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Starfysh integrates spatial transcriptomic 
and histologic data to reveal heterogeneous 
tumor–immune hubs
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Spatially resolved gene expression profiling provides insight into tissue 
organization and cell–cell crosstalk; however, sequencing-based spatial 
transcriptomics (ST) lacks single-cell resolution. Current ST analysis 
methods require single-cell RNA sequencing data as a reference for rigorous 
interpretation of cell states, mostly do not use associated histology images 
and are not capable of inferring shared neighborhoods across multiple 
tissues. Here we present Starfysh, a computational toolbox using a deep 
generative model that incorporates archetypal analysis and any known 
cell type markers to characterize known or new tissue-specific cell states 
without a single-cell reference. Starfysh improves the characterization of 
spatial dynamics in complex tissues using histology images and enables 
the comparison of niches as spatial hubs across tissues. Integrative analysis 
of primary estrogen receptor (ER)-positive breast cancer, triple-negative 
breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led 
to the identification of spatial hubs with patient- and disease-specific 
cell type compositions and revealed metabolic reprogramming shaping 
immunosuppressive hubs in aggressive MBC.

In multicellular organisms, the function of diverse cell types is strongly 
influenced by their surroundings. Uncovering the spatial organization 
and communication between cell types in tissues provides insight into 
their development, response to stimuli, adaptations to their micro-
environment or transformation into malignant or diseased states1. 
By sampling the entire transcriptome, ST has enabled unbiased gene 
expression mapping in a spatially resolved manner, providing an 
opportunity to study the spatial arrangement of cells and microenvi-
ronments2. These technologies have been employed in diverse fields, 
including organ development, disease modeling and immunology3–5. 

However, sequencing-based methods (Visium, DBiT-seq6, Slide-seq7 
and so on) are limited in cellular resolution due to technical limita-
tions, including artifacts from lateral RNA diffusion2. Hence, measure-
ments from capture locations (spots) involve mixtures of multiple cells, 
leading to analytical challenges in dissecting the cellular disposition, 
particularly in complex cancerous tissues.

Accurate characterization of cell types and refined states is critical 
for comparing their spatial organization and communication across 
tissues. This is essential, for example, when studying changes in cellular 
wiring during development or disease progression. In tumor tissues, the  
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Starfysh shows successful, robust deconvolution without requir-
ing single-cell references on simulated data and accurately recapitu-
lated cell state proportions in breast tumor datasets18. Additionally, 
we profiled tumor samples from ER+ patients, patients with TNBC and 
patients with MBC to demonstrate Starfysh’s utility for spatial map-
ping of intertumoral and intratumoral heterogeneity and studying the 
role of microenvironmental niches in determining localized immune 
response. Starfysh’s archetypal analysis characterized patient-specific 
tumor cell states and their spatial arrangement within the primary 
tumor, revealing how the underlying biology of tumor states and envi-
ronmental signals alters the immune response. We further identified 
metabolic reprogramming and communication enriched in the rare 
and aggressive MBC subtype by integrating our data with previously 
published ST datasets. Starfysh thus presents a powerful analytical 
platform for systematic interrogation and comparative studies of com-
plex tissues in health and disease through the lens of ST and histology.

Results
Starfysh performs reference-free deconvolution of cell types
Starfysh is an end-to-end toolbox for multimodal analysis and integra-
tion of ST datasets (Fig. 1a). In short, Starfysh features reference-free 
deconvolution of cell types and fine-grained cell states, enhanced 
by integrating paired histology images, if available. To facilitate the 
comparison of tissues, Starfysh identifies common or sample-specific 
spatial ‘hubs’, defined as niches with a unique composition of cell states. 
To uncover mechanisms underlying cell communication, Starfysh con-
ducts downstream analyses of these hubs and identifies key spatially 
variable genes, cell states and colocalization networks.

To circumvent the need for matched or external single-cell refer-
ences, Starfysh leverages two key concepts to determine spots with 
the most distinct expression profiles as ‘anchors’ that pull apart and 
decompose spots in the latent space (Fig. 1b). First, Starfysh incor-
porates a compendium of known or custom cell state marker gene 
sets. Assuming that spots with the highest expression of a gene set 
corresponding to a cell state are likely to have the highest proportion 
of that cell state, these spots form an initial set of anchors. Second, 
because cell state markers can be context dependent or not well char-
acterized, Starfysh uses archetypal analysis to adapt the anchors. 
Archetypes can also discover new cell states and their hierarchical 
relationships (Methods). This feature is paramount in characteriz-
ing context-specific cell states, for example, patient-specific tumor 
cells, their phenotypic plasticity and dynamic crosstalk within the  
microenvironment.

Inspired by successful implementations of deep generative 
models in single-cell omics analysis (scvi-tools19, scVI20, totalVI21, 
scArches22, trVAE23, scANVI24, MrVI25), Starfysh jointly models ST and 
histology as data observed from a shared low-dimensional latent 

mixing of signals from patient-specific tumor cells and immune cells 
hinders the comparison of anti-tumor immune mechanisms between 
patients or disease subtypes. Most existing computational methods for 
analyzing ST data (Cell2location8, DestVI9, Tangram10, Stereoscope11, 
RCTD12, BayesPrism13 and so on) require paired and annotated single-cell 
data as references to overcome this challenge and are not capable of 
integrating tissue samples. The references, whether from the same 
tissue or public databases, could introduce biases without accounting 
for sample or batch variation and variable cell density across spots. 
Indeed, using a single-cell atlas reference has been shown to increase 
deconvolution error compared to reference-free approaches14.

Importantly, access to paired single-cell data may not be cost-effective 
or practical, especially in cases like clinical core biopsies. This limitation 
further motivates the development of reference-free methods capable of 
integrating prior knowledge of cell type markers and data from multiple 
tissues to improve statistical power. Reference-free methods including 
STdeconvolve14, Smoother15 and CARD16 deconvolve spots into latent 
factors. However, some factors cannot be explicitly mapped to refined 
cell states in complex tissues. Additionally, these methods are not scalable 
and do not allow the integration of multiple ST datasets. Batch correction 
methods designed for single-cell RNA sequencing (scRNA-seq) are also 
not feasible in integrating ST samples dominated by sample-specific cell 
types such as tumor cells. While some methods use histology images to 
align spots between replicate tissues8 or predict high-resolution gene 
expression from histology, they fail to leverage spatial dependencies and 
paired histology to improve cell state deconvolution.

To address this need, we developed a comprehensive toolbox for 
multimodal analysis and integration of ST datasets dubbed ST analysis 
using reference-free deep generative modeling with archetypes and 
shared histology (Starfysh). With joint modeling of transcriptomic 
measurements and histology images, Starfysh infers the proportion 
of fine-grained and context-dependent cell states while obtaining cell 
type-specific gene expression profiles for downstream analysis. Integra-
tion of gene expression and histology accounts for tissue architecture, 
cell density, structured technical noise and spatial dependencies between 
measurements, which improve the characterization of cell states and their 
arrangement. By integrating multiple tissues, Starfysh identifies shared 
or sample-specific niches and underlying cell–cell crosstalk.

The innovation of our machine learning approach is in incorporat-
ing archetypal analysis and known cell type markers as priors within a 
deep generative model that maps transcriptomic features and histol-
ogy from multiple tissues to a joint latent space. Archetypes, which 
capture spots with the most different expression profiles, construct 
or refine cell type markers, in contrast to conventional clustering of 
spots, which obtain markers corresponding to aggregated cell types17. 
Archetypes empower Starfysh to characterize new or context-specific 
cell states and present a hierarchy among them.

Fig. 1 | Starfysh overview and performance on simulated data. a, Overview of 
the Starfysh workflow. From left to right: Starfysh input (ST dataset, signature 
gene lists for cell types or cell states and paired histology image (optional)), 
deconvolution (Starfysh defines anchor spots representative of cell types or 
states with the aid of archetypal analysis and infers cell type or state proportions 
and densities by accounting for ST technical artifacts), sample integration and 
downstream analysis (upon deconvolution, Starfysh jointly integrates multiple 
samples and characterizes spatial ‘hubs’ and further infers cell–cell interactions 
within each hub). NK, natural killer; PET, peripheral T. b, Left: UMAP of ST data 
with 2,500 spots, 29,631 genes and 5 cell types simulated from mixtures of 
scRNA-seq data of breast tumor tissues, colored by the proportion of most 
enriched cell type in the ground truth. Starfysh collectively uses signature gene 
sets and archetypal analysis to identify anchor spots, refine marker gene sets and 
discover potential new cell states. Right: comparison of ground truth cell type 
proportions and densities in simulated data and the Starfysh reconstruction 
(Methods and Supplementary Fig. 2a). c, Graphical representation of the 
deep generative model integrating transcriptomic data and paired histology 

images to infer a joint latent space. d, Benchmarking Starfysh against other 
methods on the simulated dataset: Pearson correlation of ground truth and 
estimated proportions per cell type in data. The performance of each method 
is summarized by computing the average root-mean-squared error (RMSE) 
across spots against the ground truth (Methods). Additional benchmarking and 
robustness analysis results are shown in Supplementary Fig. 2c–e. Benchmarking 
on real breast tumor ST data is shown in Supplementary Fig. 3a–d (Methods). 
corr., correlation; ref-free, reference free; sc-ref, reference with scRNA-seq data. 
e, Spatial distribution of marker expression from breast tumor Xenium data 
used for generating spot-level ground truth to compare to inferred proportions 
from Starfysh applied to matched Visium data (Methods). DCIS and invasive 
tumor marker and cell types are shown. Other cell types and details are shown 
in Supplementary Fig. 4a–e. CEACAM6, CEA cell adhesion molecule 6; FASN, 
fatty acid synthase. f, Expert annotations of two distinct subsets of DCIS (red 
and yellow) are aligned with Starfysh-predicted archetypes (without the use of 
signatures that distinguish them).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02173-8

representation while incorporating anchors as priors. Specifically, we 
define latent representations of spots as mixtures of cell states guided 
by anchors (Fig. 1c, Supplementary Fig. 1a and Methods). To test the 

performance of Starfysh, we simulated ST data from real scRNA-seq 
data from primary breast tumor tissues18 with different levels of cell 
type granularity (Supplementary Fig. 1b–d and Methods). Starfysh  

b

c

CAF
Cancer epithelial
Myeloid
Normal epithelial
T cell

T 
ce

ll
C

AF
s

Ground truth
proportion

Inferred
proportion

UMAP1

U
M

AP
2

UMAP1 of z

U
M

AP
2 

of
 z

Ground truth library size

Ground truth
cell type proportions

Re
co

ns
tr

uc
te

d
ce

ll 
ty

pe
 p

ro
po

rt
io

ns
In

fe
rr

ed
 li

br
ar

y 
si

ze

d

Archetypal spots

Spots enriched for cell types

0

1

2 3

4
5

6

Anchor spots 

Refined marker

Spot i

Cell state k

Gene g

a

Transcriptomic
data

Inferred proportion

Inferred density

Known marker Archetypes

Sample integration
Pseudospace

Cell–cell interaction

Characterizing spatial hubs

Monocytes

Pr
op

or
tio

n

Spatial heterogeneity

1.00

0.75

0.50

0.25

C
ell type proportion corr.

Estimated proportion
Estimated proportion

T cells

Normal epithelial

Myeloid

Cancer epithelial

CAFs

–0.25

–0.50

–0.75

–1.00

C
T1

C
T5

C
T2

C
T4

C
T3

0Myeloid

T cells

Normal epithelial

Cancer epithelial

CAFs

Myeloid

T cells

Normal epithelial

Cancer epithelial

CAFsCAFs 0.93

–0.46

–0.61 –0.2

0.12 –0.36

–0.29 –0.12

0.037

–0.091

–0.31

–0.072 –0.19 –0.71

–0.15

–0.0170.88

–0.079 0.21 0.13 0.057

–0.09

0.13 0.041

–0.21

–0.056–0.19

–0.32 0.009 0.062

–0.13

–0.23 –0.017

0.19 0.16

0.17 0.073

–0.32–0.3

–0.45

–0.18 –0.14

–0.29

–0.420.1

–0.33 –0.18

0.025

0.18

–0.001–0.28

–0.14

–0.41–0.044

–0.19 –0.24 –0.063

–0.061

0.93 –0.81 0.96

0.92

0.97

0.91–0.56

–0.620.94

–0.77

–0.16

–0.73

0.94–0.084

0.014

0.84

Myeloid

T cells

Normal epithelial

Cancer epithelial

Starfysh
RMSE = 0.094

arch_0

1.0

0.8

0.6

0.4

0.2

0

arch_1
arch_2
arch_3
arch_4
arch_5
arch_6

DestVI (sc-ref)
RMSE = 0.090

BayesTME (ref-free)
RMSE = 0.171

CARD (ref-free)
RMSE = 0.166

Estimated proportionEstimated proportion

G
ro

un
d 

tr
ut

h 
pr

op
or

tio
n

T 
ce

lls

N
or

m
al

 e
pi

th
el

ia
l

M
ye

lo
id

C
an

ce
r e

pi
th

el
ia

l

C
AF

s

T 
ce

lls

N
or

m
al

 e
pi

th
el

ia
l

M
ye

lo
id

C
an

ce
r e

pi
th

el
ia

l

C
AF

s

–0.25 –0.23

–0.25–0.34

0.033

–0.54 –0.59 0.87

0.57

0.610.56

0.86–0.58

–0.71 –0.52

–0.79

0.490.91

–0.76 0.85

–0.70.89

0.56

–0.55 0.680.77

2 1 4 3 0

T cell
Normal epithelial
Myeloid
Cancer epithelial
CAFs

Sample

0

M
BC

_1
A

M
BC

_1
B

M
BC

_2
A

M
BC

_2
B

M
BC

_3
A

M
BC

_3
B

M
BC

_4
A

M
BC

_4
B

C
ID

44
65

C
ID

44
97

1
11

42
24

3F
11

60
92

0F
C

ID
42

90
C

ID
45

35

0.2

0.4

0.6

0.8

1.0
MBC TNBC ER+

Pe
rc

en
t

PET cell

MBC

MDSC

Endothelial

StromalPeritumoral

Intratumoral

NK

Treg cells

CD4+IL-7R+

T cell

Dysfunctional
T cells

lµi

uk

α

zi spot i's  latent factors yi histology image around i
xi,g expression of gene g in i
ci,k proportion of cell state k in i

li library size in spot i

sk signature of cell state k α and lµi prior parameters
θg gene-specific parameter

Histology

e f

DCIS 1

DCIS 2
With expert annotation

CEACAM6 (DCIS)

FASN (invasive tumor)

Sp
at

ia
l 2

Sp
at

ia
l 2

Sp
at

ia
l 2

Sp
at

ia
l 2

Sp
at

ia
l 2

Sp
at

ia
l 2

Spatial 1 Spatial 1

Spatial 1 Spatial 1

Spatial 1

Spatial 1

Invasive tumor
Ground truth proportions

DCIS
Ground truth proportions

12

10

8

6

4

2

0

DCIS
Inferred proportions

Archetype 10: DCIS 1
Inferred proportions

Invasive tumor
Inferred proportions

Archetype 2: DCIS 2
Inferred proportions

12

10

8

6

4

2

0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ci,k

li

yi

xi,g

zi

θg

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02173-8

successfully recovered cell type proportions and cell density (Fig. 1b 
and Supplementary Fig. 2a–e).

Starfysh integrates histology to correct for artifacts in transcrip-
tomic measurements by considering spatial dependencies between 
spots and incorporating tissue structure, which improves cell density 
estimation and neighborhood characterization in complex tissues. The 
integration of two data modalities is accomplished using the product 
of experts (PoE26), which calculates the joint posterior distribution for 
gene expression and images (Fig. 1c and Methods). We simulated ST 
data with spatial dependencies using a Gaussian process model8 and 
simulated images by training a ResNet18 (ref. 27) encoder followed by a 
variational autoencoder on paired ST expression and histology images 
(Supplementary Fig. 1c and Methods). Simulated ST data harbored cell 
clumps and histology patterns resembling real tissues (Supplementary 
Fig. 2a). The PoE integrates latent factors from transcriptomic and his-
tology data and shows significantly improved performance in predict-
ing the proportion of cell types and reconstructing high-density regions 
(Supplementary Fig. 2b). We benchmarked Starfysh against existing 
tools and found the deconvolution performance of Starfysh to be com-
parable to state-of-the-art methods that require a single-cell reference 
including DestVI9, Cell2location8, Tangram10 and BayesPrism13 (Fig. 1d). 
Additionally, compared to reference-free methods such as CARD16, 
BayesTME28 and STdeconvolve14, Starfysh shows a significant improve-
ment in deconvolving both major and finer cell types (Supplementary 
Fig. 2d,e; Mann–Whitney U-test, P < 1 × 10−5). Applied to published ST 
data from a TNBC breast tumor sample (patient CID44971)18, Starfysh 
also shows substantial improvement in disentangling fine-grained cell 
states (Mann–Whitney U-test, P = 1.70 × 10−11) and scalability compared 
to other methods (Supplementary Fig. 3a–g and Methods).

We further validated the assumptions and performance of 
Starfysh with archetypal analysis using a recent breast tumor ST 
dataset and matched single-cell RNA in situ Xenium data29. The 
multicellular-resolution ST spots were mapped to single cells anno-
tated by Xenium profiling through image registration (Methods). 
Starfysh outperforms other reference-free methods: given the same 
input signature gene sets from this public dataset, Starfysh obtained 
an improved deconvolution for major cell types matching Xenium 
profiles (Supplementary Fig. 4a–f). We also used these data to confirm 
that archetypes detect ‘purest spots’, that is, dominant in one cell type 
(Supplementary Fig. 5a,b). In fact, archetypal analysis guided Starfysh 
to delineate refined cell states of ductal carcinoma in situ (DCIS) with-
out prior knowledge of markers distinguishing them: archetypes 10 
and 2 correspond to expert-annotated subtypes DCIS 1 (low grade) and 
DCIS 2 (high grade) respectively, whereas competing reference-free 
methods failed to recover them (Fig. 1e,f and Supplementary Fig. 5b,c).

As an illustration of generalizability to other tissue types, Starfysh 
successfully decomposed cell types and delineated the spatial microen-
vironment in the mouse brain and human lymph nodes (Supplementary 
Fig. 6a–f), recapitulating the findings of Cell2location, which uses a 
single-cell reference8. In addition to dissecting single tissues, Starfysh 
was capable of integrating ST data from a diverse cohort of prostate 
cancer and tracking microenvironment alterations under clinical treat-
ments (Supplementary Fig. 7). Starfysh successfully identified multiple 
prostate cancer-enriched niches (hubs shown with dashed lines), along 
with a unique microenvironment characterized by an abundance of 
cancer-associated fibroblasts (CAFs; hub 0, pink), which is resistant 
to androgen-deprivation (AD) therapy. These findings align with those 
reported by Marklund et al.30 and underscore Starfysh’s capability to 
delineate more specific cell type behavior (Methods). Altogether, these 
results highlight Starfysh’s ability to derive signal corresponding to 
structured tissues like the cerebral cortex, pinpoint smaller cells such 
as tumor-infiltrating immune cells and construct hierarchies of cell 
types. Such distinctions are impossible with other methods but are 
crucial for understanding heterogeneous immune responses in healthy 
and pathological tissues31.

Starfysh dissects the spatial heterogeneity of breast tumors
We further explored the spatial dynamics of immune response in pri-
mary breast adenocarcinomas using Starfysh, motivated by hetero-
geneity in immune cell composition of tumors, which has been linked 
to variable patient response, for example, to immunotherapy32–34. We 
previously showed that the tissue of residence is a determinant of the 
diversity of immune phenotypic states and that T cells and myeloid line-
age cells exhibit continuous phenotypic expansion in the tumor com-
pared to matched normal breast tissues35. Heterogeneous T cell states 
were defined by combinatorial expression of genes reflecting responses 
to various microenvironmental stimuli while being tightly associated 
with T cell receptor (TCR) utilization35. These data thus suggested that 
TCR specificities may contribute to the spatial organization of T cells 
through the disposition of cognate antigens, facilitating their exposure 
to niches differing in the extent of inflammation, hypoxia, expression 
of activating ligands and inhibitory receptors, and nutrient supply.

To investigate this hypothesis, we performed ST profiling of eight 
primary tumors from an ER+ patient, a patient with classic TNBC and two 
patients with metaplastic TNBC breast cancer (MBC) (two biological 
replicates each) (Supplementary Table 1 and Methods). The resulting 
data, alongside published datasets18 from a total of six ER+ patients and 
patients with TNBC breast cancer (one biological replicate per patient), 
were analyzed using Starfysh.

We first dissected the spatial heterogeneity in an individual TNBC 
tumor and characterized 29 diverse cell states, including normal epi-
thelial, cancer epithelial, immune cells (naive CD4+ T cells, effector 
memory CD4+ T cells, myeloid-derived suppressor cells (MDSCs), 
macrophages, CD8+ T cells) and stromal cells (endothelial, perivas-
cular like (PVL), immature PVL). Importantly, given the heterogeneity 
of tumor cells36, Starfysh defined patient-specific tumor cell states by 
aligning spots enriched for known tumor cell gene sets with archetypes 
that capture extreme phenotypic states, resulting in refined anchors 
that guided the deconvolution of spots (Fig. 2a–d and Supplemen-
tary Fig. 8). The process of identifying anchors for regulatory T (Treg) 
cells and two tumor cell states is illustrated in Fig. 2a–d, showing an 
improved separation of cell states after updating gene sets accord-
ing to archetypes. Additionally, the estimated cell density and the 
reconstructed image were consistent with the histology (maximal 
information coefficient = 0.33; compared to 0.18 for shuffled pixels 
in histology) (Fig. 2e and Methods).

To understand the association between tumor cell phenotypes 
and the tumor microenvironment (TME), we defined spatial ‘hubs’ as 
groups of spots with similar composition by applying PhenoGraph37 
to inferred compositions of spots (Fig. 2f). This analysis revealed that 
heterogeneous tumor cell states reside in different spatial hubs with 
more basal-like tumor cells enriched in hub 1, while a second state 
expressing a subset of MBC-like markers is present in hub 5. These two  
states correspond to two branches in the inferred latent space (Fig. 2g). 
This analysis also uncovered regions with varying composition of 
infiltrating immune cell types exemplified by hub 4 and hub 7 com-
posed of Treg-enriched spots (Fig. 2f,g). These results showed Starfysh’s 
capability to elucidate intratumoral transcriptional heterogeneity 
and characterize diverse and patient-specific tumor cell states, in part 
determined by their spatial context and colocalization with immune  
subsets.

Starfysh shows a spatially covarying tumor–immune 
transition
Further analysis of spots enriched for tumor cells using diffusion 
maps38,39 revealed a continuous transition from basal to MBC-like tumor 
cell states corresponding to a spatial gradient (Fig. 2h and Supplemen-
tary Fig. 9a). The inferred trajectory (pseudospace axis) is associated 
with upregulation of extracellular matrix (ECM) organization and 
ECM–receptor interaction pathways and loss of cytokine-mediated 
signaling-related gene expression, and glycolysis (Fig. 2i,j). The 
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upregulation of epithelial–mesenchymal transition (EMT)-related 
and collagen genes, which are associated with metastatic potential40–42, 
as a gradient reproduced in the adjacent tissue sample re-enforces the 

concept that intratumoral heterogeneity is a continuum rather than 
abruptly demarcated cell states. Indeed, projecting all anchors enriched 
for tumor gene sets as ‘tumor-associated anchors’ (TAAs) showed that 
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they are uniformly distributed along the pseudospace axis (Fig. 2h), 
representing different stages of this transformation.

We then sought to investigate whether different immune cell states 
are associated with regions with varying tumor phenotypes. Remark-
ably, we found a compositional shift from central memory and precur-
sor exhausted T cell states43 to effector memory, terminally exhausted 
and Treg states, as colocalized tumor cells lose basal properties along 
the pseudospace axis, while activated T cells are observed at the tumor 
margins (Fig. 2k). These observations indeed suggest that different 
T cell states are associated with various niches of the TME shaped by 
varying nutrient supply, oncogenic signals and tumor cell differentia-
tion states. In parallel, tissue-repair (M2) macrophages, which have 
been implicated in promoting invasion, migration and proliferation 
of TNBC cells44, were elevated toward the periphery.

The tumor state transformation axis coincides with a loss of 
stemness, a gain in EMT and downregulation of WNT signaling gene 
sets (Fig. 2l and Supplementary Fig. 9b,c). Examining tumor clonality by 
applying inferCNV45 suggests distinct copy number profiles associated 
with basal and mesenchymal-like phenotypic states residing in differ-
ent locations (Fig. 2m and Supplementary Fig. 9d). To further investi-
gate tumor–immune colocalization, we adopted a TCR amplification 
protocol46 in an MBC tumor (P4A_MBC), identifying a dominant T cell 
clone spatially distributed across the tissue (Supplementary Fig. 10a–d). 
Deconvolved cell states from Starfysh suggest that spots associated with 
this clonotype varied in Treg cell and precursor exhausted T cell propor-
tions, determined by their location (Supplementary Fig. 10e,f). This 
result accords with other studies on conversion of naive CD4+ T cell clones 
into Treg cells47 and Treg cells implicated in promoting T cell exhaustion48.

In addition to characterizing intratumoral heterogeneity, Starfysh 
also quantifies intertumor heterogeneity. By performing differential 

gene expression analysis, we identified markers characterizing TAAs in 
all breast tumor samples. Marker gene sets for tumor states in biological 
replicates originating from the same patient tumor were overlapping as 
expected, while distinct modules of non-overlapping markers illustrate 
intrapatient heterogeneity (Fig. 2n). Quantifying the overlap in top 
marker genes of tumor states across patients of the same subtype, we 
observed greater divergence in markers representing MBC tumor states, 
implicating higher intertumoral heterogeneity in MBC samples than that 
in TNBC and ER+ samples (Fig. 2o), consistent with the known morpho-
logical heterogeneity of MBCs49. The heterogeneity between TNBC and 
MBC was further supported by comparing rankings of TAA differentially 
expressed genes, where we found a lower correlation between patients 
with MBC and TNBC than in samples of the same subtype (Fig. 2p,q).

Starfysh defines spatial hubs from integrated breast tumors
To demonstrate the potential of Starfysh in deriving commonalities 
among heterogeneous samples and disease subtypes, we performed an 
integrated analysis of all 14 samples from ten patients (n = 37,517 spots) 
(Supplementary Table 3 and Methods). Uniform manifold approximation 
and projection (UMAP) dimensionality reduction of ST data without Star-
fysh revealed no overlap among patients, partly due to patient-to-patient 
variation, given that replicate samples overlapped (Fig. 3a). Moreover, 
the aggregation of patient-specific tumor cells with other cell types 
within spots hindered the comparison of shared immune states and spa-
tial neighborhoods between patients. While batch correction methods 
designed for single-cell data failed in correcting the variations between 
patients (Supplementary Fig. 11a,b), Starfysh successfully integrated 
all datasets in a joint latent space (Fig. 3b and Supplementary Figs. 11c 
and 12). It yielded greater mixing of immune states quantified with the 
entropy of the local distribution of patients (Methods) yet preserved 

Fig. 3 | Characterizing tumor–immune hubs from the integration of samples. 
a,b, UMAP visualization of ST data from four MBC, six TNBC and four ER+ samples 
(n = 37,517 spots) before (a) and after (b) Starfysh integration on the joint 
latent space of c. c, UMAP visualization of Starfysh-inferred proportions from 
integration of spots from all samples colored by the proportions of a tumor cell 
state and an example immune cell state (Treg) in the integrated space. d, UMAP of 
integrated space colored by Shannon’s entropy per spot and box plots of entropy, 
grouping spots by disease subtype. Box plots indicate the median (center lines), 
interquantile range (hinges) and 1.5× interquartile range (whiskers). n = 32,409 
immune cell-enriched spots and 5,108 tumor cell-enriched spots. n = 47, 493, 467 
and 74 in basal-, MBC-, LumA- and LumB-enriched spots. Two-sided independent 
two-sample t-test was performed on the entropy of each group comparison. P 
value = 7.89 × 10−160 in comparison between immune cells and tumor cells;  
P values = 1.08 × 10−2, 2.04 × 10−142, 2.30 × 10−52, 1.99 × 10−49, 2.31 × 10−7 and 2.14 × 10−2 

for basal versus MBC, MBC versus LumA, LumA versus LumB, basal versus LumA, 
MBC versus LumB and basal versus LumB. ***P < 0.001, ****P < 0.0001.  
e, UMAP of integrated space colored by hubs identified by clustering spots based 
on inferred cell type proportions. f, Spatial hub distribution for each sample. 
g,h, Spatial arrangement of hubs (g) and pathological histology annotation of 
sample 44971_TNBC (h). Inferred hubs align well with annotated DCIS (red hub), 
lymphocyte-infiltrated (olive green hub) and stroma (yellow hub) regions. TIL, 
tumor-infiltrating lymphocyte. i, MIC for alignment of hubs with histology. Box 
plots indicate the median (center lines), interquantile range (hinges) and 1.5× 
interquartile range (whiskers). n = 1,162 spots in both hubs and shuffled hubs. Two-
sided independent two-sample t-test was performed. P value = 1.30 × 10−2. *P < 0.05. 
j, Paired histology and spatial arrangement of hubs for TNBC and ER+ patient 
samples showing consistencies between replicates of the same patients and with 
histology. k, Number of spots assigned to intratumoral hubs in each patient.

Fig. 2 | Characterizing spatial tumor heterogeneity in breast carcinoma.  
a, UMAP projection of ST data from the P2A_TNBC sample. Gray dots represent 
spots; seven example cell states are highlighted in color. See all cell states in 
Supplementary Fig. 8. MSC, mesenchymal stem cell; iCAF, inflammatory-like 
cancer-associated fibroblast. b, Mapping archetypes to cell states shown in a. 
c, Archetypal communities associated with cell states in a (Methods). d, Spots 
enriched for cell states are combined with archetypes to achieve a refined anchor 
set, for example, for patient-specific tumor states. e, Histology for sample P2A_
TNBC, reconstructed histology and cell density using Starfysh. f,g, Spatial hubs, 
distribution of anchors and inferred proportions for two tumor cell states and Treg 
cells in the spatial context (f) and UMAP of Starfysh latent factors (g). h, Diffusion 
map analysis of tumor-enriched spots. The dominant trajectory was inferred with 
SCORPIUS73 and is shown in the tissue context (pseudospace axis). i, Spatial hubs 
(top) and pseudospace (middle) for spots sorted along the trajectory inferred 
in h. Heatmaps of expression of gene modules correlated with projections of 
cells along the trajectory and pathways enriched with gene set enrichment 
analysis (GSEA; bottom). GO-BP, Gene Ontology Biological Process; KEGG, Kyoto 
Encyclopedia of Genes and Genomes. j, Expression of marker genes in pathways 
shown in i in spots projected on the trajectory. Lines and shading represent 

local polynomial regression fitting with confidence intervals. k, Changes in 
the proportion of cell states along the pseudospace axis. Data are presented as 
mean ± s.d. TCM, central memory T cell; TEM, effector memory T cell. l, Expression 
of gene sets enriched in any intratumoral hub. n = 419, 382, 371, 521 and 363 
spots were examined. Box plots indicate the median (center lines), interquartile 
range (hinges) and 1.5× interquartile range (whiskers). One-way ANOVA test was 
performed across hubs, P < 1 × 10−30 for EMT and stemness. m, Tumor clonality 
and phylogeny predicted by inferCNV. n, Heatmap of expression of the top 20 
genes (rows) differentially expressed in TAAs (columns), grouped by sample.  
o, Overlap between the top N marker genes differentially expressed in TAAs in any 
pair of patients. p,q, Kendall’s τ correlation between rankings of genes according 
to differential expression scores in TAAs (p) and grouped by patient subtype (q). 
Correlations among samples from the same (S) and different (D) patients are 
shown. Box plots indicate the median (center lines), interquartile range (hinges) 
and 1.5× interquartile range (whiskers). Two-sided independent two-sample t-test 
was performed on Kendall’s τ correlations. P values = 3.30 × 10−42, 5.06 × 10−48, 
2.01 × 10−25, 1.76 × 10−61, 5.30 × 10−66 and 7.20 × 10−6, respectively. ****P < 0.0001, 
n = 96 examined in each subgroup in q.
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differences between patient-specific tumor cells (Fig. 3c,d). Overall, this 
analysis showed that MBC tumors have the highest heterogeneity, while 
luminal (Lum)A tumors display lower heterogeneity than other subtypes.

To understand similarities and differences in the organization 
of cell states among patients, we identified spatial hubs from the 

integration of all samples (Fig. 3e). The majority of hubs were detected 
in more than one patient (Fig. 3f). The distribution of hubs, however, 
varied between disease subtypes and patients. The spatial arrangement 
of hubs showed a marked similarity to expert-annotated histology, 
including in rare normal epithelium regions, tumor-infiltrated regions 
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and immune cell-enriched regions (Fig. 3g,h), which was quantified 
using the maximum information coefficient (MIC) (Fig. 3i and Meth-
ods). As expected, hub distributions had similar patterns between 
replicates, that is, adjacent sections of tumor tissues (for example, 
P1A_ER, P1B_ER), whereas hubs dominated by tumor cells were different 
between patients (for example, P1, P2) (Fig. 3j,k).

Hypoxia shapes an immunosuppressive niche in MBC
By integrating ST datasets, we systematically compared tumor hetero-
geneity and its interplay with tumor–immune characteristics across 
breast cancer subtypes. In particular, we investigated potential dif-
ferences in cellular organization in MBC compared to other TNBCs50. 
MBC is a rare and aggressive form making up 1–2% of all breast cancer40 
and typically characterized as TNBC due to lack of expression of ER, 
progesterone receptor (PR) and human epidermal growth factor 2 
receptor (HER2). However, MBCs have worse prognosis and greater 
resistance to chemotherapy than conventional TNBC40,51,52. A hallmark 
of MBC is morphological heterogeneity, reflected in its name49,53. This 
distinguishing feature alongside enrichment in macrophages and 
immunosuppressive Treg cells54 motivates the spatial characterization 
of tumor–immune crosstalk in the MBC TME to help guide the develop-
ment of new therapeutic approaches tailored to MBC’s unique biology.

In our comparative analysis of TNBC and MBC tumors, we defined 
spatial hubs among ten samples encompassing these subtypes (Supple-
mentary Fig. 13a and Methods) and partitioned them into intratumoral, 
peritumoral and stromal categories according to spatial arrangement 
around tumor regions (Fig. 4a and Supplementary Fig. 13b–d). Distinct 
intratumoral hubs across samples highlight tumor cell heterogeneity 
among patients (for example, hub 11; Figs. 3k and 4a,b). To understand 
phenotypic differences in MBC tumor states, we projected TAAs onto 
the inferred joint space from integration of all samples (Methods) and 
applied diffusion map analysis. This revealed tumor state transition 
trajectory from a TNBC-enriched state to an MBC-specific state cor-
related with tumor growth regulation and reduced glycolytic processes 
(Fig. 4c,d). MBC-specific states were associated with inflammatory 
response, hypoxia, EMT and tumor necrosis. The expression of EMT- 
and hypoxia-related genes, along with sample distribution on this 
trajectory confirmed their enrichment in MBC intratumoral hubs 
(Fig. 4e,f). Oncogenic pathways like PI3K–AKT, anti-inflammatory and 
glucose-deprivation pathways were enriched in MBC intratumoral 
hubs, while G2/M and pro-inflammatory pathways were downregulated 
(Supplementary Fig. 13e), suggesting an immunosuppressive environ-
ment in MBC intratumoral regions.

In parallel, we observed an increase in hypoxia approaching MBC 
intratumoral hubs, accompanied by enrichment in Treg and PVL cells 
in MBC (Fig. 4d–g). In fact, enrichment of Treg cells colocalizing with 

exhausted T cells (as determined by the spatial correlation index55) in 
intratumoral hubs was detected only in MBC (Supplementary Fig. 14a 
and Methods), implicating Treg infiltration as a potential hallmark of MBC.

To identify communication patterns used by MBC tumor- 
infiltrating Treg cells, we predicted receptor–ligand interactions that may 
mediate crosstalk between Treg cells and other cell states in intratumoral 
hubs using CellPhoneDB56 (Fig. 4h, Supplementary Fig. 14b,c and Meth-
ods), revealing immunosuppressive pathways related to FGF2, FGFR1 
and CD44 expression involved in MBC. Notably, FGF2 is a protumor angi-
ogenesis factor and induces drug resistance in chemotherapy in breast 
cancer57. The receptor FGFR1 induces the recruitment of macrophages 
and MDSCs in the tumor58, while CD44 is a known marker of breast cancer 
stem-like cells and stabilizes Treg persistence and function59. We observe 
diffused expression of these receptors with distance from Treg-enriched 
spots in MBC (Fig. 4i), further supporting their involvement in intratu-
moral Treg communication. These results demonstrate complex crosstalk 
in response to the immunosuppressive signals generated by Treg cells.

Aside from Treg cells, other immunosuppressive cells such as M2-like 
macrophages, MDSCs and CAFs were also uniquely enriched in MBC 
intratumoral hubs compared to TNBC ones (Fig. 4g). Previous stud-
ies have shown that hypoxia affects EMT in cancer by regulating EMT 
signaling pathways, EMT-associated microRNA and long noncoding 
RNA networks60. Both hypoxia and EMT were reported to modulate the 
TME by recruiting immunosuppressive cell types such as Treg cells61,62, in 
line with our observation (Fig. 4g), implicating hypoxia as a major factor 
contributing to MBC. Hypoxia is also known to confer therapy resistance 
by inducing cell cycle arrest and inhibiting apoptosis and mitochondrial 
activity63. Therefore, a tumor subpopulation surviving hypoxia may 
contribute to resistance to chemotherapy and radiotherapy.

Gene enrichment analysis in MBC intratumoral hubs consistently 
revealed EMT, hypoxia, ECM and PI3K–AKT signaling in MBC samples 
(Fig. 4j and Supplementary Fig. 14d,e). Notably, the genomic landscape 
of MBCs shows frequent mutations in TP53 and the PI3K–AKT–mam-
malian target of rapamycin (mTOR) pathway64,65. Our data thus suggest 
possible coordination of nutrient uptake including glucose through 
hypoxia-inducible factor 1 (HIF1) and PI3K–AKT pathways66, supporting 
enhanced growth and proliferation in intratumoral MBC hubs67, while 
this metabolic reprogramming is associated with immunosuppressive 
crosstalk.

Spatial organization and interactions in the stromal breast 
TME
To dissect the stromal TME responding to unique microenvironment 
niches, such as gradients of hypoxia in MBC, we characterized the 
cellular composition of peritumoral and stromal regions (Fig. 4a). 
Intriguingly, Treg-enriched hubs 3 and 4 were present in all samples 

Fig. 4 | Intratumoral inflammation and heterogeneity in MBC epithelia. 
a, Classification of spatial hubs according to distance from tumor hubs and 
matched histology. Percentage of spots from MBC and TNBC subtypes in each 
hub. One-sided independent two-sample t-test was performed for comparisons 
of proportions in each hub. P values = 3.05 × 10−2, 1.48 × 10−2, 0.43, 2.74 × 10−4, 
9.13 × 10−5, 0.63, 0.94, 0.77, 3.80 × 10−3, 4.65 × 10−3, 1.05 × 10−4 and 3.84 × 10−2, 
sequentially. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. NS, not significant. 
b, The spatial arrangement of hubs. c, Diffusion map analysis reveals a 
continuous trajectory between TAAs across different MBC and TNBC patient 
samples. Archetypes are shown, with black stars representing the most distinct 
states for TAAs. The dominant trajectory was inferred with SCORPIUS73. d, Top 
row: spots ordered by inferred pseudotime using SCORPIUS based on diffusion 
components in c. Second row: pseudotime for spots sorted along the trajectory 
inferred in c. Bottom: heatmaps of expression of gene modules with positive or 
negative correlation with the projection of cells along the trajectory and select 
pathways enriched with GSEA. e, Expression of EMT- and hypoxia-relevant gene 
sets shows highly correlated dynamics along pseudotime. Data are presented 
as mean values ± s.d. f, Percentage of TNBC and MBC spots along the inferred 

pseudotime. g, Comparison of inferred intratumoral cell state proportions 
across tumor subtypes. TEX, terminal exhausted T cells; myCAF, myofibroblast-
like cancer-associated fibroblasts. Box plots indicate the median (center 
lines), interquantile range (hinges) and 1.5× interquartile range (whiskers). 
n = 5,366 and 1,888 intratumoral spots for TNBC and MBC, respectively. Two-
sided independent two-sample t-test was performed. P < 1 × 10−30, 1.20 × 10−38, 
4.21 × 10−220, 8.06 × 10−30, 4.80 × 10−68 and 3.26 × 10−17, sequentially. h, Predicted 
significant receptor–ligand interactions between Treg cells (sender) and other 
cell types (receiver) in MBC intratumoral regions. Prex, precursor exhausted 
T cells; pDC, plasmacytoid dendritic cells; cDC, conventional dendritic cells; 
Bm, memory B cells; Bn, naive B cells. i, FGFR2 and CD44 expression averaged 
across spots in each tumor subtype after binning according to k-nearest 
neighbors (kNN) graph path length from Treg-enriched spots in intratumoral 
hubs. Data are presented as mean values ± s.d. j, Enrichment analysis for MBC 
intratumoral hubs. Differentially expressed genes were identified using the 
Wilcoxon test in Scanpy, and significant pathways (false discovery rate < 0.05, 
Benjamini–Hochberg) are shown with GSEA’s default permutation-based test. 
UV, ultraviolet. Dn, downregulated.
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but showed unique patterns in each disease subtype (Supplementary 
Fig. 13f). For example, they enveloped tumor hubs or were spatially 
scattered in TNBC tumors (Fig. 4a,b; for example, hubs 3 and 4 in 
P2A_TNBC). This feature of tumor hubs enveloped with Treg-enriched 
regions was also identified in ER+ tumor samples (P1A_ER, P1B_ER in 
Fig. 3j with Treg-enriched hubs 0 and 2). By contrast, in MBC, they were 
concentrated at certain locations close to intratumoral hubs (Fig. 5a 
and Supplementary Fig. 12). In addition to the spatial shifts of T cell 

states, endothelial cells (CAFs; Fig. 4g) were also enriched in hubs 3 and 
4 in MBC, suggestive of heightened angiogenesis in the stromal TME of 
MBC, which was particularly apparent in histology of the region, likely 
as an adaptation to hypoxia (Fig. 5a,b).

To validate Starfysh’s predictions, we performed co-detection- 
by-indexing (CODEX) profiling on MBC tissues with 23 antibodies (Sup-
plementary Fig. 15a–d and Supplementary Table 6). As a multiplexed 
imaging technology, CODEX measures single-cell protein expression. 
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The profiled tissues were resectioned adjacent to those profiled with 
ST and showed similar tissue architecture in histology. Aligning the 
segmented and annotated single-cell CODEX data with ST data con-
firmed the predicted spatial organization of major and rare cell types. 
For example, CODEX-profiled regions enriched for Treg cells and plas-
mablasts aligned with hub 7 in ST samples, adjacent to the intratumoral 

regions (Figs. 5c and 4a,b and Supplementary Fig. 15e). The cellular 
components of vasculature indicated by CD31 expression also matched 
predicted endothelial and perivascular cells in ST data. We further 
assembled the single-cell CODEX into spot-level resolution and com-
pared proportions of cells across TME regions. We identified a decline 
in tumor cells from intratumoral to stromal regions and a unique  
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enrichment of Treg cells and plasmablasts at the tumor border (Fig. 5d). 
We then compared cell neighborhoods defined according to CODEX to 
spatial hubs in ST and found a significant correlation (Fig. 5e and Meth-
ods). Overall, Starfysh enabled characterization of the spatial TME in 
MBC differing from TNBC and ER+ cancer (summarized in Fig. 5f). Our 
analysis suggests that the enriched tumor-suppressive cells in MBC 
intratumoral regions underlying heightened hypoxia and EMT poten-
tial and angiogenesis in the MBC TME likely oppose pro-inflammatory 
responses and limit CD8+ T cell infiltration (Supplementary Fig. 15f).

Discussion
By incorporating archetypal analysis and prior knowledge of cell state 
markers in a deep generative model, Starfysh dissects the spatial het-
erogeneity of complex tissues from ST and histology, without relying 
on single-cell references. It refines cell states using archetypes and 
deconvolves them using a generative model enhanced with histologi-
cal data, providing information on tissue architecture, cell density 
and spatial dependencies between measurements. Starfysh excels in 
integrating multiple heterogeneous tissue samples and identifying 
shared or tissue-specific cell states and spatial hubs. These key features 
make Starfysh an ideal tool to discover spatial hubs from integrated 
large-scale datasets, increasing power to detect features of complex 
and rare diseases that could drive future therapeutic strategies.

Applied to breast tumors, Starfysh elucidated the role of spatial 
heterogeneity in shaping continuous phenotypic expansion of tumor- 
infiltrating immune cells35. It revealed a correlation between tumor 
cell state transitions and immune cell distribution, supporting the 
hypothesis that tumor cell spatial orientation influences immune 
differentiation.

We demonstrate the power of Starfysh in integrating multiple tis-
sues using our generated and previously published ST datasets. This 
integration allowed for quantification of intratumoral and intertumoral 
heterogeneity and identification of spatial hubs with similar cell state 
compositions. A key application of this integration was comparing 
rare, chemoresistant metaplastic breast tumors to other breast can-
cer subtypes. Notably, we found intratumoral infiltration of Treg cells, 
M2-like macrophages and MDSCs in MBC, shaping an immunosup-
pressive niche enriched in EMT and hypoxia. Crosstalk with Treg cells 
was predicted to be mediated through FGF2, FGFR1 and CD44 signal-
ing pathways, which would be top candidates for future functional 
studies. Indeed, FGFR signaling is known to maintain EMT-mediated 
drug-resistant populations68. Enrichment of p53 and PI3K–AKT path-
ways in MBCs also suggests reprogramming of metabolic activity in 
MBC tumors. Our data thus motivate further investigation of FGFR 
inhibitors69 as well as other approaches for targeting glucose metabo-
lism70 and immunosuppressive Treg cells for the treatment of MBCs.

In addition to spatial characterization of the TME specific to this 
rare subtype of breast cancer, the integration identified a stromal hub 
shared across breast cancer subtypes while exhibiting varying spatial 

patterns. Within this stromal hub, we observed compositional shifts 
with the replacement of Treg cells with activated CD8+ T cells in MBC 
compared to other TNBCs. Additionally, our observation of enriched 
endothelial cells in MBC stroma alludes to mechanisms of local adap-
tation to hypoxic regions through possible vascular formation. Alto-
gether, these results imply that the underlying biology of the tumor 
impacts stromal response and immune infiltration.

Overall, Starfysh has proven effective in analyzing complex ST, 
integrating patient samples with distinct microenvironments and 
sources, and has demonstrated robustness in characterizing spa-
tial interactions within and across samples. These features enabled 
extraction of biological insights from a limited cohort of patients 
with breast cancer. In a recent study, we applied Starfysh to disentan-
gle the spatial dynamics of activated and exhausted T cell subsets in 
Slide-seqV2 (ref. 71) data from anti-PD-1-treated melanoma tumors72, 
showing its applicability to other ST technologies and cancer systems. 
In future work, incorporation of archetypal analysis in the probabilistic 
framework and extensions to multiomic integration with proteomics 
or chromatin accessibility will improve our ability to achieve com-
prehensive characterization of spatial heterogeneity. Additionally, 
integration with high-resolution images can explicitly account for cell  
morphology.
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Methods
Starfysh model
Model overview. Deep generative models parameterized by neural net-
works have proven effective in analyzing single-cell RNA expression data 
(scvi-tools19, scVI20, totalVI21, scArches22, trVAE23, scANVI24, MrVI25 and 
so on). However, the presence of multiple cell types in each spot in ST 
data makes it difficult for these models to disentangle cell type-specific 
features. To overcome this limitation, Starfysh introduces a generative 
model with a special variational family that is structured to model the 
presence of multiple cell states per spot in ST data. The Starfysh genera-
tive model leverages gene set signatures (either existing signatures or 
signatures computed with archetypal analysis) as an empirical prior 
to help disentangle cell types72. We first detail the generative model of 
Starfysh and then introduce its structured variational family.

Starfysh generative process. Starfysh models the vectors of gene 
expression xi ∈ ℝG (with G the number of observed genes) for each spot 
i with a generative model. The generative model (Fig. 1c) is parameter-
ized by K, representing the expected number of cell states in the data. 
The determination of K can be automated through archetypal analysis 
beforehand, or an expert can provide guidance on the K most important 
cell states in the sample. Each cell state k ∈ [K] is characterized by a 
low-dimensional latent variable, uk ∈ ℝD  (with D defaulting to ten 
dimensions), capturing the specific mechanisms underlying that cell 
state. Moreover, each cell state k has a scalar variable, σk > 0, indicating 
its variability and heterogeneity.

Subsequently, Starfysh models each spot i with a specific low- 
dimensional representation zi. In the context of single-cell data, each 
cell state k would usually be represented by a low-dimensional vector 
z centered around uk, with a standard deviation of σk. However, for ST 
data, where each spot captures a mixture of cells with different cell 
states, Starfysh associates each spot i with a proportion vector, ck ∈ ΔK, 
representing the proportions of each cell state in that spot. Starfysh 
then constructs the low-dimensional representation zi with a mixture 
distribution that combines the cell state proportions ci and the cell 
state-specific representations uk: zi|ci,u;σ ∼ N(∑kcikuk,∑kcikσk).

Following this, zi is transformed using a neural network f to obtain 
the normalized mean expression of each gene for spot i, which is further 
scaled by the library size li. The observed raw transcript count xig for 
gene g in spot i is then sampled from a negative binomial distribution 
centered around the upscaled mean.

Cell state proportions, ci, are also considered as random variables 
with a carefully crafted prior. Each cell state k ∈ [K] needs to be associ-
ated with a preliminary gene set signature, sk, which can be provided 
by the user or automatically discovered through archetypal analysis. 
By calculating the signature scores in each spot, denoted as A(xi, sk), 
Starfysh establishes a prior distribution over the cell state proportions 
in each spot. Specifically, the proportions of cell states ci are sampled 
from a Dirichlet distribution with a prior parameter α[A(xi, sk)]k∈[K]. For 
instance, if spot i highly expresses known marker genes for cell state k, 
then a larger value of A(xi, sk) will favor the probability of allocating cell 
state k for spot i according to the empirical Dirichlet prior parameter. 
The parameter α modulates the prior strength and represents the belief 
in the signature gene sets: a larger value corresponds to a stronger 
prior, while a smaller value results in a less constraining prior.

The generative model is defined as p(u, c, z, l, x) = ∏K
k=1p(uk)∏

n
i=1

p(ci)p(zi|ci,u)p(li)p(xi|zi, li), with

•	 p(uk) = Normal (0, 10ID)
•	 p(ci; α, A) = Dirichlet (α⋅A), where α controls the prior strength on 

the signature scores A.
•	 p(zi|ci, u; σ) = Normal(∑k cikuk,∑k cikσk) , where the parameters σk 

represent cell state-specific heterogeneity.
•	 p(li; ̃li) = logNormal( ̃li, 1), where ̃li is the locally averaged library size 

observed in spot i’s spatial neighborhood.

•	 p(xi|zi, li) = ∏G
g=1p (xig|li, zi)

•	 p(xig|li, zi; θg, f) = NegativeBinomial (lif(zi), θg), where θg denotes 
gene-specific dispersions and f is a neural network with a softmax 
output.

In the generative process, the parameters A,α, ̃li are fixed. The prior 
strength α is set by default to 50. Robustness analysis on α demonstrates 
that the model consistently outperforms the signature prior given a 
reasonable range (α ≥ 1) (Supplementary Fig. 2c). The optimal choice 
of the prior strength term depends on the specific dataset and markers. 
The locally averaged library size is computed as ̃li =

1
|Ni |

∑j∈Ni ∑g xjg , 
where Ni is the set of spots physically located adjacent to spot i and also 
includes i. The cell state heterogeneities σk are initialized as 1, and the 
gene dispersions θg are initialized at random. Finally, the neural network 
f has by default one linear layer followed by a softmax. σk, θg and f are 
all learned during the inference.

Integration with histology images. Although histology hematoxylin- 
and-eosin (H&E) images are usually provided along with ST data (for 
example, the commercial Visium platform), current methods fail to 
use such modality in deconvolving cell types. Histology, however, 
provides useful information about morphology, tissue structure, cell 
density and spatial dependency of cells. Integrating histology and tran-
scriptomes in a joint model is challenging, as the two data modalities 
are very different: the genome-level transcripts are high-dimensional 
vectors, whereas the histology data consist of multichannel images. 
Thus, it is essential to address the mismatch of these two types of data 
while preserving cell type-specific information of gene expression 
and cell morphology-specific information of histology images. The 
integrative approach in Starfysh is formulated with a deep variational 
information bottleneck26.

The original H&E images are first normalized to [0, 1] per channel. 
The alignment between H&E images and ST spot i produces the histol-
ogy image patches yi ∈ ℝP×P×C  (with P as the side length of the patch 
and C as the number of image channels, for example, C = 3 for RGB 
images and C = 1 for grayscale images). We set P = 26 by default to 
approximate the number of pixels surrounding each spot. The image 
patch yi is then flattened in the Starfysh model and assumed to be 
generated from the same latent variable zi that informs gene expression 
(Fig. 1c and Supplementary Fig. 1a) with a distribution p(yi|zi) param-
eterized by two neural networks gμ, gσ, for mean and variance of distri-
bution for yi, respectively. Both consist of a linear layer followed by a 
batch normalization layer. They define:

p ( yi|zi) = Normal ( gμ(zi), gσ(zi)) .

Construction of the empirical prior. For cell states expected to reside 
in the tissue, Starfysh first filters out marker genes that are either 
unavailable in the ST data or not expressed in any spots to obtain binary 
variable sk ∈ ℝG , k = {1,…, K}. Next, two priors are calculated before 
running Starfysh, including a prior for the cell state proportions that 
reflects their spot enrichment and a prior for the library size:

 1. Prior for the cell type proportion: 
A(xi, sk) is defined as the enrichment score74 of the marker genes 
for cell state k at spot i. The score is first calculated with the 
Scanpy function ‘scanpy.tl.score_genes’, which computes the 
marker genes’ average expression and subtracts from it the 
average expression of a reference gene set G′ randomly sampled 
from binned expressions: 
Araw(xi, sk) =

1
|sk |

∑g∈G xig ⋅ skg −
1

|G ′ |
∑g∈G ′xig. We further trans-

formed the scores using the function ReLU(x) = max(0, x) to 
ensure the positive constraints of Dirichlet parameters and make 
them comparable across spots (with ϵ defaulting as 1 × 10−5):

A(xi, sk) = ReLU(Araw(xi, sk)) + ϵ

A(xi, sk) =
A(xi, sk)

ΣkA(xi, sk)
.
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For each cell state, the prior assigns unique enrichment scores across 
all spots, and we thus can define the anchor spots R ∈ ℝS×K  specifying 
the ranking of each spot i based the enrichment score A(∶, k) for each 
state k, which can be updated with archetypal analysis detailed below.
 2. Prior for the library size: 

Starfysh also considers the spatial dependency of spots when 
generating the prior for library size. ̃li =

1
|Ni |

∑j∈Ni ∑g xjg, where Ni 
is the set of spots physically located around the spot i, which 
includes all spots j such that |rj − ri| < w, where w is an adjustable 
parameter for window size (default set to 3). ri is the spatial 
coordinates for spot i.

Archetypal analysis. Marker genes that represent cell states may 
be context dependent or unknown. To address these limitations and 
improve the characterization of tissue-dependent cell states, we devel-
oped a geometric preprocessing step, leveraging archetypal analysis75, 
to refine marker genes and identify new cell states.

Archetypal analysis fits a convex polytope to the observed data, 
finding the prototypes (archetypes) that are most adjacent to the 
extrema of the data manifold in high dimension. Previous works76–78 
have applied archetypal analysis to scRNA-seq data to characterize 
meaningful cell types. In the context of ST, we hypothesize that the 
archetypes are closest to the purest spots that contain only one or the 
fewest number of cell states, while the rest of the spots are modeled as 
the mixture of the archetypes.

We applied the PCHA algorithm79 to find archetypes that best 
approximate the ‘extrema’ spots on a low-dimensional manifold. 
Specifically, let ̂X ∈ ℝS×G be the normalized spot (S) by gene (G) expres-
sion from the original spatial count matrix. We further selected the 
first P = 30 principal components (X′ ∈ ℝS×P) to denoise the data. We 
denote matrices W ∈ ℝS×D,B ∈ ℝD×S and H = BX′ ∈ ℝD×P, where D repre-
sents the number of archetypes. The algorithm optimizes the param-
eters of W and B alternately, minimizing ‖X′ −WH‖2 = ‖X′ −WBX′‖2  
subject to W∶,i > 0 & ∑D

i=1W∶,i = 1 and B∶,i > 0 & ∑S
i=1B∶,i = 1, where S spot 

counts and D archetypes are convex combinations of each other74. We 
applied Fisher separability analysis80 to infer the intrinsic dimension 
as its lower bound and iterated through different K values until the 
explained variance converges. We also implemented a hierarchical 
structure to fine tune the archetypes’ granularity with a resolution 
parameter r (ref. 81) (default set to 100). For archetype ai, i ∈ 2,…, D, if 
it resides within a Euclidean distance of r from any archetype 
aj, j ∈ 1,…, i − 1, we merge ai with the closest aj. The archetypes distant 
from each other are kept after the shrinkage iteration and used in 
subsequent steps.

We define archetypal communities as the r-nearest neighbors 
(same as the resolution parameter) to each archetype by construct-
ing D clusters. Next, for each cluster i, we identify the top 30 marker 
genes by performing a Wilcoxon rank-sum test between in-group and 
out-of-group spots with Scanpy82. We then refine cell state markers 
by assigning archetypal communities to the closest cell states. First, 
we align D archetypal communities with the best one-to-one matched 
K cell states with stable marriage matching83 and then append the 
archetypal marker genes to the given cell state. Next, we update the 
anchor spots according to the updated gene list. Alternatively, to find 
new cell states, we rank the archetypal clusters from the most distant 
to the least distant to the anchor spots of known cell states, and the 
archetypal clusters distant from all anchor spots represent potential 
new states for further study.

The overall archetypal analysis algorithm in Starfysh is summa-
rized as follows:

 1. Estimate the intrinsic dimension of the count matrix, and find k 
archetypes that identify the hypothesized purest spots.

 2. Find the N-nearest neighbors of each archetype, and construct 
archetypal communities.

 3. Find the most highly and differentially expressed genes for each 
archetypal community, and select the top n genes (default, 
n = 30) as the ‘archetypal marker genes’.

 4. If the signature gene sets are provided, align the archetypal 
communities to the best matched known cell types, update the 
signature genes by appending archetypal marker genes to the 
aligned cell type and recalculate the anchors.

 5. If the signature gene sets are absent, apply the archetypes and 
their corresponding marker genes as the signatures.

We found that archetypes alone are sufficient for disentangling 
major cell types but not fine-grained cell states (Supplementary 
Fig. 3e); however, when used as empirical priors to the deep genera-
tive model, they can guide the successful deconvolution of cell states 
(Supplementary Fig. 3a).

Starfysh structured variational inference. Starfysh uses variational 
inference to approximate the posterior. We first describe the inference 
procedure without integrating the histology variable yi. The posterior 
on variables uk (cell states representations) are approximated by 
mean-field distributions q(uk), while the posterior on the variables ci 
and li (cell state proportions and library size) are approximated by 
amortized mean-field distributions q(ci|xi) and q(li|xi). Next, for each 
spot i, we use a specially structured variational distribution q(zi|ci, xi) 
that uses cell state proportions to sample the latent variables zi. Because 
each spot contains multiple cell states with proportions ci, the struc-
tured variational distribution is assumed to decompose as a combina-
tion of cell state-specific terms (denoted by ζ(k, xi) for each cell state k),  
weighted by the proportion of cell states ci. The variational family 
factorizes in the form q(u, c, z, l|x) = ∏K

k=1q(uk)∏
n
i=1q(ci|xi)q(li|xi)q(zi|ci, xi ), 

parametrized by new variational parameters mk and vk and neural 
networks λ, γ and ζ as follows:

q(uk) = Normal(mk, vk)

q(li|xi) = Normal(λμ(xi), λσ(xi))

q(ci|xi;α) = Dirichlet(α ⋅ γ(xi))

q(zi|ci, xi) = Normal(∑kcik ⋅ ζμ(k, xi),∑kcik ⋅ ζσ(k, xi)).

In summary, for each cell state k, the function ζ(k, xi) deconvolves 
the contribution of cell state k to the latent representation of zi. Each 
zi is a combination of the cell state contributions ζ(k, xi) weighted by 
the proportions ci. The cell state proportions are inferred with the 
neural network γ, which is guided toward the prior to match the cell 
type gene sets. The prior strength parameter α also premultiplies the 
neural network γ to obtain a posterior of similar strength, which helps 
for the gradient optimization.

Next, the standard variational inference that maximizes the evi-
dence lower bound (ELBO) is performed84. The ELBO in our case can 
be written as:

ELBO (q) = 𝔼𝔼q(z,c,l,u|x) [log
p(x,z,l,c,u;α,A, ̃l,σ)

q(z,c,l,u|x)
]

= 𝔼𝔼q(z,c,l,u,|x)[logp(x|z, l )]

−𝔼𝔼q(c,|,x)q(u) [DKL(q(z|c, x)‖p(z|u, c;σ))]

−DKL(q(c|x;α)||p(c;α,A))

−DKL(q(l|x)||p(l; ̃l)) − DKL(q(u)||p(u)),

where DKL(p || q) is the Kullback–Leibler divergence between distribu-
tion p and q, defined as DKL(p || q) = 𝔼p(x)[log p(x)/q(x)]. We find the q that 
maximizes the ELBO by running stochastic gradient descent.

Starfysh structured variational inference with histology integration. 
To integrate the histology in the inference method, we model the 
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approximate posterior over the latent low-dimensional representation 
z with the PoE distributions (Supplementary Fig. 1a). For each spot i, we 
denote the view-specific encoders qθ1 (zi|ci, xi) and qθ2 (zi|yi) from the 
corresponding expression xi and image patch yi, respectively. The expres-
sion view qθ1 (zi|ci, xi) = Normal(μ1,σ12) is the same as described. For the 
histology view, zi is approximated by amortized mean-field distribution 
qθ2 (zi| yi) = Normal(μ2,σ22) = Normal(ξμ(yi), ξσ(yi))  with a single-layer  
neural network ξ . For the joint latent variables zi, the posterior distribu-
tion q(zi|ci, xi, yi) is parameterized as a product of view-specific Gaussian 
distributions as described in the original method26:

qθ(zi|ci, xi, yi) =
μ1/σ12 + μ2/σ22

1/σ12 + 1/σ22
.

The previous ELBO can be updated with this new variational 
approximation for the joint modeling of histology and transcriptome. 
We leverage the information bottleneck approach26 to optimize the 
joint ELBO as well as the view-specific marginal ELBOs through a single 
objective function ℒtotal = ℒjoint + a ⋅ ℒmarginal, where:

ℒjoint = ELBO(qθ) = Eqθ(z,l,c,u|x,y) log
p(x,y,z,l,c,u;σ)
qθ(z,l,c,u|x,y)

= Eqθ(z|x,y)qθ(l|x) logp(x|z, l) + Eqθ(z|x,y) logp(y|z)

− Eqθ(c|x)qθ(u)DKL(qθ(z|c, x, y)‖p(z|c,u;σ))

ℒmarginal = ELBO(qθ1 ) + ELBO(qθ2 ).

The variational family for the joint objective function is factorized 
as qθ(z, l, c,u|x, y) = qθ(z|x, y)qθ(l| y)qθ(c|x)qθ(u). Hyperparameter a (set by 
default as 5) balances the weights between joint and view-specific 
objectives26. The expression view ELBO(qθ1 )  remains the same with 
above, and the histology view ELBO(qθ2 ) is written as:

ELBO(qθ2 ) = Eqθ2 (z|y) log
p(y,z,c,u;σ)
qθ2 (z|y)

= Eqθ2 (z|y) logp(y|z) − Eqθ2 (c|y)qθ2 (u)DKL (qθ2 (z| y)||p(z|u, c;σ)) .

The same conditional prior p(z|c, u; σ) is applied across the joint 
and view-specific ELBOs. We find the {qθ,qθ1 ,qθ2 } that maximize ℒtotal 
by running stochastic gradient descent.

Starfysh implementation. The Starfysh model is implemented as a 
Python package using PyTorch85 with the Adam86 optimizer. The model 
by default is trained for 200 epochs with a learning rate at 0.001. Dur-
ing the training, the learning rate decays, guided by an exponential 
scheduler with the multiplicative factor set as 0.98. Kaiming initializa-
tion is applied to all neural network parameters. Hyperparameters are 
adjustable in the package.

Prediction of cell state-specific expression. To predict cell 
state-specific expression, we use the decoder in which the parameters 
have been learned and optimized by the variational inference. The 
proportion ci is adjusted to 1 for a specific cell state and 0 for other cell 
states. Reconstructed expression and histology are considered as cell 
state-specific expression and histology.

Integration of multiple samples. To effectively integrate multiple 
samples, Starfysh initially identifies anchors in each sample by com-
bining spots enriched for cell types and archetypal communities. 
The gene markers for each sample are then updated based on the 
newly defined anchors. Subsequently, we aggregate the gene mark-
ers for each cell type across all samples. These updated markers are 
used to calculate priors for the cell state proportions when fitting 
to all samples simultaneously. Priors for library size are separately 
calculated for spots in each sample. Finally, transcriptomic counts 
along with their corresponding histological patches are incorpo-
rated as inputs to train an integrated model, synergizing data across  
samples.

Simulation of ST data
We construct our ST simulations using mixtures of scRNA-seq data pre-
viously collected from primary TNBC tumor tissues (CID44971_TNBC)18 
with different levels of cell type granularities.

Spatially dependent simulation. To address spatial dependencies 
among neighboring spots, we adopt the pipeline from Cell2location8. 
Specifically, synthetic ST spots are defined on a 50 × 50-pixel grid. For 
the major cell type simulation, we select five cell types (CAFs, cancer 
epithelial cells, myeloid cells, normal epithelial cells, T cells) from the 
reference scRNA-seq data and simulate their spatial proportions with 
separate 2D Gaussian process models (Supplementary Fig. 2a). We 
further assign an expected library size for each spot with a γ distribu-
tion fitted from the real ST dataset, representing the spatial variation 
of capture rates among spots. For each spot, we then sample single-cell 
transcriptomes from the reference by searching for candidate cells with 
a library size closest to the expected library size. We follow the same 
procedure to generate another ten-cell type simulation with finer cell 
states: basal cells, inflammatory CAFs, myofibroblast CAFs, endothelial 
cells, immature PVL cells, central memory T cells, Treg cells, activated 
CD8+ T cells, memory B cells and plasmacytoid dendritic cells.

Simulation with paired histology images. We further generate 
pseudo-histology images paired with the aforementioned major cell 
type simulation to verify multimodel integration. Specifically, we design 
a supervised encoder–decoder neural network model (Supplementary 
Fig. 1c), with real ST expression as input and their histology images as 
output. First, the expression matrix is projected to a low-dimensional 
latent space with a ResNet18 encoder, and the histology image is recon-
structed with a standard linear decoder with dimension transformation. 
Two thousand image patches and corresponding expression matrices 
were trained from 14 ST samples, and an extra 500 images patches were 
used for held-out validation. The learning rate was set as 0.001 with 
the Adam optimizer for training. Mean-squared loss was used to fit the 
predictions to the real ST images. The final paired synthetic histology 
images were generated by running the trained model.

Signature gene set retrieval in simulated data. For fair benchmarking 
not favoring Starfysh, we build the signature gene sets in an unbiased 
fashion by choosing the top 30 differentially expressed genes for each 
cell type (highest log (FC) scores) across 20 breast cancer scRNA-seq 
samples reported by Wu et al.18.

Benchmarking of Starfysh and comparison to other methods 
with simulated ST data
We benchmarked Starfysh against reference-based (DestVI, Cell2lo-
cation, Tangram, BayesPrism) and reference-free (CARD, BayesTME, 
STdeconvolve) deconvolution methods with the aforementioned simu-
lations. For the reference-based method, we used paired scRNA-seq data 
for sample TNBC sample CID44971 as the reference. For reference-free 
methods without inferred cell state annotations, we report the best 
alignment with the ground truth proportions upon permutation.

For each deconvolution, we trained Starfysh with three independ-
ent restarts and selected the model with the lowest ℒc. The variational 
mean q(cik|xi; α) is used as the inferred cell state proportions.

For BayesPrism, we followed the tutorial on the BayesPrism web-
site: https://www.bayesprism.org/pages/tutorial_deconvolution. We 
subsetted the common protein-coding genes between the scRNA-seq 
and ST data with highly variable gene selection by default. We ran the 
BayesPrism Gibbs sampler ‘run.prism’ with four cores and extracted 
the updated cell type fractions θn for deconvolution.

For Cell2location, we followed the tutorial on the Cell2location 
website: https://cell2location.readthedocs.io/en/latest/notebooks/
cell2location_tutorial.html. We trained the reference regression with 
1,000 epochs and spatial mapping models with 10,000 epochs, in which 
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ELBO losses were ensured. The normalized 5% quantile values of the 
posterior distribution ŵsf =

wsf
Σfwsf

 were used for deconvolution.
For DestVI, we followed the DestVI tutorial with default param-

eters at https://docs.scvi-tools.org/en/stable/tutorials/notebooks/
DestVI_tutorial.html.

For Tangram, we followed the Tangram tutorial using default 
settings: https://github.com/broadinstitute/Tangram/blob/master/
tutorial_tangram_with_squidpy.ipynb. We found the optimal alignment 
for scRNA-seq profiles with 1,000 epochs.

For CARD (reference free), we followed the CARD reference-free 
tutorial: https://yingma0107.github.io/CARD/documentation/04_
CARD_Example.html. Default settings were used to generate cell type 
proportions (minCountGene = 100 and minCountSpot = 5).

BayesTME (reference free) deconvolves cell types with a hierarchi-
cal probabilistic model that corrects technical artifacts. We followed the 
official BayesTME tutorial with default parameters: https://github.com/ 
tansey-lab/bayestme/blob/main/notebooks/deconvolution.ipynb.

For STdeconvolve (reference free), we followed the tutorial on the 
STdeconvolve website (https://jef.works/STdeconvolve/) and selected 
the top 1,000 overdispersed genes from the input matrix. We set the 
optimal number of cell types K to 5 and 10 for the major and fine cell 
type simulations, respectively. The predicted cell type proportions 
were obtained from the output ‘deconProp’.

Quantification of performance in deconvolution of cell types. 
The performance of each method was summarized by the RMSE and 
Jensen–Shannon divergence ( JSD) against the ground truth to quantify 
per-spot accuracy (Supplementary Fig. 2d,e):

RMSE (cigt, cipred) = √
∑K

k=1 (cik
gt−cikpred)

2

K

JSD (cigt, cipred) =
1
2
DKL (cigt||cipred) +

1
2
DKL (cipred||cigt) ,

where cigt, cipred ∈ ∆
K  represent the ground truth and predicted cell 

type compositions in spot i. We report the average RMSE across all 
spots as the overall performance for each method (Fig. 1d).

Benchmarking of Starfysh and comparison to other methods 
with real ST data
We further benchmarked Starfysh with reference-based (Cell2loation 
and BayesPrism) and reference-free (STdeconvolve) deconvolution 
methods on TNBC sample CID44971 ST data (Supplementary Fig. 3b–d).  
We calculated the correlation A ∈ ℝK×K between the average expression 
of gene sets (normalized to sum to 1 per spot) (Supplementary Table 2) 
and the deconvolution profile for each cell state:

Akl = Corr(c∶ksig, c∶lpred)

̄cik = ∑gxig⋅skg
∑gskg

, csigik = ̄cik
∑K

k=1 ̄cik
,

where csig∶k , c
pred
∶l ∈ ℝS  represent signature marker’s expression and 

deconvolution proportions for cell states k and l, respectively.
For Starfysh, we followed the same procedure from the simulation 

benchmark and reported the variational mean q(cik|xi; α) as the decon-
volution profile.

For both BayesPrism and Cell2location, we followed the same 
procedures as the simulation benchmark, except for replacing the 
synthetic ST data with real ST data from TNBC sample CID44971.  
We applied the TNBC sample CID44971 scRNA-seq annotation from the 
‘subset’ classification tier from Wu et al.18. For correlation calculation, 
intersections between single-cell annotations18 and our signature cell 
types are shown, as BayesPrism and Cell2location only deconvolve cell 
types that appear in the reference.

For STdeconvolve, we iterated the number of factors (k) from 20 to 
30 and chose the optimal k as 30 given the lowest perplexity following 

the official tutorial. Because STdeconvolve does not explicitly annotate 
factors, we performed hierarchical clustering between factors (x axis) 
and cell types (y axis).

We applied archetypal analysis (Starfysh) to the ST data and identi-
fied 18 distinct archetypes. We reported the overlapping percentage 
between anchor spots and archetypal communities for each cell state 
(Supplementary Fig. 3e).

Quantification of performance in deconvolution of cell states 
in real ST data. Performance in disentangling cell states was evalu-
ated using the Frobenius norm d = ‖A − Asig‖F as the distance between 
the deconvolution-to-signature correlation A to the ‘reference’ 
matrix Akl

sig = Corr(c∶kk, c∶l l) , defined as the correlation between 
signature expressions across cell states. To ensure a fair comparison 
across reference-based and reference-free methods, we reported a 
Frobenius norm distance computed as follows: for each method,  
(1) 1,000 10 × 10 submatrices {A(1),…, A(1,000)} were sampled from the 
original correlation matrix A without replacement with randomly 
permuted cell states; (2) an array of Frobenius norm distance 
⃗d = (d(1),… ,d(1,000)), d(i) = ‖A(i) − Asig(i)‖F  was computed; and (3) we 

reported the average value of di in Supplementary Fig. 3a–d. To test 
the improvement of Starfysh, we performed a Mann–Whitney U-test 
between the distance array of Starfysh against the combination of 
all other methods (BayesPrism, Cell2location, STdeconvolve).

For reference-free methods in which the number of inferred fac-
tors and the number of cell types may differ, we permuted the correla-
tion matrix such that each cell type (row) was aligned with the factor 
(column) with the highest correlation score, where the diagonal entries 
were sorted in descending fashion.

Runtime comparison across deconvolution methods on real ST 
data. Runtimes of the core deconvolution function in each method 
were measured on the same machine with 12-core AMD Ryzen 9 3900X 
CPU and a GeForce RTX 2080 GPU:

•	 Starfysh: run_starfysh (GPU-enabled)
•	 BayesPrism: run.prism
•	 Cell2location: RegressionModel.train(),Cell2location.train() 

(GPU-enabled)
•	 STdeconvolve: fitLDA

Starfysh validation with Xenium-mapped ST data
We further applied Starfysh to a recent breast cancer ST dataset, for 
which integrated multicellular (Visium, replicate 1) and subcellular 
in situ (Xenium) spatial technologies were performed on the same 
formalin-fixed, paraffin-embedded tissue blocks29. We first aligned the 
Visium H&E images and spots to the paired Xenium H&E images with 
SIFT registration87. The ground truth deconvolution profile was then 
constructed by assigning spots to their corresponding Xenium cells 
annotated by Janesick et al.29. A total of 2,567 spots with nine major cell 
types were kept after filtering out spots with unannotated cells (Sup-
plementary Fig. 4a). Benchmarking metrics were computed the same 
way as for the simulation data. Original datasets as well as the signatures 
used by Starfysh are publicly available at https://www.10xgenomics.
com/support/in-situ-gene-expression/documentation/steps/
onboard-analysis/at-a-glance-xenium-output-files.

Starfysh validation with ST data of mouse cortex and human 
lymph node
We applied Starfysh to mouse brain data adapted from Cell2location8 
and used the marker genes provided by the paper, which are collected 
from literature with known regional marker genes or the Allen Brain Atlas. 
Histology integration is applied in this dataset also. Starfysh successfully 
recognized enriched regions such as Bergmann glia of the cerebellum 
(ACBG), cortex pyramidal layer 6 (TEGLU3), the basolateral amygdala 
(TEGLU22) and the hippocampus (TEGLU24) (TEGLU, telencephalon 

http://www.nature.com/naturebiotechnology
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/DestVI_tutorial.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/DestVI_tutorial.html
https://github.com/broadinstitute/Tangram/blob/master/tutorial_tangram_with_squidpy.ipynb
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projecting excitatory neurons; Supplementary Fig. 6a). Starfysh also 
reconstructed the histology data resembling original images (Supple-
mentary Fig. 6b). Inferred spatial hubs recapitulated the brain regions 
identified from Cell2location (Supplementary Fig. 6c), such as the thala-
mus (hubs 8 and 9), the hypothalamus (hubs 7 and 19), the cortex (hubs 
0, 1 and 5), the amygdala (hubs 6 and 12), the hippocampus (hubs 10 and 
20), the striatum (hub 11) and white matter (hubs 4 and 13).

We also applied Starfysh to human lymph nodes with gene signa-
tures from a comprehensive atlas of 34 cell types in human lymphoid 
organs88–90. The results recapitulated the identification of T cell and B cell 
zones and germinal centers with dark-zone, light-zone and follicular den-
dritic cells reported as in Cell2location (Supplementary Fig. 6d). Starfysh 
also distinguished blood vessel zones, similar to the results in Cell2loca-
tion. The identified spatial hubs (Supplementary Fig. 6e) showed similar 
alignment with Cell2location (scRNA-seq reference based)-defined 
spatial clusters through the MIC (Supplementary Fig. 6e,f).

Starfysh validation with spatiotemporal analysis of prostate 
cancer
To evaluate Starfysh’s power in unraveling mechanisms in more com-
plicated scenarios, such as spatiotemporal ST datasets, we applied it 
to ST datasets from prostate cancer tissues undergoing AD therapy30. 
ST profiling provided a unique perspective on the tumor and microen-
vironment in this specific prostate cancer, called castration-resistant 
PCa, a type with challenging tumor grade classification and unpredict-
able treatment outcomes.

Unlike the published study that used spatial transcriptome decom-
position91 for patient-by-patient spatiotemporal analysis, Starfysh 
demonstrated superior efficacy in identifying more interpretable 
niches. It integrated samples from three patients with four biopsies 
each and two biological replicates per biopsy and samples from both 
pretreatment and post-treatment stages (Supplementary Fig. 7a,b).

UMAP visualization of the joint space of inferred cell type propor-
tion highlighted specific features such as clustering of tumor cells, 
immune cells and stromal cells (Supplementary Fig. 7c). We defined 17 
hubs within this joint space (Supplementary Fig. 7d), and their spatial 
distribution illustrated changes before and after AD treatment across 
patients and revealed similarities across replicates (Supplementary 
Fig. 7e). Each hub represented aggregations of specific cell types (Sup-
plementary Fig. 7f), with ranking based on tumor cell proportions 
including tumor-enriched hubs (Supplementary Fig. 7g). For instance, 
hub 0 was enriched with prostate cancer and stromal cells such as CAFs 
and perivascular cells, whereas hub 1 had predominantly cancer cells.

Patient-specific variances were evident in the composition of these 
hubs, particularly in their response to AD treatment. Starfysh’s analysis 
aligned with clinical data, categorizing patients into responders (patient 
1), moderate responders (patient 2) and nonresponders (patient 3). For 
example, tumor-enriched hub 0 predominated in the nonresponder 
(patient 3), while hub 15 was specific to the moderate responder (patient 
2) (Supplementary Fig. 7h). Differential gene expression analysis of hub 
0 revealed enrichment in EMT pathways and myogenesis, indicating 
resistance to treatment (Supplementary Fig. 7h,i). Additionally, hub 
0 exhibited low AR activity (Supplementary Fig. 7j), aligning with find-
ings that stromal cells adjacent to resistant clusters lacked androgen 
receptor expression and were enriched with EMT pathways. Starfysh 
not only identified similar regions but also highlighted specific cell type 
infiltrations, including those of CAFs and perivascular cells. Moreover, 
ST data indicated a trend from tumor hubs (hubs 13 and 15) to hub 0 
upon treatment, which is beneficial for interpatient analysis.

Breast tumor ST data collection and analysis
Sample collection and preparation. Tissues were collected from 
women undergoing surgery for primary breast cancer. All samples were 
obtained after informed consent and approval from the institutional 
review board at Memorial Sloan Kettering Cancer Center. Samples 

were obtained using standard-of-care procedures. The samples were 
embedded fresh in Scigen Tissue-Plus O.C.T. Compound (Fisher Sci-
entific) and stored at −80 °C before sectioning. Cryosections (10 μm) 
were mounted on Visium spatial gene expression slides (10x Genomics, 
1000184). Two individual tumors were mounted in duplicate on the 
four 6.5-mm × 6.5-mm capture areas. The samples were processed as 
described in the manufacturer’s protocols.

Spatial transcriptomics by 10x Genomics Visium. Visium Spatial Gene 
Expression slides prepared by the Molecular Cytology Core at MSKCC 
were permeabilized at 37 °C for 6 min, and polyadenylated mRNA was 
captured by oligonucleotides bound to the slides. Reverse transcrip-
tion, second-strand synthesis, complementary DNA (cDNA) amplifica-
tion and library preparation proceeded using the Visium Spatial Gene 
Expression Slide & Reagent Kit (10x Genomics, 1000184) according to 
the manufacturer’s protocol. After evaluation by real-time PCR, cDNA 
amplification included 13–14 cycles; sequencing libraries were prepared 
with 15 cycles of PCR. Indexed libraries were pooled in an equimolar 
fashion and sequenced on a NovaSeq 6000 instrument in a PE28/120 
run using the NovaSeq 6000 SP Reagent Kit (200 cycles) (Illumina). An 
average of 228 million paired reads were generated per sample.

Tissues were stained with H&E, and slides were scanned on a Pan-
noramic MIDI scanner (3DHISTECH) using a ×20, 0.8-NA objective.

Quality metrics for the collected ST data are shown in Supplemen-
tary Table 5.

CODEX data collection and preprocessing. Four fresh-frozen sam-
ples, adjacent slides with P3A_MBC, P3B_MBC, P4A_MBC and P4B_
MBC, were processed for PhenoCycler (CODEX) imaging in Enable 
Lab (https://www.enablemedicine.com). Samples were prepared and 
stained, and images were acquired following CODEX User Manual Rev C 
(https://www.akoyabio.com) at Enable Medicine. Twenty-three antibod-
ies were used for staining in this study (Supplementary Table 6). Image 
data were preprocessed using commercial software (Enable Medicine).

Analysis of ST data from breast tumor tissues
Data preprocessing. Starfysh is compatible with Scanpy82 and preproc-
esses the raw count matrix as input without normalization after filter-
ing out ribosomal and mitochondrial genes. To account for expression 
sparsity and noise, we selected the top 2,000 highly variable genes 
including specified marker genes.

Identification of tumor-associated anchors. Tumor-associated arche-
types were defined as the anchor spots highly associated with tumor 
cell types. First, an initial set of cell state-enriched spots (for example, 
60 spots for each cell state) and M archetypes were identified based on 
the provided marker gene list and the PCHA algorithm, respectively. 
Because archetypes are vertices non-overlapping with observed data, 
the r = 20 nearest-neighbor spots for each archetype were identified, 
obtaining a set of ‘archetypal communities’ as a 20 × M matrix. Next, we 
aligned archetypal communities with the best one-to-one matched K 
cell states with the stable marriage algorithm. Anchor spots were then 
updated based on the new marker gene list. The final anchors that are 
associated with any tumor cell gene set (including TNBC, MBC, LumA, 
LumB and ER+) were considered as TAAs (Figs. 2d,h and 4c).

Diffusion component analysis. Diffusion components were computed 
using normalized gene counts as the input. Computation was performed 
with the Scanpy package. Scanpy computes diffusion components by 
first constructing a nearest-neighbor graph from the high-dimensional 
input data. Next, it simulates a diffusion process on the graph.

Definition of hubs. Hubs were defined as groups of spots with a simi-
lar composition of cell states. To integrate ST samples from different 
patients, anchors were defined on merged data from all samples, and 
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Starfysh then inferred the cell state proportion and latent variables 
for each spot in each sample using the same anchor set. Spots were 
then clustered according to the inferred cell state proportion using 
PhenoGraph clustering (Supplementary Fig. 11c).

Entropy of spots. We used an entropy-based metric previously used 
for batch correction in single-cell data35 for evaluating the integration 
of samples. The Shannon entropy of spots denotes mixing of spots 
across samples. Specifically, we constructed a kNN graph for each spot 
i to determine its nearest neighbors using Euclidean distance in the 
Starfysh latent space (z). These nearest-neighbor spots formed a dis-
tribution of patients (m ∈ {1,… 14} ) for the overall 14 patients studied 
in this paper, represented as eim. The Shannon entropy is calculated as 
Hi = −∑14

m=1ei
m log eim. Higher entropy represents higher localized sam-

ple mixing across patients (Fig. 3d).

Kendall’s τ correlation. Kendall’s τ correlation is a metric for measur-
ing the ordinal association between two measured quantities. We used 
this metric to quantify the heterogeneity of TAAs. Genes for TAAs were 
ranked based on differential expression scores for each sample. Samples 
having similar TAAs were assumed to have a similar rank of differential 
genes, thus having higher scores of Kendall’s τ correlation (Fig. 2p).

Copy number variation. Copy number variation was performed follow-
ing the instructions for inferCNV (https://github.com/broadinstitute/
inferCNV). The inferred copy number variation cluster lineage was 
plotted as a dendrogram tree using toytree92.

Definition of intratumoral, peritumoral and stromal regions. We 
applied Starfysh to TNBC and MBC samples to avoid the bias introduced 
by those ER+ samples and redefined the hubs among six TNBC and 
four MBC samples. Intratumoral regions were defined as hubs with the 
mean of inferred proportions of all tumor states being larger than 0.2 
(Supplementary Fig. 13b). Histology information was also considered 
to confirm the enrichment of tumor cells in these regions. Other hubs 
were ranked by the average distance (unit, pixel) to intratumoral hubs. 
With the incorporation of histology and total proportion of immune 
cells and stromal cells, hub 8 was considered as the boundary between 
peritumoral regions and stromal regions (Supplementary Fig. 13c). To 
summarize, hubs 5, 2, 11 and 12 were considered as intratumoral hubs, 
hubs 0, 9, 3, 6 and 8 were considered as peritumoral hubs, and hubs 1, 
7, 4 and 10 were recognized as stromal hubs. Notably, the determined 
peritumoral regions were shared across all samples, while some intratu-
moral regions and stromal regions were sample specific (Supplementary 
Fig. 13a,d and Fig. 4b).

Spatial correlation. To measure colocalization between cell states, 
we slightly modified the spatial cross-correlation index (SCI)54. SCI 
is defined as:

SCI(Sx, Sy) =
N

2∑N
i ∑

N
j τij

∑N
i ∑

N
j τij(xi − ̄x)( yi − ̄y)

√∑N
i (xi − ̄x)2√∑N

j ( yj − ̄y)2
,

where x and y denote the predicted proportion for two cell states Sx and 
Sy, i and j ∈ [1, ..,N] are indexes of spots within a certain hub and ̄x, ̄y are 
the mean proportion of two cell states in the hubs. We defined the 
weight matrix τ  as information between adjacent neighbors, as τij = 1 if 
the coordinate distance of spot i and spot j was less than √3, else wij = 0.

Inference of intercellular ligand–receptor interactions. To inves-
tigate the intercellular interactions in a hub, the top 5% spots with the 
highest inferred proportion of each cell state in the hub were selected. 
CellPhoneDB55 was then applied to the selected spots with normalized 
gene expression. Visualization was performed with the Sankey diagram 
with plotly and the Circos plot93.

Diffusion map analysis with intratumoral hubs. Intratumoral hubs 
were selected for diffusion map analysis (Fig. 2h), and diffusion map 
components showing gradients between intratumoral hubs were cho-
sen. Diffusion map coordinates were used as inputs for the trajectory 
inference algorithm SCORPIUS49. Modules of genes that significantly 
(q values < 0.05) contributed to the trajectory of transitions between 
tumor hubs were identified (Fig. 2i). Over-representation analysis 
was conducted to understand the biological processes via the Python 
package gseapy with gene sets including KEGG_2021_Human, GO_Bio-
logical_Process_2021 and Hallmark.

Genes with diffused expression patterns. Treg-enriched (propor-
tion > 0.05) spots in intratumoral hubs were selected, and the dis-
tance between all spots to the selected spots was calculated with the 
‘sklearn.neighbors’ Python package with the function KDTree. For each 
gene, expression of spots with the same distance was averaged and 
smoothed with a window size of 7 for each sample. The mean and s.d. 
of expression across all samples were computed and smoothed with 
‘Gaussian_filter1d(sigma = 1.5)’ with the Python package SciPy (mean 
and s.d. are shown as a solid line and shaded area in Fig. 4i).

CODEX data analysis. Raw CODEX images were segmented to enable 
cell-level quantification from biomarker signals. The results were then 
checked with quality control to filter out segmentation artifacts. The 
data thus were transformed as a U × P matrix, where U is the num-
ber of single cells detected in the CODEX images and P represents 
the number of antibodies profiled. The data were then processed 
by quantile normalization, asinh transform and z-score normaliza-
tion. PCA, neighbor graphs and UMAP were performed sequentially 
on single-cell CODEX data (Supplementary Fig. 15a). Annotations of 
cell types were based on the clustering and distribution of normal-
ized CODEX data such as Ki67 and CD3 expression (Supplementary 
Fig. 15b,c and Supplementary Table 6). Annotations were validated 
with a dendrogram tree of the clusters (Supplementary Fig. 15d). The 
single-cell CODEX was also visualized in the spatial arrangement align-
ing with the histology and ST Visium data (Supplementary Fig. 15e and  
Fig. 5c).

Spatial profiling of T cell receptors
To capture spatial TCR clonotype information, we adapted an estab-
lished protocol that allows spatial mapping of TCRs from cDNA libraries 
of our samples46. The process involves three qPCR steps: (1) the first 
step begins with 43 pooled TCRB primers and the truncated read 1 
primer (2 μl cDNA, 1 μl of each forward and reverse primers and 12.5 μl 
NEBNext Master Mix, 0.5 μl SYBR and 8 μl water). (2) The second step 
uses 43 TCRB primers with R2 sequences and the truncated read 1 
primer with 1 μl of the PCR product from step 1. (3) The third step 
involves indexed TruSeq P5 primers and indexed Nextera P7 primers, 
with 1 μl of the PCR product from step 2. All PCR steps were stopped 
before the plateau phase, and the PCR products were cleaned with 0.8× 
AMPure beads and eluted in 50 μl.

Sequencing was conducted on an Illumina NextSeq 500 instru-
ment with the following cycle settings: R1 28, I1 10, I2 10, R2 110. Clo-
notype analyses were performed with MiXCR.

The PCR cycling conditions are as follows: initial denaturation, 
98 °C for 3 min; denaturation, 98 °C for 15 s; annealing, 62 °C (72 °C 
for qPCR step 3) for 20 s; extension, 72 °C for 1 min; repeat of the dena-
turation step to the extension step before the plateaus phase; final 
extension, 72 °C for 1 min.

We further provide the full spatial TCR primer sequences in Sup-
plementary Table 8.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

http://www.nature.com/naturebiotechnology
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Data availability
The raw data generated for this study can be accessed in the Gene Expres-
sion Omnibus under accession number GSE218951. CODEX data are 
available in figshare (https://doi.org/10.6084/m9.figshare.25137320) 
(ref. 94). The public breast cancer dataset from Wu et al. was downloaded 
from accession number GSE176078. Public mouse brain and lymph node 
datasets from Kleshchevnikov et al. are available in ArrayExpress under 
accession number E-MTAB-11114. Public prostate cancer data are avail-
able in Mendeley Data (https://doi.org/10.17632/mdt8n2xgf4.1) (ref. 95).

Code availability
The Starfysh package and code to reproduce the results in this study 
are available in the GitHub repositories at https://github.com/azizilab/
starfysh (ref. 96) and https://github.com/azizilab/starfysh_reproduc-
ibility (ref. 97) and deposited at Zenodo (https://doi.org/10.5281/
zenodo.10460548) (ref. 98). The reference implementation of DestVI, 
RCTD and BayesTME, along with the accompanying tutorials, is also 
available at the GitHub repository.
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