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A major goal of population genetics is to quantitatively 
understand variation of genetic polymorphisms among 
individuals. The aggregated number of genotyped humans is 
currently on the order of millions of individuals, and existing 
methods do not scale to data of this size. To solve this problem, 
we developed TeraStructure, an algorithm to fit Bayesian 
models of genetic variation in structured human populations 
on tera-sample-sized data sets (�0�2 observed genotypes; for 
example, � million individuals at � million SNPs). TeraStructure 
is a scalable approach to Bayesian inference in which 
subsamples of markers are used to update an estimate of the 
latent population structure among individuals. We demonstrate 
that TeraStructure performs as well as existing methods on 
current globally sampled data, and we show using simulations 
that TeraStructure continues to be accurate and is the only 
method that can scale to tera-sample sizes.

The quantitative characterization of genetic variation in human  
populations plays a key role in understanding evolution, migration, 
and trait variation. Genetic variation of humans is highly structured in 
that frequencies of genetic polymorphisms are heterogeneous among 
human subpopulations. Therefore, to comprehensively understand 
human genetic variation, we must also understand the underlying 
structure of human populations.

Genome-wide Bayesian models of genetic polymorphisms are com-
monly employed to infer the latent structure of an observed popula-
tion. The probabilistic model of Pritchard, Stephens and Donnelly1, 
which we will refer to as the ‘PSD model’, has become a standard tool 
both for exploring hypotheses about human genetic variation and 
accounting for latent population structure in downstream analyses. 
The basic idea behind the PSD model is that an individual’s ancestry is 
composed of a mixture of ancestral populations. Allele frequencies are 
specific to each ancestral population, and an individual’s genotype can 
thus be modeled as a random process that mixes those frequencies.

The PSD model turns the problem of estimating population struc-
ture into one of posterior inference, computing the conditional distri-
bution of hidden random variables (structure) given observed random 
variables (genotypes). As is the case for many modern Bayesian models,  
this posterior is not tractable to compute. Algorithms for using the 

PSD model—the original algorithm1 and subsequent innovations2,3—
are methods for approximating it. It is through these approximations 
of the posterior that we can explore the latent population structure of 
the data and account for it in downstream analyses.

However, existing approaches cannot take full advantage of the PSD 
model and related probabilistic models; they do not scale to massive 
data. The reason is that these approaches repeatedly cycle through the 
entire data set to refine estimates of the latent population structure. 
Given the scale of the massive data sets available today, and the fact 
that such data will only be increasing in size, this is not a practical 
methodology. The sample sizes of genome-wide association studies 
now routinely involve tens of thousands of people, and both public 
and private initiatives have measured genome-wide genetic varia-
tion on hundreds of thousands of individuals. For example, a recent 
study collected genome-wide genotypes from 162,721 individuals4. 
All together, we now have dense genome-wide genotype data on the 
order of a million individuals. Fitting probabilistic models on these 
data would provide unprecedented characterization of genetic vari-
ation and the structure of human populations. But this requires new 
algorithms that scale to massive data.

To solve this problem, we developed TeraStructure, an algorithm 
for analyzing data sets of up to 1012 genotypes on a modest computing 
system. It is based on a scalable implementation of ‘variational infer-
ence’ (refs. 5,6), a general optimization-based strategy for Bayesian 
inference. The computational flow of TeraStructure iterates between 
subsampling observed SNP genotypes, analyzing the subsample and 
updating its estimate of the latent population structure. Whereas pre-
vious algorithms require analyzing the entire data set at each iteration, 
a requirement that precludes analyzing massive data, each iteration 
of TeraStructure only considers a randomly sampled locus (or several 
loci). The resulting computational savings enables us to analyze mas-
sive data sets with the PSD model and, further, can be adapted to other 
statistical models as well7. TeraStructure changes the scale at which 
we can use Bayesian models in population genetics.

RESULTS
Algorithm
TeraStructure provides a statistical estimate of the PSD model, 
capturing the latent population structure in the genetic variation 
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among human genomes. Formally, the PSD model assumes that  
(i) there are K ancestral populations, each characterized by allele fre-
quencies { }bk k

K
=1  at a given SNP, (ii) each individual i in the sample 

exhibits those populations with different proportions θi.k such that

 
k

K

i k
=

∑ =
1

1q ,  

and (iii) each SNP genotype  in each individual i, denoted by xi,, 
is drawn from an ancestral population that itself is drawn from the 
individual-specific proportions. If we code each SNP genotype as 
a 0, 1 or 2 (to denote the three possible genotypes), then it models
x pi i, ,, ∼ ( )Binomial 2 , where pi

k
i k k, , , =∑q b .

Given a data set of observed genotypes xi,{ } , we estimate  
the per-individual population proportions θi and the per-SNP allele 
frequencies βk among the K ancestral populations. These estimates 
come from the posterior distribution p(θ,β|x), which is the condi-
tional distribution of the latent structure given the observed data. 
Existing methods solve this problem by cycling between analyzing all 
the SNP genotypes of all of the individuals and updating an estimate 
of the model parameters. This approach is unfeasible for massive data 
sets. The data may be too large for memory, not be locally accessible, 
or be too large to repeatedly iterate through.

Figure 1 illustrates the computational flow of TeraStructure. At 
each iteration, it maintains an estimate of the population proportions 
for each individual and the allele frequencies for each population. 
It repeatedly iterates between the following steps: (i) sample a SNP 
from the data, x N1: ,, the measured genotypes at a single marker  
in the genome across all N individuals, (ii) incorporate the sampled 
SNP into the current estimated model, and (iii) update the estimates 
of the latent structure, both the ancestral allele frequencies and per-
individual population proportions.

The subsampling of SNPs allows TeraStructure to scale to massive 
genetic data. Rather than use the entire data set at each iteration, it itera-
tively subsamples a SNP, analyzes the subsample, and updates its estimate. 
On small data sets, this leads to faster estimates that are as good as those 
obtained by the slower procedures. More importantly, it lets us scale the 
PSD model up to sample sizes that are orders of magnitude larger than 
what the current state of the art can handle. We further emphasize that the 
technical approach behind TeraStructure—one that repeatedly subsam-
ples from a massive data set and then updates an estimate of its hidden 
structure—can be adapted to many probabilistic models that are used in 
genome analysis, such as hidden Markov models, methods to phase dip-
loid genotype data8, and methods for fine-scale analysis of structure9.

TeraStructure is built on variational inference, a method for 
approximate Bayesian inference that comes from statistical machine 
learning5. The main idea behind variational inference for the PSD 
model is as follows. We first parameterize individual distributions for 
each latent variable in the model, that is, a distribution for each set 
of per-population allele frequencies q(βk) and a distribution for each 
individual’s population proportions q(θi). We then fit these distribu-
tions so that their product is close to the posterior, where closeness 
is measured by Kullback–Leibler (KL) divergence, an information-
theoretic quantity that asymmetrically measures the distance between 
two distributions. 

q q q p x
q k

k
i

i k n
∗ b q b q b b q q, min || , , , ,( )= ( ) ( ) ( )









∏ ∏arg KL 1 1 

Thus, we do Bayesian inference by solving an optimization problem.
Traditional variational inference (implemented for the PSD model 

in ref. 3) does not scale to large data sets because it requires repeat-
edly processing the whole data set to perform this optimization. 
TeraStructure instead solves this optimization problem with stochastic 
variational inference7. Specifically, we optimize the KL divergence by 
following noisy realizations of its derivatives, where the noise comes 
from subsampling the data at each iteration (Fig. 1). A noisy deriva-
tive computed from a subsample is much cheaper to compute than 
the true derivative, which requires iterating over the entire data set. 
See the Online Methods for the mathematical details that outline the 
variational objective function and how to compute noisy derivatives 
from subsamples.

Variational methods are approximate but, in practice, are fast 
and accurate for estimates of posterior means. We confirm this for 
TeraStructure in the numerical results that follow. We note that one 
potential drawback of variational inference is that it tends to under-
estimate the posterior variance, although this quantity is typically less 
important in applications like estimating latent structure. Another 
potential drawback is that stochastic variational inference requires 
that we set the ‘learning schedule’, that is, how much it changes the 
estimates after each subsample. With TeraStructure, we found that 
the same schedule worked well across a variety of data sets; however, 
other data may benefit from alternative schedules or from using recent 
approaches to adaptively adjust it10,11.

Application to real and simulated data
We applied TeraStructure to both real and simulated data sets to 
study and demonstrate its good performance. We compared it to 
ADMIXTURE2 and fastSTRUCTURE3, two existing algorithms for 
estimating the PSD model. In our comparisons, we timed all the algo-
rithms under equivalent computational conditions. On simulated  
data, we measured the quality of the resulting fits by computing  
the KL divergence between the estimated models and the known 
data-generating model. On the real data sets, we measured model 
fitness by predictive log likelihood of held-out measurements (Online 
Methods). The smaller the KL divergence and the larger the predictive 
likelihood, the better a method performs.

We first analyzed three real data sets: the Human Genome Diversity 
Panel (HGDP) data set12,13, the 1000 Genomes Project (TGP)14, and 
the Human Origins (HO) data set15. After preprocessing, HGDP con-
sisted of 940 individuals at 642,951 SNPs for a total of 604 million 
observed genotypes, TGP consisted of 1,718 individuals at 1,854,622 
SNPs for a total of 3.2 billion observed genotypes, and HO consisted of 
1,941 individuals at 385,731 SNPs for a total of 748 million observed 
genotypes. In previous work, ADMIXTURE and fastSTRUCTURE 
have been shown to perform reasonably well on data sets of this 
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Figure 1 A schematic diagram of TeraStructure, stochastic variational 
inference for the PSD model. The algorithm maintains an estimate of 
the latent population proportions for each individual. At each iteration, 
it samples SNP measurements from the large database, infers the 
per-population frequencies for that SNP, and updates its idea of the 
population proportions. This is much more efficient than algorithms that 
must iterate across all SNPs at each iteration.
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size2,3. In applying all three algorithms to these data, we found that 
TeraStructure equaled the predictive log likelihood of held-out meas-
urements (Supplementary Table 1) and it completed its estimation 
in a comparable period of time (Table 1).

We then studied the algorithms on simulated data. We designed two 
simulation scenarios (Figs. 2 and 3, and Online Methods). Scenario A 
draws population proportions θi to be symmetric among the ancestral 
populations; this matches the assumptions of the PSD model. Scenario 
B draws θi such that there is a spatial relationship between the ances-
tral populations; this diverges from the assumptions of PSD. We used 
scenario A to demonstrate the scalability of the methods. Data sets 
from this scenario contained 10,000 individuals, 100,000 individuals,  

and 1 million individuals, each with 1 million SNP genotypes per 
individual and six ancestral populations. We used scenario B to study 
the accuracy of the methods under a mis-specified model, specifi-
cally when there are spatial correlations in population structure16. 
With these simulations, we varied the number of SNPs; one data set 
contained 100,000 SNPs and another contained 1 million SNPs, each 
with 10,000 individuals and 10 ancestral populations.

On these simulated data sets, we know the underlying population 
proportions and we can visualize how well each algorithm reconstructs 
them (Figs. 2 and 3). For scenario A, we found that ADMIXTURE  
and fastSTRUCTURE were only able to analyze the 10,000-individual  
set, on which TeraStructure was both 2–3 times faster and more accu-
rate (Table 1 and Supplementary Table 2). TeraStructure was the 
only algorithm that was able to analyze the larger data sets of 100,000 

table 1 the running time of all algorithms on both real and simulated data 

Data set N L S

Time (h)

TeraStructure ADMIXTURE fastSTRUCTURE

HGDP 940 644,258 0.9 <1 <1 12

TGP 1,718 1,854,622 0.5 3 3 21

Human Origins 1,941 385,731 0.7 2 2 61

Scenario A 10,000 1,000,000 1.0 9 28 216

Scenario A 100,000 1,000,000 0.7 158 – –

Scenario A 1,000,000 1,000,000 0.5 509 – –

Scenario B 10,000 100,000 1.0 6.9 31 140

Scenario B 10,000 1,000,000 0.5 9.3 – –

TeraStructure is the only algorithm that can scale beyond N = 10,000 individuals to the simulated data sets with N = 100,000 individuals and N = 1,000,000 individuals. S is 
the fraction of SNP locations subsampled, with repetition, during training; and L is the number of SNP locations. The TeraStructure and ADMIXTURE algorithms were run with ten 
parallel threads, while fastSTRUCTURE, which does not have a threading option, was run with a single thread. Even under the best-case assumption of ten times speedup due to 
parallel computation, the TeraStructure algorithm is twice as fast as both the ADMIXTURE and fastSTRUCTURE algorithms on the data set with N = 10,000 individuals. The real 
data sets shown are the Human Genome Diversity Project (HGDP), 1000 Genomes Project (TGP), and Human Origins data sets. On the real data sets, TeraStructure is as fast as 
the other algorithms. In contrast to other methods that iterated multiple times over the entire data set, TeraStructure iterated over the SNP locations at most once on all data sets.
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10,000 individuals

Oracle

TeraStructure

ADMIXTURE

fastSTRUCTURE

Oracle

TeraStructure

100,000 individuals

Figure 2 TeraStructure recovers the underlying per-individual population 
proportions on the simulated data sets generated via scenario A. Each 
panel shows a visualization of the simulation parameters qi

* (Oracle) and 

the inferred E q qi î



  for all individuals (TeraStructure, ADMIXTURE, 

and fastSTRUCTURE) in a data set. The current state-of-the-art 
algorithms cannot complete their analyses of 100,000 and 1,000,000 
individuals. TeraStructure is able to analyze data of this size and gives 
highly accurate estimates.
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Figure 3 TeraStructure is the most accurate method for scenario B 
simulations. The top panel shows the qi

* used to simulate the data 
(Oracle), where each individual’s proportions are a function of their 
position, for example, the leftmost individual’s proportions are  
dominated by the two blue ancestral populations while the rightmost 
individual’s proportions are dominated by the two purple ancestral 
populations. A quantitative measure of the accuracies can be found  
in supplementary table 2.
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individuals and 1 million individuals, again with high accuracy (Fig. 2 
and Supplementary Table 2). Further, TeraStructure was unambigu-
ously the fastest and most accurate method on scenario B (Fig. 3 and 
Supplementary Table 2).

TeraStructure is an iterative optimization algorithm and thus uses a 
convergence criterion to decide when to stop iterating (Online Methods). 
This lets us gauge how many SNPs are necessary to sample before the 
algorithm learns the structure of the population. On the HGDP and 
TGP data, we found that TeraStructure needed to sample ~90% and 
~50% of the SNPs, respectively, before converging (Table 1). On the tera-
sample-sized data set of 1 million individuals at 1 million SNPs (scenario 
A), TeraStructure sampled ~50% of the SNPs before converging.

Any analysis with the PSD model requires choosing the number 
of ancestral populations K. Here TeraStructure addressed this choice 
using a predictive approach17. We held out a set of SNP locations for 
each individual and computed the average predictive log likelihood 
under the model for varying numbers of ancestral populations. Our 
choice of K was the one that assigned the highest probability to the 
held-out set. Our sensitivity analysis showed that K = 8 had the high-
est validation likelihood on the TGP data, K = 10 had the highest 
likelihood on the HGDP data, and K = 14 had the highest likelihood 
on the HO data (Supplementary Fig. 1). On the real data sets, we 
fixed the number of populations K for each data set to the K with the 
highest validation likelihood; on simulated data sets, we set K to the 
number of ancestral populations used in the simulation.

DISCUSSION
TeraStructure is a scalable algorithm that repeatedly takes random 
subsamples of observed genotypes to uncover the underlying structure 
of human populations. We demonstrated the favorable performance of 
TeraStructure by applying it to large and globally sampled human SNP 
genotype data, finding equal accuracy and improved speed. Further, 
we carried out a simulation study to show that TeraStructure can 
accurately fit a standard probabilistic model of population genetic 
structure on data sets with a million individuals and 1012 observed 
genotypes. This is orders of magnitude beyond the capabilities of 
current state-of-the-art algorithms. Finally, although our results were 
obtained on a modest computing platform, with advanced comput-
ing architectures TeraStructure can analyze even larger data sets. It 
holds promise of characterizing the structure of world-scale human 
populations.

Probabilistic models of population structure are an important com-
ponent of modern population genetics. In particular, the PSD model 
captures a wide range of differentiation due to population structure. 
There is no well-established minimum differentiation required to use 
the PSD model. Because of the increasing size of studies, it is vital 
that statistical algorithms scale to millions of individuals and com-
plete genome sequences. We have shown that such analyses are not 
possible with existing algorithms, which require multiple iterations 
over the entire data. Scalable variational inference algorithms like 
TeraStructure overcome this limitation with a more efficient computa-
tional flow—one that iterates between subsampling observations from 
a data set, analyzing the subsample, and updating the model estimate—
and doing so without compromising the principles and statistical  
assumptions behind the model. Using TeraStructure to analyze  

massive data sets will provide comprehensive analyses of the global 
population genetic structure of humans at an unprecedented scale.

URLs. TeraStructure is available for download at https://github.com/
StoreyLab/terastructure. The Human Origins data set is available 
from the Reich laboratory website at https://genetics.med.harvard.
edu/reich/Reich_Lab/Datasets.html.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Data sets. Real data sets. We used genotype data that sampled individuals 
globally from three public sources: HGDP, TGP, and Lazaridis et al.15, which 
consists of data genotyped on the HO array. The HGDP data set is the complete 
Stanford HGDP SNP Genotyping data. We filtered individuals by removing 
those not in the “H952” set18, which leaves individuals without first- or sec-
ond-degree relatives in the data. After filtering for 95% genotype completeness 
and 1% minor allele frequency, the dimensions were 642,951 SNPs by 940 
individuals and a total of 603 million observations (0.08% missing data). The 
TGP data set was 2012-01-31 Omni Platform Genotypes and is accessible 
from the NCBI ftp site. We removed related individuals using the sample 
information provided by TGP. After filtering for 95% genotype complete-
ness and 1% minor allele frequency, the dimensions were 1,854,622 SNPs by 
1,718 individuals and a total of 3.1 billion observations (0.3% missing data). 
The HO data set was accessed from the Reich laboratory website (see URLs). 
After filtering the individuals for nonhuman and ancient samples and filter-
ing SNPs for 99% genotype completeness and 5% minor allele frequency, the 
dimensions were 385,731 SNPs by 1,941 individuals and a total of 749 million 
observations (0.3% missing data).

Simulated data sets. The goal of our study on simulated data sets is to 
demonstrate scalability to tera-sample-sized data sets—1 million observed 
genotypes from 1 million individuals—while maintaining high accuracy in 
recovering the underlying simulation per-individual population proportions θi 
and per-population allele frequencies βk. To this end, we generated simulated 
genotype data using the PSD model1. To generate realistic simulated data, 
we made the individual θi values visually similar to the proportions obtained 
from the PSD fit to the TGP data set. Further, we modeled allele frequencies  
b1: ,K   from the same fit.

In scenario A, the process of drawing the proportions θi for individual i has 
two levels. At the first level, we drew S points in the K-simplex from a symmet-
ric Dirichlet distribution,  qs  ~ Dirichlet(α). Each of the S points represents a 
‘region’ of individuals, and each individual was assigned to one of the regions 
such that the regions were equally sized. Then, we drew the population pro-
portions of each individual, θi ~ Dirichlet(γqs,1, …, γqs,K). Each region has a 
fixed qs value, and the proportion of individuals from that region is governed 
by the same scaled qs parameter. The parameter qs controls the sparsity of θi, 
while parameter γ controls how similar admixture proportions are within each 
group. We set the number of regions S = 50, K = 6, the Dirichlet parameter  
α = 0.2, and the second-level Dirichlet scale γ = 50.

Each b1: ,K   value at SNP location  consists of K independent draws from 
a Beta distribution with parameters following that of the Balding–Nichols 
model19, that is, 
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where p is the marginal allele frequency and F is Wright’s FST at location 
. The paired parameters p and F were estimated from the HGDP data set 
described earlier. For each pair, we chose a random complete SNP from the 
HGDP data and set the allele frequency p to the observed frequency. Wright’s 
FST F was set to the Weir and Cockerham FST estimate20 with five discrete 
subpopulations, following analysis of the HGDP study in ref. 21. We simulated 
data with 1,000,000 SNPs and three different scales of individuals: 10,000, 
100,000 and 1,000,000. With 1 million individuals and 1 million SNPs, the 
number of observations is tera-sample sized, that is, 1012 observations.

In scenario B, each ancestral population is placed at a location evenly spaced 
along a line (Fig. 3). Individuals are also positioned evenly on the line, and 
their proportions θi are a function of their proximity to each population’s 
location. This is done by setting a Gaussian density for each ancestral popu-
lation centered at its location and normalizing each individual such that all 
proportions sum to 1. For example, choosing K = 10 and N = 10,000, we can 
place the ‘origin’ of each ancestral population at the points x1 = 1, x2 = 2, 
…, x10 = 10 and place individuals evenly on the interval xn ∈ [0,11], that is, 

at the points 0 11
9999

22
9999

11, , , ,… . Each individual’s admixture proportions 

are drawn by first computing each ancestral population’s contribution: 
f(xn;xk,s), where f(x;µ,σ) is the Gaussian density, xn is the location of individual  
xk (the origin of the kth ancestral population) is taken as the mean, and s is 

constant for all populations, taken to be s = 2 in our simulations. These con-
tributions are normalized such that they sum to 1. The β values are generated 
as in the first scenario.

TeraStructure model and algorithm. Model and assumptions. We present the 
model and algorithm for unphased genotype data, although it easily general-
izes to phased data. In unphased data, each observation xi, , , ∈{ }0 1 2  denotes 
the observed genotype for individual i at SNP location . The data are coded 
for how many major alleles are present: xi, = 0 indicates two minor alleles;  
xi, =2 indicates two major alleles; and xi, =1 indicates one major and one 
minor allele. In this last case, we do not code which allele came from the 
mother and which allele came from the father.

The PSD model captures the heterogeneous patterns of ancestral popu-
lations that are inherent in observed human genomes. It posits K ancestral 
populations, each characterized by its allele frequencies across sites, and 
assumes that each person’s genome exhibits these populations with different 
proportions. Given a set of observed genomes, the goal of the algorithm is to 
estimate (i) the proportion of each ancestral population present in a given 
individual, (ii) the ancestral population allele frequencies for each SNP, and 
(iii) the effective allele frequency for each individual–SNP combination. Given 
observed data, we uncover its population structure by estimating the condi-
tional distribution of the allele frequencies and the per-individual population 
proportions.

Formally, each population k is characterized by an array of per-location 
distributions over major and minor alleles bk, , ∈( )0 1 . Each individual i is 
characterized by its per-population proportions θi,k > 0, where 

j
i j∑ =q , 1  

The observation for individual i at location  is assumed to be drawn from 
a binomial. Its parameter is a mixture of the population parameters for that 
location b1: ,K  , where the mixture proportions are defined by the individual θi. 
Thus, across individuals, the basic population distributions are shared at each 
location but they are exhibited with different individualized proportions.

Placing priors on the hidden variables, the data are assumed to be drawn 
from the following model 
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This is the model for unphased data in ref. 1.
TeraStructure. We are given a set of measured genotypes from N individuals 

at L locations x = x1:N,1:L. Given these data, we compute the posterior distri-
bution of the basic population parameters β = β1:K,1:L and individual popula-
tion proportions θ = θ1:N,1:K. From the posterior, we can compute estimates  
of the latent population structure. Missing data are excluded from the  
inference procedure.

For example, Supplementary Figure 2 illustrates the posterior expected pop-
ulation proportions, computed from our algorithm, for the 1,718 individuals  
of the TGP data set. These posterior estimates are shown for three values of 
the latent number of populations K, at K = 7, K = 8 and K = 9. This data set 
contains over 3 billion observations. Although the model is not aware of the 
geographical information for each individual, our algorithm uncovered popu-
lation structure consistent with the major geographical regions. Some of the 
groups of individuals identify a specific region (for example, red for Africa), 
while others represent admixture between regions (for example, green for 
Europeans and Central/South Americans). Supplementary Figures 3 and 4 
show posterior expected population proportions for the HGDP and HO data 
sets for values of K with the highest predictive likelihood.

Specifically, we develop a stochastic variational inference algorithm7 for 
the PSD model, which is computationally efficient. At each iteration, we first 
subsample a set of observed genotypes from the data set, a step which involves 
sampling a location and including the observations for all individuals at that 
location. We then analyze only those observations at the subsampled loca-
tion. Finally, we update our estimates of the population-wide hidden structure  
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on the basis of analysis of the subsample. In each iteration, we obtain a new 
subsample corresponding to a new location and repeat the process.

This is in contrast to previous algorithms for approximate inference in 
the PSD model, like the Markov chain Monte Carlo (MCMC) algorithm of  
ref. 1 or the variational inference algorithm of ref. 3. These algorithms form 
an approximate posterior through repeated iterations over the entire data  
set; such methods are slow for massive data sets. Our method subsamples 
a SNP location at each iteration and provides a valid approximation of the 
admixture posterior that scales to population-size genomic data.

The full algorithm is shown in Supplementary Figure 5. The input is a  
massive data set of genotypes; the output is an approximation of the poste-
rior PSD model. From the output, we can calculate a decomposition of the  

genotypes: the K ancestral populations and how each individual exhibits them. 
We derive details of the algorithm in the Supplementary Note.
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