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Abstract

Statistical approaches to language learning typicallyusoon either
short-range syntactic dependencies or long-range sentgiendencies
between words. We present a generative model that uses inolh &f
dependencies, and is capable of simultaneously findingsifatclasses
and semantic topics despite having no knowledge of syntasenran-
tics beyond statistical dependency. This model is comipetdn tasks
like part-of-speech tagging and document classificatiadh miodels that
exclusively use short- and long-range dependencies rigggc

1 Introduction

A word can appear in a sentence for two reasons: becausgeéssesyntactic function, or
because it provides semantic content. Words that playrdifteoles are treated differently
in human language processing: function and content woralsuge different patterns of
brain activity [1], and have different developmental trefi@]. So, how might a language
learner discover the syntactic and semantic classes ofsRofdognitive scientists have
shown that unsupervised statistical methods can be usetbmtify syntactic classes [3]
and to extract a representation of semantic content [4Jnboé of these methods captures
the interaction between function and content words, or eeengnizes that these roles
are distinct. Here we explore how statistical learninghwid prior knowledge of either
syntax or semantics, can discover the difference betwesstifun and content words and
simultaneously organize words into syntactic classes anmhatic topics.

Our approach relies on the different kinds of dependencéwden words produced by
syntactic and semantic constraints. Syntactic consgra@sult in relatively short-range de-
pendencies, spanning several words but not going beyorihtiie of a sentence. Seman-
tic constraints result in long-range dependencies: diffesentences within a document
are likely to have similar content, and use similar words.pMsent an algorithm that cap-
tures the interaction between short- and long-range depengs, based upon a generative
model for text in which a hidden Markov model (HMM) deternsnghen to emit a word
from a topic model. The different capacities of the two comgras of the model result in a
factorization of a sentence into function words, handledheyHMM, and content words,
handled by the topic model. Each component divides wordsfiner groups according
to a different criterion: the function words are dividedarstyntactic classes, and the con-



tent words are divided into semantic topics. In addition todpicing clean syntactic and
semantic classes and identifying function and content syaydr composite model is com-
petitive in quantitative tasks, such as part-of-speechitegand document classification,
with models specialized to detect only one kind of depengenc

The plan of the paper is as follows. First, we introduce thpregch, considering the
general question of how syntactic and semantic generatogets might be combined,
and arguing that a composite model is necessary to capterdifferent roles that words
can play in a document. We then define a generative model effohin, and describe
a Markov chain Monte Carlo algorithm for inference in thisdeb Finally, we present
results illustrating the quality of the recovered syntactasses and semantic topics.

2 Combining syntactic and semantic generative models

A probabilistic generative model specifies a simple stobhgsocedure by which data
might be generated, usually making reference to unobsearetbm variables that express
latent structure. Once defined, this procedure can be ewersing statistical inference,
computing distributions over latent variables conditidoa a dataset. Such an approach is
appropriate for modeling language, where words are geseefedm the latent structure of
the speaker’s intentions, and is widely used in statistie#iral language processing (e.g.,
[5]).

Probabilistic models of language are typically driven agalely by either short-range or
long-range dependencies between words. HMMs and prostibitiontext-free grammars
(e.g., [5]) generate documents purely based on syntadditares among unobserved word
classes, while “bag-of-words” models like naive Bayes pidanodels (e.g., [6]) generate
documents based on semantic correlations between wodépendent of word order. By
considering only one of the factors influencing the words #pgpear in documents, these
approaches are forced to assess all words on a single @nitemn HMM will group nouns
together, as they play the same syntactic role even thowyhvtiry across contexts, and a
topic model will assign determiners to topics, even tholmgly bear little semantic content.

A major advantage of generative models is modularity. A gate model for text spec-
ifies a probability distribution over words in terms of otlgrpbability distributions over
words, and different models are thus easily combined. Wepcaduce a model that ex-
presses both the short- and long-range dependencies o§ Wwgrdombining two models
that are each sensitive to one kind of dependency. Howéwe=fotm of combination must
be chosen carefully. In mixtureof syntactic and semantic models, each word would ex-
hibit either short-range or long-range dependencies gihiaproductof models (e.g. [7]),
each word would exhibit both short-range and long-rangedéencies. Consideration of
the structure of language reveals that neither of these Imalappropriate. In fact, only
a subset of words — the content words — exhibit long-rangeasémdependencies, while
all words obey short-range syntactic dependencies. Thimm@metry can be captured in a
composite model, where we replace one of the probabilityidigions over words used in
the syntactic model with the semantic model. This allowsdyrgtactic model to choose
when to emit a content word, and the semantic model to chobgshwvord to emit.

2.1 A composite model

We will explore a simple composite model, in which the sytitacomponent is an HMM
and the semantic component is a topic model. The graphicdkehfor this composite is
shown in Figure 1(a). The model is defined in terms of threg sktariables: a sequence

of wordsw = {wy,...,w,}, with eachw; being one ofii words, a sequence of topic
assignmentz = {z,...z,}, with eachz; being one ofT" topics, and a sequence of
classes: = {¢y,...,c,}, With eache; being one ofC classes. One class, say= 1, is

designated the “semantic” class. Titl topic is associated with a distribution over words
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Figure 1: The composite model. (a) Graphical model. (b) Gy phrases.

#*), each class # 1 is associated with a distribution over words”, each document
d has a distribution over topic&®, and transitions between classes; andc; follow a
distributionz(*i-1), A document is generated via the following procedure:

1. Sampleg)'® from a Dirichlet¢) prior
2. For each wordy; in document]
(a) Drawz; from 9@
(b) Drawe; from zr(¢i-1)
(c) If ¢; = 1, then draww; from ¢**), else draww; from ¢(°?)

Figure 1(b) provides an intuitive representation of howagsles are generated by the com-
posite model. The figure shows a three class HMM. Two clasgesiaple multinomial
distributions over words. The third is a topic model, conitag three topics. Transitions
between classes are shown with arrows, annotated withittcanprobabilities. The top-
ics in the semantic class also have probabilities, used @osgha topic when the HMM
transitions to the semantic class. Phrases are generatidldwing a path through the
model, choosing a word from the distribution associatedh wich syntactic class, and a
topic followed by a word from the distribution associatedhathat topic for the seman-
tic class. Sentences with the same syntax but differenecbntould be generated if the
topic distribution were different. The generative modeigtacts like it is playing a game
of “Madlibs”: the semantic component provides a list of tediwords (shown in black)
which are slotted into templates generated by the syntastigponent (shown in gray).

2.2 Inference

The EM algorithm can be applied to the graphical model shawRigure 1, treating the
document distributiong, the topics and classes and the transition probabilities as
parameters. However, EM produces poor results with topidetso which have many pa-
rameters and many local maxima. Consequently, recent waskdtused on approximate
inference algorithms [6, 8]. We will use Markov chain Montarl® (MCMC; see [9]) to
perform full Bayesian inference in this model, samplingnira posterior distribution over
assignments of words to classes and topics.

We assume that the document-specific distributions ovecgpg, are drawn from a
Dirichlet(c) distribution, the topic distributions(*) are drawn from a Dirichleff) dis-
tribution, the rows of the transition matrix for the HMM aread/n from a Dirichletf)
distribution, the class distributions ) are drawn from a Dirichle# distribution, and all
Dirichlet distributions are symmetric. We use Gibbs santplio draw iteratively a topic
assignment; and class assignmegytfor each wordw; in the corpus (see [8, 9]).

Given the wordsw, the class assignmenés the other topic assignments ;, and the
hyperparameters, eaehis drawn from:

P(zi|lz—i,c,w) o P(z]z—;) P(wi|z,c,w_;)
(ds) )
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Wherengli) is the number of words in documeditassigned to topie;, nq(fj) is the number

of words assigned to topig; that are the same as, and all counts include only words for
which¢; = 1 and exclude case We have obtained these conditional distributions by using
the conjugacy of the Dirichlet and multinomial distribut®to integrate out the parameters
0, ¢. Similarly conditioned on the other variables, eacs drawn from:

P(cilc—i,z,w) o< P(w;lc,z,w_;) P(cile—;)
n'? 45 (n£;i71)+7)(n£:331+1(Cz‘—1:Ci)'1(ci20i+1)+7) o £ 1
x n(,ci)JrW(; n(f:"‘)JrI(ci,l:ci)JrC'y v
n) 48 (”22171)+’Y)(”ciﬁr)1+I(Ci—1:Ci)'I(Ci:Ci+1)+'Y) =1
nI 1w n) 4 I(ci_1=ci)+Cn '
wherengj;) is as beforengfj) is the number of words assigned to clasghat are the
same asw;, excluding case, and nng) is the number of transitions from class ;

to classe;, and all counts of transitions exclude transitions bothrid flome;. I(-) is an
indicator function, taking the valuewhen its argument is true, afdtherwise. Increasing
the order of the HMM introduces additional terms ifdc;|c_;), but does not otherwise
affect sampling.

3 Results

We tested the models on the Brown corpus and a concatendtibe 8rown and TASA
corpora. The Brown corpus [10] consistsiof= 500 documents and = 1, 137, 466 word
tokens, with part-of-speech tags for each token. The TASAu®Is an untagged collection
of educational materials consisting bf= 37,651 documents and = 12,190, 931 word
tokens. Words appearing in fewer than 5 documents wereaeglaith an asterisk, but
punctuation was included. The combined vocabulary waszefigi = 37, 202.

We dedicated one HMM class to sentence start/end mafk&:§. In addition to running
the composite model withh' = 200 andC' = 20, we examined two special casd3= 200,

C = 2, being a model where the only HMM classes are the start/eddamantic classes,
and thus equivalent to Latent Dirichlet Allocation (LDA;]JeandT = 1, C' = 20, being
an HMM in which the semantic class distribution does not varyoss documents, and
simply has a different hyperparameter from the other ckas&n the Brown corpus, we
ran samplers for LDA and 1st, 2nd, and 3rd order HMM and cornt@asodels, with three
chains of 4000 iterations each, taking samples at a lag oft&€dtions after a burn-in of
2000 iterations. On Brown+TASA, we ran a single chain for@@@rations for LDA and
the 3rd order HMM and composite models. We used a Gaussiaroptdis proposal to
sample the hyperparameters, takindraws of each hyperparameter for each Gibbs sweep.

3.1 Syntactic classes and semantic topics

The two components of the model are sensitive to differemdkiof dependency among
words. The HMM is sensitive to short-range dependenciesaiteaconstant across docu-
ments, and the topic model is sensitive to long-range degesies that vary across docu-
ments. As a consequence, the HMM allocates words that vaogscontexts to the se-
mantic class, where they are differentiated into topicse fi@sults of the algorithm, taken
from the 20th sample on Brown+TASA, are shown in Figure 2. Tiuslel cleanly sep-
arates words that play syntactic and semantic roles, impst@atrast to the results of the
LDA model, also shown in the figure, where all words are foriced topics. The syntactic
categories include prepositions, pronouns, past-tend®s,vand punctuation. While one
state of the HMM, shown in the eighth column of the figure, snsibmmon nouns, the
majority of nouns are assigned to the semantic class.

The designation of words as syntactic or semantic depenals ting corpus. For compar-
ison, we applied a 3rd order composite model with 100 topias 30 classes to a set of
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Figure 2: Upper: Topics extracted by the LDA model. Lowerpits and classes from the
composite model. Each column represents a single topss/céand words appear in order
of probability in that topic/class. Since some classes ghugost all probability to only a
few words, a list is terminated when the words account for @@%e probability mass.

D = 1713 NIPS papers from volumes 0-12. We used the full text, fromAbstract to

the Acknowledgments or References section, excludingosebeaders. This resulted in

n = 4,312,614 word tokens. We replaced all words appearing in fewer thaa®ms
with an asterisk, leading tt/ = 17,268 types. We used the same sampling scheme as
Brown+TASA. A selection of topics and classes from the 2@imgle are shown in Figure

3. Words that might convey semantic information in anotlegtirsg, such as “model”, “al-

gorithm”, or “network”, form part of the syntax of NIPS: themsistent use of these words
across documents leads them to be incorporated into thactimt¢omponent.

3.2

Identifying function and content words

Identifying function and content words requires using infation about both syntactic
class and semantic context. In a machine learning papewdhe “control” might be an
innocuous verb, or an important part of the content of a papiewise, “graph” could
refer to a figure, or indicate content related to graph thebagging classes might indicate
that “control” appears as a verb rather than a noun, but dgegithat “graph” refers to a
figure requires using information about the content of tls¢ oéthe document.

The factorization of words between the HMM and the LDA comgarprovides a simple
means of assessing the role that a given word plays in a dotumaluating the posterior
probability of assignment to the LDA component. The resoftsising this procedure to
identify content words in sentences excerpted from NIPSpapre shown in Figure 4.
Probabilities were evaluated by averaging over assignfenmin all 20 samples, and take
into account the semantic context of the whole document. #salt of combining short-
and long-range dependencies, the model is able to pick ewtdinds in each sentence that
concern the content of the document. Selecting the wordshinge high probability of
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Figure 3: Topics and classes from the composite model on HR& Worpus.

network activity |:| singlecell

input resistance time spaceconstants

1 excitability ~11c/spariotemporal (sic) integration
feed forwar error feedback adaptive

control neuralnetworks

proof ol convergence softassigralgorithm I:l doubly
stochastic matrix matrix
2 doubly stochastic metric
portfolio expecte risk level time
horizon tinstitutional

I:' training # samples
G *guest H host

Figure 4: Function and content words in the NIPS corpus. IBvay indicates posterior
probability of assignment to LDA component, with black lehighest. The boxed word
appears as a function word and a content word in one elemegaabf pair of sentences.
Asterisked words had low frequency, and were treated aggéesivord type by the model.

being assigned to syntactic HMM classes produces temgtatesiting NIPS papers, into
which content words can be inserted. For example, replatiagontent words that the
model identifies in the second sentence with content worgeogpiate to the topic of the
present paper, we could writdhe integrated architecture in this paper combirsasple
probabilistic syntavxandtopic-based semanticsinggenerative models.

3.3 Marginal probabilities

We assessed the marginal probability of the data under eadeln®(w), using the har-
monic mean of the likelihoods over the last 2000 iteratidrsampling, a standard method
for evaluating Bayes factors via MCMC [11]. This probabiliakes into account the com-
plexity of the models, as more complex models are penaligadtbgrating over a latent
space with larger regions of low probability. The resulis stnown in Figure 5. LDA out-
performs the HMM on the Brown corpus, but the HMM out-perferbDA on the larger
Brown+TASA corpus. The composite model provided the besbuawt of both corpora,
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Figure 6: Part-of-speech tagging for HMM, composite, arsdritiutional clustering (DC).

being able to use whichever kind of dependency informatias most predictive. Using
a higher-order transition matrix for either the HMM or themgaosite model produced lit-
tle improvement in marginal likelihood for the Brown corpusit the third-order models
performed best on Brown+TASA.

3.4 Part-of-speech tagging

Part-of-speech tagging — identifying the syntactic clasa word — is a standard task in
computational linguistics. Most unsupervised tagginghrads use a lexicon that identifies
the possible classes for different words. This simplifiesgtoblem, as most words belong
to a single class. However, genuinely unsupervised regaveparts-of-speech has been
used to assess statistical models of language learninig asudistributional clustering [3].

We assessed tagging performance on the Brown corpus, wgintagsets. One set con-
sisted of all Brown tags, excluding those for sentence nmarkeaving a total of 297 tags.
The other set collapsed these tags into ten high-level dasans: adjective, adverb, con-
junction, determiner, foreign, noun, preposition, promgounctuation, and verb. We eval-
uated tagging performance by using the Adjusted Rand In@i2k fo measure the con-
cordance between the tags and the class assignments of theaill composite models
in the 20th sample. The Adjusted Rand Index ranges freinto 1, with an expectation
of 0. Results are shown in Figure 6. Both models produced clasgraments that were
strongly concordant with part-of-speech, although the Higiéwe a slightly better match
to the full tagset, and the composite model gave a closermtatihe top-level tags. This is
partly because all words that vary strongly in frequencyssicontexts get assigned to the
semantic class in the composite model, so it misses somedinti+-grained distinctions
expressed in the full tagset. Both the HMM and the compositdehperformed better
than the distributional clustering method described in8jich was used to form the 1000
most frequent words in Brown into 19 clusters. Figure 6 campthis clustering with the
classes for those words from the HMM and composite modeisatleon Brown.

3.5 Document classification

The 500 documents in the Brown corpus are classified into a&pgy; from editorial jour-
nalism to romance fiction. We assessed the quality of thesapicovered by the LDA and



composite models by training a naive Bayes classifier ondpie tvectors produced by the
two models. We computed classification accuracy using Ddmss validation for the
20th sample from a single chain. The two models perform aiyil Baseline accuracy,
choosing classes according to the prior, @&9. Trained on Brown, the LDA model gave
an accuracy of.51, while 1st, 2nd, and 3rd order composite models da¥#, 0.41,0.42
respectively. Trained on Brown+TASA, the LDA model gdvg4, while the 1st. 2nd, and
3rd order composite models gaves8, 0.48, 0.46 respectively. The slightly lower accuracy
of the composite model may result from having fewer data irctvko find correlations: it
only sees the words allocated to the semantic componenthvelsicount for approximately
20% of the words in the corpus.

4 Conclusion

The composite model we have described captures the intardetween short- and long-
range dependencies between words. As a consequence, li¢ imatimultaneously learn
syntactic classes and semantic topics and identify thethalewords play in documents,
and is competitive in part-of-speech tagging and classificavith models that specialize
in only one form of dependency. Clearly, such a model doegloqustice to the depth

of syntactic or semantic structure, or their interactiowdver, it illustrates how a sensi-
tivity to different kinds of statistical dependency migh bufficient for the first stages of
language acquisition, discovering the syntactic and sémhbnilding blocks that form the

basis for learning more sophisticated representations.
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