deconvolution.

For DestVI, we followed the DestVI tutorial with default param-
eters at https://docs.scvi-tools.org/en/stable/tutorials/notebooks/
DestVI_tutorial.html.

For Tangram, we followed the Tangram tutorial using default
settings: https://github.com/broadinstitute/Tangram/blob/master/
tutorial_tangram_with_squidpy.ipynb. We found the optimal alignment
for scRNA-seq profiles with 1,000 epochs.

For CARD (reference free), we followed the CARD reference-free
tutorial: https://yingma0107.github.io/CARD/documentation/04_
CARD_Example.html. Default settings were used to generate cell type
proportions (minCountGene =100 and minCountSpot = 5).

BayesTME (reference free) deconvolves cell types with a hierarchi-
cal probabilisticmodel that corrects technical artifacts. We followed the
official BayesTME tutorial with default parameters: https://github.com/
tansey-lab/bayestme/blob/main/notebooks/deconvolution.ipynb.

For STdeconvolve (reference free), we followed the tutorial onthe
STdeconvolve website (https://jef.works/STdeconvolve/) and selected
the top 1,000 overdispersed genes from the input matrix. We set the
optimal number of cell types K to 5 and 10 for the major and fine cell
type simulations, respectively. The predicted cell type proportions
were obtained from the output ‘deconProp’.

Quantification of performance in deconvolution of cell types.
The performance of each method was summarized by the RMSE and
Jensen-Shannon divergence (JSD) against the ground truth to quantify
per-spotaccuracy (Supplementary Fig. 2d,e):

Z:Zl (ca —cyePre )2

K

JSD (e, cPred) = 2Dy (e#l1eP"ed) + 3Dy (cPedlie),

RMSE (¢, ¢c;Pred) =

where ¢, ¢ € AK represent the ground truth and predicted cell
type compositions in spot i. We report the average RMSE across all
spots as the overall performance for each method (Fig. 1d).

Benchmarking of Starfysh and comparison to other methods
withreal ST data

We further benchmarked Starfysh with reference-based (Cell2loation
and BayesPrism) and reference-free (STdeconvolve) deconvolution
methods on TNBC sample CID44971ST data (Supplementary Fig.3b-d).
We calculated the correlation A € R¥*Kbetween the average expression
of gene sets (normalized tosumto1per spot) (Supplementary Table 2)
and the deconvolution profile for each cell state:

Ay = Corr(c:kSig,CI,Pred)

C'k _ ngig'skg Csig _ Cik

] - ’ i - K _ 0
XoSke ik Dkea Cit

where cfif,cf’{ed € R’ represent signature marker’s expression and
deconvolution proportions for cell states k and [, respectively.

For Starfysh, we followed the same procedure from the simulation
benchmark and reported the variational mean g(c,lx; a) as the decon-
volution profile.

For both BayesPrism and Cell2location, we followed the same
procedures as the simulation benchmark, except for replacing the
synthetic ST data with real ST data from TNBC sample CID44971.
We applied the TNBC sample CID44971scRNA-seq annotation from the
‘subset’ classification tier from Wu et al.”®. For correlation calculation,
intersections between single-cell annotations' and our signature cell
typesare shown, as BayesPrism and Cell2location only deconvolve cell
types that appear in the reference.

For STdeconvolve, weiterated the number of factors (k) from 20 to
30and chose the optimal kas 30 given the lowest perplexity following

the official tutorial. Because STdeconvolve does not explicitly annotate
factors, we performed hierarchical clustering between factors (xaxis)
and cell types (y axis).

We applied archetypal analysis (Starfysh) to the ST data and identi-
fied 18 distinct archetypes. We reported the overlapping percentage
between anchor spots and archetypal communities for each cell state
(Supplementary Fig. 3e).

Quantification of performance in deconvolution of cell states
in real ST data. Performance in disentangling cell states was evalu-
ated using the Frobenius norm d = |4 — A¢| .as the distance between
the deconvolution-to-signature correlation A to the ‘reference’
matrix A4, = Corr(c.;*,c./), defined as the correlation between
signature expressions across cell states. To ensure a fair comparison
across reference-based and reference-free methods, we reported a
Frobenius norm distance computed as follows: for each method,
(1)1,00010 x 10 submatrices {A%,..., A%} were sampled from the
original correlation matrix A without replacement with randomly
permuted cell states; (2) an array of Frobenius norm distance
d = (dO, ..., d®000)) g@® — |A® —As8®| . was computed; and (3) we
reported the average value of ¢;in Supplementary Fig. 3a-d. To test
theimprovement of Starfysh, we performed a Mann-Whitney U-test
between the distance array of Starfysh against the combination of
all other methods (BayesPrism, Cell2location, STdeconvolve).

For reference-free methods in which the number of inferred fac-
torsand the number of cell types may differ, we permuted the correla-
tion matrix such that each cell type (row) was aligned with the factor
(column) with the highest correlation score, where the diagonal entries
were sorted in descending fashion.

Runtime comparison across deconvolution methods on real ST
data. Runtimes of the core deconvolution function in each method
were measured on the same machine with 12-core AMD Ryzen 9 3900X
CPU and a GeForce RTX 2080 GPU:

« Starfysh: run_starfysh (GPU-enabled)

» BayesPrism: run.prism

« Cell2location: RegressionModel.train(),Cell2location.train()
(GPU-enabled)

« STdeconvolve: fitLDA

Starfysh validation with Xenium-mapped ST data

We further applied Starfysh to a recent breast cancer ST dataset, for
which integrated multicellular (Visium, replicate 1) and subcellular
in situ (Xenium) spatial technologies were performed on the same
formalin-fixed, paraffin-embedded tissue blocks”. We first aligned the
Visium H&E images and spots to the paired Xenium H&E images with
SIFT registration®”. The ground truth deconvolution profile was then
constructed by assigning spots to their corresponding Xenium cells
annotated by Janesick et al.”’. A total of 2,567 spots with nine major cell
types were kept after filtering out spots with unannotated cells (Sup-
plementary Fig. 4a). Benchmarking metrics were computed the same
way as for the simulation data. Original datasets as well as the signatures
used by Starfysh are publicly available at https://www.10xgenomics.
com/support/in-situ-gene-expression/documentation/steps/
onboard-analysis/at-a-glance-xenium-output-files.

Starfysh validation with ST data of mouse cortex and human
lymphnode

We applied Starfysh to mouse brain data adapted from Cell2location®
and used the marker genes provided by the paper, which are collected
fromliterature withknownregionalmarker genesorthe Allen Brain Atlas.
Histology integrationis applied inthis dataset also. Starfysh successfully
recognized enriched regions such as Bergmann glia of the cerebellum
(ACBG), cortex pyramidal layer 6 (TEGLU3), the basolateral amygdala
(TEGLU22) and the hippocampus (TEGLU24) (TEGLU, telencephalon
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projecting excitatory neurons; Supplementary Fig. 6a). Starfysh also
reconstructed the histology data resembling original images (Supple-
mentary Fig. 6b). Inferred spatial hubs recapitulated the brain regions
identified from Cell2location (Supplementary Fig. 6¢), such as the thala-
mus (hubs 8 and 9), the hypothalamus (hubs 7 and 19), the cortex (hubs
0,1and5), theamygdala (hubs 6 and12), the hippocampus (hubs 10 and
20), the striatum (hub 11) and white matter (hubs 4 and 13).

We also applied Starfysh to human lymph nodes with gene signa-
tures from a comprehensive atlas of 34 cell types in human lymphoid
organs®*?° Theresults recapitulated the identification of T celland B cell
zones and germinal centers with dark-zone, light-zone and follicular den-
dritic cellsreported asin Cell2location (Supplementary Fig. 6d). Starfysh
alsodistinguished blood vessel zones, similar to the resultsin Cell2loca-
tion. Theidentified spatial hubs (Supplementary Fig. 6e) showed similar
alignment with Cell2location (scRNA-seq reference based)-defined
spatial clusters through the MIC (Supplementary Fig. 6e,f).

Starfysh validation with spatiotemporal analysis of prostate
cancer

To evaluate Starfysh’s power in unraveling mechanisms in more com-
plicated scenarios, such as spatiotemporal ST datasets, we applied it
to ST datasets from prostate cancer tissues undergoing AD therapy™’.
ST profiling provided a unique perspective on the tumor and microen-
vironmentin this specific prostate cancer, called castration-resistant
PCa, atype with challenging tumor grade classificationand unpredict-
able treatment outcomes.

Unlike the published study that used spatial transcriptome decom-
position” for patient-by-patient spatiotemporal analysis, Starfysh
demonstrated superior efficacy in identifying more interpretable
niches. It integrated samples from three patients with four biopsies
each and two biological replicates per biopsy and samples from both
pretreatment and post-treatment stages (Supplementary Fig. 7a,b).

UMAP visualization of the joint space of inferred cell type propor-
tion highlighted specific features such as clustering of tumor cells,
immune cells and stromal cells (Supplementary Fig. 7c). We defined 17
hubs within this joint space (Supplementary Fig. 7d), and their spatial
distributionillustrated changes before and after AD treatment across
patients and revealed similarities across replicates (Supplementary
Fig.7e). Each hubrepresented aggregations of specific cell types (Sup-
plementary Fig. 7f), with ranking based on tumor cell proportions
including tumor-enriched hubs (Supplementary Fig. 7g). For instance,
hub 0 was enriched with prostate cancer and stromal cells such as CAFs
and perivascular cells, whereas hub 1had predominantly cancer cells.

Patient-specific variances were evidentin the composition of these
hubs, particularly intheir response to AD treatment. Starfysh’s analysis
aligned withclinical data, categorizing patientsinto responders (patient
1), moderate responders (patient 2) and nonresponders (patient 3). For
example, tumor-enriched hub O predominated in the nonresponder
(patient 3), while hub15was specific to the moderate responder (patient
2) (Supplementary Fig. 7h). Differential gene expression analysis of hub
O revealed enrichment in EMT pathways and myogenesis, indicating
resistance to treatment (Supplementary Fig. 7h,i). Additionally, hub
O exhibited low AR activity (Supplementary Fig. 7j), aligning with find-
ings that stromal cells adjacent to resistant clusters lacked androgen
receptor expression and were enriched with EMT pathways. Starfysh
notonly identified similar regions but also highlighted specific cell type
infiltrations, including those of CAFs and perivascular cells. Moreover,
ST data indicated a trend from tumor hubs (hubs 13 and 15) to hub O
upon treatment, which is beneficial for interpatient analysis.

Breast tumor ST data collection and analysis

Sample collection and preparation. Tissues were collected from
women undergoing surgery for primary breast cancer. Allsamples were
obtained after informed consent and approval from the institutional
review board at Memorial Sloan Kettering Cancer Center. Samples

were obtained using standard-of-care procedures. The samples were
embedded fresh in Scigen Tissue-Plus O.C.T. Compound (Fisher Sci-
entific) and stored at —-80 °C before sectioning. Cryosections (10 pm)
were mounted on Visium spatial gene expression slides (10x Genomics,
1000184). Two individual tumors were mounted in duplicate on the
four 6.5-mm x 6.5-mm capture areas. The samples were processed as
described in the manufacturer’s protocols.

Spatial transcriptomics by 10x Genomics Visium. Visium Spatial Gene
Expressionslides prepared by the Molecular Cytology Core at MSKCC
were permeabilized at 37 °C for 6 min, and polyadenylated mRNA was
captured by oligonucleotides bound to the slides. Reverse transcrip-
tion, second-strand synthesis, complementary DNA (cDNA) amplifica-
tionand library preparation proceeded using the Visium Spatial Gene
Expression Slide & Reagent Kit (10x Genomics,1000184) according to
the manufacturer’s protocol. After evaluation by real-time PCR, cDNA
amplificationincluded13-14 cycles; sequencing libraries were prepared
with 15 cycles of PCR. Indexed libraries were pooled in an equimolar
fashion and sequenced on a NovaSeq 6000 instrument in a PE28/120
runusing the NovaSeq 6000 SP ReagentKit (200 cycles) (Illumina). An
average of 228 million paired reads were generated per sample.

Tissues were stained with H&E, and slides were scanned on a Pan-
noramic MIDI scanner (3DHISTECH) using a x20, 0.8-NA objective.

Quality metrics for the collected ST dataare shownin Supplemen-
tary Table5.

CODEX data collection and preprocessing. Four fresh-frozen sam-
ples, adjacent slides with P3A_MBC, P3B_MBC, P4A_MBC and P4B_
MBC, were processed for PhenoCycler (CODEX) imaging in Enable
Lab (https://www.enablemedicine.com). Samples were prepared and
stained, and images were acquired following CODEX User Manual Rev C
(https://www.akoyabio.com) at Enable Medicine. Twenty-three antibod-
ieswere used for stainingin this study (Supplementary Table 6). Image
datawere preprocessed using commercial software (Enable Medicine).

Analysis of ST data from breast tumor tissues

Data preprocessing. Starfyshis compatible with Scanpy®*and preproc-
esses the raw count matrix asinput without normalization after filter-
ing out ribosomal and mitochondrial genes. To account for expression
sparsity and noise, we selected the top 2,000 highly variable genes
including specified marker genes.

Identification of tumor-associated anchors. Tumor-associated arche-
types were defined as the anchor spots highly associated with tumor
celltypes. First, aninitial set of cell state-enriched spots (for example,
60 spots for each cell state) and Marchetypes were identified based on
the provided marker gene list and the PCHA algorithm, respectively.
Because archetypes are vertices non-overlapping with observed data,
the r=20 nearest-neighbor spots for each archetype were identified,
obtainingaset of ‘archetypal communities’as a20 x M matrix. Next, we
aligned archetypal communities with the best one-to-one matched K
cell states with the stable marriage algorithm. Anchor spots were then
updated based on the new marker gene list. The final anchors that are
associated with any tumor cellgene set (including TNBC, MBC, LumaA,
LumB and ER") were considered as TAAs (Figs. 2d,h and 4¢).

Diffusion component analysis. Diffusion components were computed
using normalized gene counts as theinput. Computation was performed
with the Scanpy package. Scanpy computes diffusion components by
first constructing anearest-neighbor graph fromthe high-dimensional
input data. Next, it simulates a diffusion process on the graph.

Definition of hubs. Hubs were defined as groups of spots with a simi-
lar composition of cell states. To integrate ST samples from different
patients, anchors were defined on merged data from all samples, and
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Starfysh then inferred the cell state proportion and latent variables
for each spot in each sample using the same anchor set. Spots were
then clustered according to the inferred cell state proportion using
PhenoGraph clustering (Supplementary Fig. 11c).

Entropy of spots. We used an entropy-based metric previously used
forbatch correction insingle-cell data® for evaluating the integration
of samples. The Shannon entropy of spots denotes mixing of spots
across samples. Specifically, we constructed akNN graph for each spot
i to determine its nearest neighbors using Euclidean distance in the
Starfysh latent space (z). These nearest-neighbor spots formed a dis-
tribution of patients (m e {1, ... 14}) for the overall 14 patients studied
inthis paper, represented as ¢;”. The Shannon entropy is calculated as
H; = —Zijzlei'" log e;™. Higher entropy represents higher localized sam-
ple mixing across patients (Fig. 3d).

Kendall's 7 correlation. Kendall’s T correlation is a metric for measur-
ingthe ordinal association between two measured quantities. We used
this metric to quantify the heterogeneity of TAAs. Genes for TAAs were
ranked based ondifferential expression scores for each sample. Samples
having similar TAAs were assumed to have a similar rank of differential
genes, thus having higher scores of Kendall’s 7 correlation (Fig. 2p).

Copy number variation. Copy number variation was performed follow-
ingtheinstructions forinferCNV (https://github.com/broadinstitute/
inferCNV). The inferred copy number variation cluster lineage was
plotted as a dendrogram tree using toytree’.

Definition of intratumoral, peritumoral and stromal regions. We
applied Starfysh to TNBC and MBC samples to avoid the bias introduced
by those ER" samples and redefined the hubs among six TNBC and
four MBC samples. Intratumoral regions were defined as hubs with the
mean of inferred proportions of all tumor states being larger than 0.2
(Supplementary Fig. 13b). Histology information was also considered
to confirm the enrichment of tumor cells in these regions. Other hubs
were ranked by the average distance (unit, pixel) to intratumoral hubs.
With the incorporation of histology and total proportion of immune
cells and stromal cells, hub 8 was considered as the boundary between
peritumoral regions and stromal regions (Supplementary Fig.13c). To
summarize, hubs 5, 2,11 and 12 were considered as intratumoral hubs,
hubs 0, 9, 3, 6 and 8 were considered as peritumoral hubs, and hubs 1,
7,4 and 10 were recognized as stromal hubs. Notably, the determined
peritumoral regions were shared across all samples, while some intratu-
moral regions and stromal regions were sample specific (Supplementary
Fig.13a,d and Fig. 4b).

Spatial correlation. To measure colocalization between cell states,
we slightly modified the spatial cross-correlation index (SCI)**. SCI
isdefined as:

N DDA SIG I
250 5 2 -5 (-9

wherexandydenote the predicted proportion for two cell states S, and
S, iand j € [1,.,N]areindexes of spots withina certainhuband x,y are
the mean proportion of two cell states in the hubs. We defined the
weight matrix r asinformation between adjacent neighbors, as 7; = 1if
the coordinate distance of spotiand spotjwas less than /3, else w;=0.

SCI(SX, sy) =

Inference of intercellular ligand-receptor interactions. To inves-
tigate the intercellular interactionsin a hub, the top 5% spots with the
highestinferred proportion of each cell statein the hub were selected.
CellPhoneDB> was then applied to the selected spots with normalized
gene expression. Visualization was performed with the Sankey diagram
with plotly and the Circos plot®.

Diffusion map analysis with intratumoral hubs. Intratumoral hubs
were selected for diffusion map analysis (Fig. 2h), and diffusion map
components showing gradients betweenintratumoral hubs were cho-
sen. Diffusion map coordinates were used as inputs for the trajectory
inference algorithm SCORPIUS*. Modules of genes that significantly
(g values < 0.05) contributed to the trajectory of transitions between
tumor hubs were identified (Fig. 2i). Over-representation analysis
was conducted to understand the biological processes viathe Python
package gseapy with gene sets including KEGG_2021_Human, GO_Bio-
logical_Process_2021and Hallmark.

Genes with diffused expression patterns. T,.,-enriched (propor-
tion > 0.05) spots in intratumoral hubs were selected, and the dis-
tance between all spots to the selected spots was calculated with the
‘sklearn.neighbors’ Python package with the function KDTree. For each
gene, expression of spots with the same distance was averaged and
smoothed with awindow size of 7 for each sample. The mean and s.d.
of expression across all samples were computed and smoothed with
‘Gaussian_filterld(sigma = 1.5)’ with the Python package SciPy (mean
ands.d.areshown as asolid line and shaded areain Fig. 4i).

CODEX data analysis. Raw CODEX images were segmented to enable
cell-level quantification frombiomarker signals. The results were then
checked with quality control to filter out segmentation artifacts. The
data thus were transformed as a U x P matrix, where U is the num-
ber of single cells detected in the CODEX images and P represents
the number of antibodies profiled. The data were then processed
by quantile normalization, asinh transform and z-score normaliza-
tion. PCA, neighbor graphs and UMAP were performed sequentially
on single-cell CODEX data (Supplementary Fig. 15a). Annotations of
cell types were based on the clustering and distribution of normal-
ized CODEX data such as Ki67 and CD3 expression (Supplementary
Fig.15b,c and Supplementary Table 6). Annotations were validated
with adendrogram tree of the clusters (Supplementary Fig.15d). The
single-cell CODEX was also visualized in the spatial arrangement align-
ing with the histology and ST Visium data (Supplementary Fig.15e and
Fig.5c).

Spatial profiling of T cell receptors

To capture spatial TCR clonotype information, we adapted an estab-
lished protocol that allows spatial mapping of TCRs from cDNA libraries
of our samples*®. The process involves three qPCR steps: (1) the first
step begins with 43 pooled TCRB primers and the truncated read 1
primer (2 plcDNA, 1 pl of eachforward and reverse primersand 12.5 pl
NEBNext Master Mix, 0.5 ul SYBR and 8 pl water). (2) The second step
uses 43 TCRB primers with R2 sequences and the truncated read 1
primer with 1 pl of the PCR product from step 1. (3) The third step
involves indexed TruSeq P5 primers and indexed Nextera P7 primers,
with 1l of the PCR product from step 2. All PCR steps were stopped
beforethe plateau phase, and the PCR products were cleaned with 0.8x
AMPure beads and eluted in 50 pl.

Sequencing was conducted on an Illumina NextSeq 500 instru-
ment with the following cycle settings: R128, 1110, 1210, R2 110. Clo-
notype analyses were performed with MiXCR.

The PCR cycling conditions are as follows: initial denaturation,
98 °C for 3 min; denaturation, 98 °C for 15 s; annealing, 62 °C (72 °C
for qPCR step 3) for 20 s; extension, 72 °C for 1 min; repeat of the dena-
turation step to the extension step before the plateaus phase; final
extension, 72 °C for 1 min.

We further provide the full spatial TCR primer sequences in Sup-
plementary Table 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Theraw datagenerated for this study canbe accessed in the Gene Expres-
sion Omnibus under accession number GSE218951. CODEX data are
available in figshare (https://doi.org/10.6084/m9.figshare.25137320)
(ref.94). The publicbreast cancer dataset from Wuet al. was downloaded
fromaccession number GSE176078. Public mouse brainand lymph node
datasets fromKleshchevnikov et al. are availablein ArrayExpress under
accession number E-MTAB-11114. Public prostate cancer data are avail-
ablein Mendeley Data (https://doi.org/10.17632/mdt8n2xgf4.1) (ref. 95).

Code availability

The Starfysh package and code to reproduce the results in this study
areavailableinthe GitHub repositories at https://github.com/azizilab/
starfysh (ref. 96) and https://github.com/azizilab/starfysh_reproduc-
ibility (ref. 97) and deposited at Zenodo (https://doi.org/10.5281/
zen0do.10460548) (ref. 98). The reference implementation of DestVI,
RCTD and BayesTME, along with the accompanying tutorials, is also
available at the GitHub repository.
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