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Detecting overlapping communities is essential to analyzing and
exploring natural networks such as social networks, biological net-
works, and citation networks. However, most existing approaches do
not scale to the size of networks that we regularly observe in the real
world. In this paper, we develop a scalable approach to community
detection that discovers overlapping communities in massive real-
world networks. Our approach is based on a Bayesian model of net-
works that allows nodes to participate in multiple communities, and
a corresponding algorithm that naturally interleaves subsampling
from the network and updating an estimate of its communities. We
demonstrate howwe can discover the hidden community structure of
several real-world networks, including 3.7 million US patents, 575,000
physics articles from the arXiv preprint server, and 875,000 connected
Web pages from the Internet. Furthermore, we demonstrate on large
simulated networks that our algorithm accurately discovers the true
community structure. This paper opens the door to using sophisti-
cated statistical models to analyze massive networks.

network analysis | Bayesian statistics | massive data

Community detection algorithms (1–17) analyze networks to
find groups of densely connected nodes. These algorithms

have become vital to data-driven methods for understanding
and exploring network data such as social networks (4), citation
networks (18), communication networks (19), and networks in-
duced by scientific observation [e.g., gene regulation networks (20)].
Community detection is important for both exploring a net-

work and predicting connections that are not yet observed. For
example, by finding the communities in a large citation graph of
scientific articles, we can make hypotheses about the fields and
subfields that they contain. By finding communities in a large
social network, we can more easily make predictions to in-
dividual members about who they might be friends with but are
not yet connected to.
In this paper, we develop an algorithm that discovers com-

munities in modern real-world networks. The challenge is that
real-world networks are massive—they can contain hundreds of
thousands or even millions of nodes. We will examine a network
of scientific articles that contains 575,000 articles, a network of
connected Web pages that contains 875,000 pages, and a network
of US patents that contains 3,700,000 patents. Most approaches
to community detection cannot handle data at this scale.
There are two fundamental difficulties to detecting commu-

nities in such networks. The first is that many existing community
detection algorithms assume that each node belongs to a single
community (1, 3–7, 14–16). In real-world networks, each node
will likely belong to multiple communities and its connections
will reflect these multiple memberships (2, 8–13, 17). For example,
in a large social network, a member may be connected to co-
workers, friends from school, and neighbors. We need algorithms
that discover overlapping communities to capture the heteroge-
neity of each node’s connections.
The second difficulty is that existing algorithms are too slow.

Many community detection algorithms iteratively analyze each
pair of nodes, regardless of whether the nodes in the pair are
connected in the network (5, 6, 10). Consequently, these algo-
rithms run in time squared in the number of nodes, which makes
analyzing massive networks computationally intractable. Other algo-
rithms avoid computation about unconnected nodes (2–4, 7–9,

11–17). These methods are more efficient, but either make too
simple assumptions, are still difficult to scale, or have difficulty
with prediction.
Our algorithm addresses these difficulties. It discovers the

hidden overlapping communities in massive networks, and its
results can be used to explore, understand, and form predictions
about their structure. Fig. 1 gives an example. This is a subgraph
of a network of 575,000 scientific articles on the arXiv preprint
server (21); each link denotes that an article cites or is cited
by another article. Our algorithm analyzed this network, discov-
ering overlapping communities among the citations. It assigned
multiple communities to each article and a single community to
each link. Many articles mostly link to other articles within their
main community. However, the article “An alternative to com-
pactification” (22) is different—it links to multiple communities,
which suggests that it relates to multiple fields. Identifying nodes
in large networks that bridge multiple communities is one way
that our algorithm gives insights into the structure of the network.
Our algorithm identifies hundreds of overlapping communities

among millions of nodes in a matter of hours. It is fast because of
its simple structure: (1) subsample a subgraph from the full graph;
(2) analyze the subgraph under the algorithm’s current estimate
of the communities; (3) update this estimate of the communities,
based on the analysis from the previous step; (4) repeat.
This powerful algorithmic structure is efficient because it

only analyzes a subgraph of the network at each iteration. These
subgraphs can be as large or as small as is computationally fea-
sible, and can be designed to maximize the statistical information
for efficiently finding communities. Furthermore, the algorithm
does not require that the network be fully observed before be-
ginning to estimate communities; its algorithmic structure nat-
urally interleaves data collection with data analysis.
What we will show below is that our algorithm emerges when

we take a Bayesian approach to detecting overlapping communi-
ties. In particular, we posit a probabilistic model of networks (23)
where each node can belong to multiple communities (10). We
then analyze a network by computing the posterior, the condi-
tional distribution of the hidden communities given the observed
network. The efficient structure of the algorithm—iteratively
subsampling the network and updating an estimate of the hidden
communities—emerges when we approximate this conditional
distribution with variational methods (24) in combination with
stochastic optimization (25, 26).
In the rest of the paper, we describe a model of overlapping

communities (10) and present our efficient algorithm for com-
puting with it. We demonstrate the capabilities of this analysis on
three large real-world networks and report on a study of large
simulated networks where the community structure is known.
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One of the main advantages of taking a probabilistic approach
to network analysis is that the models and algorithms are reusable
in more complex settings. Our strategy for analyzing networks
easily extends to other probabilistic models, such as those taking
into account degree distribution or node attributes beyond the
network. The approach we develop here opens the door to using
sophisticated statistical models to analyze massive networks.

The Model and Algorithm
We describe a Bayesian model of overlapping communities and
our scalable algorithm for computing with it.

A Mixed-Membership Stochastic Blockmodel.We describe the model
by its probabilistic generative process of a network. In this pro-
cess, the community memberships will be encoded as hidden
random variables. Given an observed network, such as a social
network of friendship ties, we discover the hidden community
structure by estimating its conditional distribution.
Classical community membership models, like the stochastic

blockmodel (5, 6, 27), assume that each node belongs to just one
community. Such models cannot capture that a particular node’s
links might be explained by its membership in several over-
lapping groups, a property that is essential when analyzing real-
world networks. Rather, our model is a type of “mixed-mem-
bership stochastic blockmodel” (10), a variant of the stochastic
blockmodel where each node can exhibit multiple communities.
The model assumes there are K communities and that each

node i is associated with a vector of community memberships θi.
This vector is a distribution over the communities—it is positive
and sums to 1. For example, consider a social network and
a member for whom one-half of her friends are from work and
the other half are from her neighborhood. For this node, θi
would place one-half of its mass on the work community and the
other half on the neighborhood community.
To generate a network, the model considers each pair of

nodes. For each pair fi; jg, it chooses a community indicator zi→j
from the ith node’s community memberships θi and then chooses
a community indicator zi←j from θj. (Each indicator points to one
of the K communities that its corresponding node is a member of.)
If these indicators point to the same community, then it connects
nodes i and j with high probability; otherwise, they are likely to
be unconnected.
These assumptions capture that the connections between

nodes can be explained by their memberships in multiple com-
munities, even if we do not know where those communities lie. To

see this, we consider a single pair of nodes ði; jÞ and compute the
probability that the model connects them, conditional on their
community memberships. This computation requires that we
marginalize out the value of the latent indicators zi→j and zi←j.
Let βk be the probability that two nodes are connected given that

their community indicators are both equal to k. For now, assume
that if the indicators point to different communities then the two
nodes have zero probability of being connected. (In the full model,
they will also have a small probability of being connected when the
indicators are different, but this simplified version gives the in-
tuition.) The conditional probability of a connection is as follows:

p
�
yij = 1

��θi; θj�= XK
k= 1

θikθjkβk: [1]

The first two terms represent the probability that both nodes
draw an indicator for the kth community from their member-
ships; the last term represents the conditional probability that
they are connected given that they both drew that indicator. (The
parameter βk relates to how densely connected the kth com-
munity is.) The probability that nodes i and j are connected will
be high when θi and θj share high weight for at least one com-
munity, such as if the social network members attended the same
school; it will be low if there is little overlap in their communi-
ties. The summation marginalizes out the communities, captur-
ing that the model is indifferent to which communities the nodes
have in common. The model captures assortativity—nodes with
similar memberships will more likely link to each other (28, 29).
We described the probability that governs a single connection

between a pair of nodes. For the full network, the model assumes
the following generative process:

1. For each node, draw community memberships θi ∼DirichletðαÞ.
2. For each pair of nodes i and j, where i< j:

(a) Draw community indicator zi→j ∼ θi

(b) Draw community indicator zi←j ∼ θj

(c) Draw the connection between them from

p
�
yij = 1

��zi→j; zi←j
�
=

�
βzi→ j

if zi→j = zi←j

e if zi→j ≠ zi←j:

This defines a joint probability distribution over the N per-node
community memberships θ, the per-pair community indicators z,

Fig. 1. The discovered community structure in a
subgraph of the arXiv citation network (21). The fig-
ure shows the top four link communities that include
citations to “An alternative to compactification” (22),
an article that bridges several communities. We visu-
alize the links between the articles and show some
highly cited titles. Each community is labeled with its
dominant subject area; nodes are sized by their
bridgeness (39), an inferred measure of their impact
on multiple communities. This is taken from an anal-
ysis of the full 575,000 node network.
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and the observed network y (both links and nonlinks). We will
use this as a model of an undirected graph, but it easily general-
izes to the directed case.
Given an observed network, the model defines a posterior dis-

tribution—the conditional distribution of the hidden community
structure—that gives a decomposition of the nodes into K over-
lapping communities. In particular, the posterior will place higher
probability on configurations of the community memberships that
describe densely connected communities. With this posterior, we
can investigate the set of communities each node participates in
and which specific communities are responsible for each of the
observed links. In this sense, our algorithm discovers link com-
munities (2, 9). Our visualization in Fig. 1 illustrates this posterior
superimposed on a subgraph of the original network.
As for many interesting Bayesian models, however, this pos-

terior is intractable to compute. Furthermore, existing approxi-
mation methods like Markov chain Monte Carlo (30) or variational
inference (24) are inefficient for real-world–sized networks because
they must iteratively consider all pairs of nodes (5, 6, 10). In the
next section, we develop an efficient algorithm for approximating
the posterior with massive networks.
Finally, we note an exception. The Poisson community model

(2) is a probabilistic model of overlapping communities that
avoids the all-pairs computation and can be efficiently estimated.
We show below that the Poisson model can be good for uncov-
ering true community structure. But we also found that it cannot
compute held-out probabilities of links, which makes it in-
effective for prediction or for model metrics based on prediction
(e.g., to select K).

Posterior Inference. Our modeling assumptions capture the in-
tuition that each node belongs to multiple communities. To ex-
amine observed networks under these assumptions, we compute
the posterior distribution of the community structure,

pðθ; zjyÞ= pðθ; z; yÞ=pðyÞ: [2]

This posterior cannot be computed exactly. (In practice, the
community densities βk are also hidden variables. For simplicity
we treat them here as fixed parameters but give all details in
SI Text.)
The numerator is easy to compute. It is the joint distribution

defined by the modeling assumptions. The problem is with the
denominator. It is the marginal probability of the data, which
implicitly sums over all possible hidden community structures,

pðyÞ=
Z
θ

X
z

pðθ; z; yÞ: [3]

Computing the marginal requires a complicated integral over N
simplicial variables and a summation over the KN2

configurations
of community indicators. This is exacerbated by the number of
nodes N being large. Thus, we approximate the posterior.
As we described above, our algorithm to approximate the

posterior iterates between subsampling the network, analyzing
the subsample, and updating the estimated community structure.
This computational structure lets us approximate the posterior
with massive networks. It emerges when we adapt two key ideas
to the problem: mean-field variational inference and stochastic
optimization.

Mean-Field Variational Inference. Variational inference is a pow-
erful approach to approximate posterior inference in complex
probabilistic models (24). It has been adapted to a variety of
probabilistic models, although its roots are in the statistical
physics literature (31). Variational inference algorithms approx-
imate the posterior in Eq. 2 by defining a parameterized family of
distributions over the hidden variables and then fitting the
parameters to find a distribution that is close to the posterior.

Closeness is measured with Kullback–Leibler (KL) divergence
(32). Thus, the problem of posterior inference becomes an
optimization problem.
The mean-field variational family independently considers

each hidden variable with a different parameterized distribution.
In our model, the mean-field variational family is as follows:

qðθ; zÞ=∏
N

n= 1
qðθnjγnÞ∏

i<j
q
�
zi→j

��ϕi→j

�
q
�
zi←j

��ϕi←j

�
: [4]

Each factor is in the same family as the corresponding component
in the model, but there is a different independent distribution for
each instance of each hidden variable.
For example, the model contains a single Dirichlet distribution

that specifies the prior over community memberships θi. How-
ever, the variational distribution qðθijγiÞ has a different Dirichlet
distribution for each node. Once fit, the variational parameter γi
captures the posterior distribution of the nth node’s community
memberships. Similarly, the model defines the distribution of
community indicators based on the corresponding nodes’ com-
munity memberships. However, the variational distributions for
those indicators are freely parameterized discrete distributions.
Once fit, the parameters ϕi→j and ϕi←j describe discrete dis-
tributions that capture the posterior distribution of the indica-
tors when considering the possible connection between i and j.
Each variable having its own distribution makes the variational
family very flexible. With N nodes, it can uniquely describe each
node’s community memberships and which community is acti-
vated for each pair of nodes’ possible connection.
The variational family qðθ; zÞ reflects the hidden structure of

the observed network when we optimize the variational param-
eters to minimize the KL divergence to the posterior. Thus, the
variational problem is to solve the following:

q*ðθ; zÞ= argmin
γ;ϕ

KLðqðθ; zÞkpðθ; zjyÞÞ:

We then use the optimal q* as a proxy for the true posterior, for
example to identify communities in the data or to make predic-
tions about as-yet-unseen links. The optimization connects the
variational distribution to the data.
Unfortunately, we cannot minimize the KL divergence di-

rectly—it is difficult to compute for the same reason that the
posterior is difficult to compute—but we can optimize an
objective function that is equal to the negative KL divergence
up to a constant. (Its optimum is the same as the optimum of
the KL objective.) Let H½ · � be the entropy of a distribution.
The variational objective is

Lðγ;ϕÞ= E½log pðθ; z; yÞ�+H½qðθ; zÞ�;

where the expectation is taken with respect to the variational
distribution. This objective is a function of the variational
parameters in Eq. 4. It relates to the free energy in statistical
physics; the first term is the internal energy, with the temperature
set to 1.
Maximizing this objective is equivalent to minimizing the KL

divergence to the posterior. Intuitively, the first term captures how
well qðθ; zÞ describes a distribution that is likely under the model,
keeping both the priors and data in mind through the joint dis-
tribution; the second term encourages the variational distribution
to be entropic, i.e., this protects it from “overfitting.” Traditional
variational inference optimizes the objective with coordinate
ascent, iteratively optimizing each variational parameter while
holding the others fixed. This has been a successful approach for
probability models of small networks (6, 10).
However, traditional variational methods for overlapping com-

munity detection do not scale well to real-world–sized networks;
previous work has only analyzed networks in the hundreds of
nodes. The problem is that there are OðN2Þ terms in the objective

Gopalan and Blei PNAS Early Edition | 3 of 6

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221839110/-/DCSupplemental/pnas.201221839SI.pdf?targetid=nameddest=STXT


function and OðN2Þ variational parameters. Coordinate ascent
inference must consider each pair of nodes at each iteration (10),
but even a single pass through a large network can be prohibitive.
Our variational inference algorithm avoids this issue through
stochastic optimization.

Stochastic Optimization of the Variational Objective. Stochastic op-
timization algorithms follow noisy estimates of the gradient of an
objective with a decreasing step size. In their classic paper,
Robbins and Monro showed that with certain step-size schedules,
such algorithms provably lead to the optimum of a convex func-
tion (25). (In our case, they provably lead to a local optimum.)
Since the 1950s, stochastic optimization has blossomed into a field
of its own (33).
Stochastic optimization is particularly efficient when the ob-

jective is a sum of terms, as is the case for the variational ob-
jective of our model. In these settings, we cheaply compute
a stochastic gradient by first subsampling a subset of terms and
then forming an appropriately scaled gradient. The scaled gra-
dient is a random variable whose expectation is the true gradient.
Specifically, the variational objective for our model contains

a sum of terms for each pair of nodes. Thus, our algorithm it-
eratively subsamples a subset of pairs and then updates its cur-
rent estimate of the community structure by following a scaled
gradient computed only on that subset. (By “community struc-
ture,” we mean the N ×K parameters γ, which describe the
posterior distribution of each node’s community memberships
θ.) This is a form of stochastic variational inference algorithm
(26). At iteration t, we

1. Subsample a set of pairs of nodes S.
2. For each pair ði; jÞ∈S, use the current community structure to

compute the indicator parameters ϕ̂i→j and ϕ̂i←j.
3. Adjust the community memberships γ.
4. Repeat.

The details of how we find the optimal indicator parameters
and how we adjust the community memberships are in SI Text.
What is important about our algorithm is that it does not require
analyzing all N2 pairs at each iteration and that it is a valid
stochastic optimization algorithm of the variational objective. It
scales to massive networks.
Our algorithm is flexible in terms of how we sample the subset

of pairs in step 1. We can analyze all of the pairs associated with
a sampled node; or we can use a subsampling technique that
makes data collection easier, for example if the network is stored
in a distributed way. We have explored several methods of sub-
sampling pairs of nodes:

� Sample uniformly from the set of all pairs.
� Sample a node and select its linked pairs.
� Sample a node and select all its pairs (links and nonlinks).

Naively applied, biased sampling strategies lead to biases in ap-
proximate posterior inference. In SI Text, we show how to correct
for these biases. Using these strategies can lead to faster conver-
gence of the variational distribution (34).
We emphasize that our algorithm does not prune the network

to make computation manageable (18). Rather, it repeatedly
subsamples subgraphs at each iteration. Furthermore, we do not
need to have collected the entire network to run the algorithm.
Because it operates on subsamples, it gives a natural approach
for interleaving data collection and model estimation.

The Number of Communities. Probabilistic models of community
detection require setting the number of communities, and in typical
applications we will want to set this number based on the data. In
our empirical study, we addressed this model selection problem in
two ways. One was by evaluating the predictive performance of the
model for varying numbers of communities. A secondway was to set
the number of communities as part of the initialization procedure of

the variational distribution. This is detailed in SI Text. It works well
and is faster than the predictive approach.

A Study of Real and Synthetic Networks
We studied our algorithm on real and synthetic networks. With
real networks, we demonstrate how it can help us explore mas-
sive data: on networks with millions of nodes, it identifies over-
lapping communities and the nodes that bridge them. On
synthetic data, where the ground truth is known, we confirm that
it accurately identifies the overlapping communities.

Exploring Real-World Network Data. We first show how our algo-
rithm can be used to study massive real-world networks. We
analyzed two citation networks: a network of 575,000 scientific
articles from the arXiv preprint server (21) and a network of
3,700,000 patents from the US patent network (35). In these
networks, a link indicates that one document cites another. We
also analyzed a large network of 875,000 Web pages from
Google (36). (These data did not contain the descriptions of the
nodes that are required to visualize the communities. Our
quantitative analyses of this network are in SI Text.) In all net-
works, we treated the directed links as undirected—the presence
of a link is evidence of similarity between the nodes and is in-
dependent of direction. [This is common in hyperlink graph
analysis (1).] These networks are much larger than what can
easily be analyzed with previous approaches to computing with
mixed-membership stochastic blockmodels (10). [Although we
note that several efficient methods have recently been developed
for blockmodels without overlapping communities (14–16).]
We analyze a network by setting the number of communities K

and running the stochastic inference algorithm. (Our software is
available at https://github.com/premgopalan/svinet. More details
about these fits are in SI Text.) This results in posterior estimates
of the community memberships for each node and posterior
estimates of the community assignments for each node pair (i.e.,
for each pair of nodes, estimates of which communities governed
whether they are connected). With these estimates, we visualize
the network according to the discovered communities.

Scientific Articles from arXiv. The arXiv network (21) contains
scientific articles and citations between them. Our large subset of
the arXiv contains 575,000 physics papers. We ran stochastic
inference to discover 200 communities.
Fig. 1 illustrates a subgraph of the arXiv network and demon-

strates the structure that our algorithm uncovered. In the model,
each node i contains community memberships θi and each link
ði; jÞ is assigned to one of the K communities. In the figure, we
colored each link according to the peak of the approximate pos-
terior pðzi→j; zi← jjyÞ. This suggests within which communities and
to what degree each paper has had an impact. (We note that most
of the links attached to highly cited articles are incoming links, so
visualizing these links reveals the communities influenced by
the paper.)
The central article in Fig. 1 is the highly cited article “An al-

ternative to compactification” (22), which was published in 1999.
The article proposes a simple explanation to one of the most
important problems in physics: Why is the weak force 1032 times
stronger than gravity? The paper’s external tag (given by the
authors) suggests it is primarily a theoretical paper. It has had,
however, an impact on a diverse array of problems including
certain astrophysics puzzles regarding the structure of the uni-
verse (37) and the confrontation between general relativity and
experiment (38).
In analyzing the full network of citations, our algorithm has

captured how this article has played a role in multiple subfields. It
assigned it to membership in nine communities and gave it a high
posterior bridgeness score (39), a measure of how strongly it
bridges multiple communities. We note that bridgeness is a func-
tion of known community memberships. In our networks, the
communities are not observed. Thus, we estimated the posterior
using our algorithm and then computed the expected bridgeness.
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In the subgraph of Fig. 1, the link colors correspond to the
research communities associated with the links. We visualize the
four top communities that link to this article: “High Energy
Physics: Theory,” “High Energy Physics: Phenomenology,”
“General Relativity and Quantum Cosmology,” and “Astro-
physics.” (Naming and interpreting communities is a difficult
problem in unsupervised community detection. For visual con-
venience, we examine the external tags given to the articles and
name each community by its most common tag. Note the algo-
rithm does not have access to the tags.) We emphasize that the
citations alone cannot reveal the role of an article in its citation
graph—we executed this analysis by first discovering the com-
munities with our algorithm and then using those discovered
communities to compute quantities, like bridgeness (39) and link
color, that require community assignments.
As an example of a different kind of article, consider “Cos-

mological constant—the weight of the vacuum” (40). This article
has 1,117 citations in the dataset, on the same order as ref. 22. It
discusses the theoretical and cosmological aspects of the cos-
mological constant. Our algorithm finds that this article has
a lower bridgeness, and membership in only two communities.
Both communities are dominated by the “Astrophysics” subject
tag, with the other significant tag being “General Relativity and
Quantum Cosmology.” Detecting these two kinds of articles
highlights an advantage of this type of analysis. By discovering
the hidden community structure, we can separate articles (of
similar citation count) that have had interdisciplinary impact
from those with impact within their particular fields.
We have illustrated a small subgraph of this large network,

centered around a specific article. Across the whole network, we
can use the posterior bridgeness to filter and find a collection of
articles that have had interdisciplinary impact. In SI Text we show
the top 10 papers in the arXiv network by posterior bridgeness.
The top scientific articles in the arXiv network have a wide im-
pact, as they concern data, parameters, or theory applied in
various subfields of physics. For example, the top article, “Maps
of dust infrared emission for use in estimation of reddening and
cosmic microwave background radiation foregrounds,” (41) con-
structs an accurate full sky map of the dust temperature useful in
the estimation of cosmic microwave background radiation. This
filtering demonstrates the practical potential for unsupervised
analysis of large networks. The posterior bridgeness score, a

function of the discovered communities, helps us focus on a class
of nodes that is otherwise difficult to find.

US Patents. The National Bureau of Economic Research main-
tains a large dataset of US patents (35). It contains 3,700,000
patents granted between 1975 and 1999 and the citations be-
tween them. We analyzed this network, setting the number of
communities to 1,000.
Fig. 2 illustrates a subgraph of the patents data that reveals

overlapping community structure around “Process for producing
porous products” (42). This patent was issued in 1976 and describes
an efficient process for producing highly porous materials from
tetrafluoroethylene polymers. It has influenced the design of many
everyday materials, such as waterproof laminate, adhesives, printed
circuit boards, insulated conductors, dental floss, and strings of
musical instruments. Our algorithm assigned it a high posterior
bridgeness and membership in 39 communities. The classification
tags of the citing patents confirm that it has influenced several areas
of patents: Synthetic Resins or Natural Rubbers, Prosthesis, Stock
Material, Plastic and Nonmetallic Article Shaping, Adhesive bond-
ing, Conductors and Insulators, and Web or Sheet. Fig. 2 illus-
trates the top communities for this patent, found by our algorithm.
We also studied a patent with a comparable number of cita-

tions but with significantly lower bridgeness. “Self-controlled
release device for administering beneficial agent to recipient”
(43) concerns a novel osmotic dispenser for continually admin-
istering agents, e.g., ophthalmic drugs. It has 339 citations,
comparable to the 441 of ref. 42, but a much lower bridgeness
score. Our algorithm assigned it to seven communities, with the
classification tags mostly restricted to “Drug: Bio-Affecting and
Body Treating Compositions” and “Surgery.”

Comparisons to Ground Truth on Synthetic Networks. We demon-
strated that our algorithm can help explore massive real-world
networks. As further validation, we performed a benchmark
comparison on synthetic networks where the overlapping com-
munities are known. We used the “benchmark” tool (44) to
synthesize networks with the number of nodes ranging from one
thousand to one million.
We compared our algorithm to the best existing algorithms for

detecting overlapping communities (2, 8, 9, 11–13, 17). Each al-
gorithm analyzes the (unlabeled) network and returns both the

Fig. 2. The discovered community structure in a
subgraph of the US Patents network (35). The fig-
ure shows subgraphs of the top four communities
that include citations to “Process for producing
porous products” (42). We visualize the links be-
tween the patents and show titles of some of the
highly cited patents. Each community is labeled
with its dominant classification; nodes are sized by
their bridgeness (39); the local network is visual-
ized using the Fruchterman–Reingold algorithm
(46). This is taken from an analysis of the full 3.7
million node network.

Gopalan and Blei PNAS Early Edition | 5 of 6

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221839110/-/DCSupplemental/pnas.201221839SI.pdf?targetid=nameddest=STXT


number of communities and community assignments for each
node. In our algorithm, we chose the number of communities in
an initialization phase of variational inference. [The details are
in SI Text. Note that the Poisson community model (2) also
requires setting the number of communities. We used the same
number of communities derived from our initialization pro-
cedure.] A better algorithm better recovers the true community

structure. We measured closeness to the truth with the normal-
ized mutual information (NMI) (44), which measures the strength
of the relationship between the true and discovered labels.
Most methods could not scale to one million node networks.

The four that did were our algorithm, the Poisson community
model (2), COPRA (12), and INFOMAP (13). Fig. 3 shows the
NMI for these methods on 15 synthetic networks, 5 each of
10,000 nodes, 100,000 nodes, and 1,000,000 nodes. See SI Text
for the full table of results.

Discussion
We have developed and studied a scalable algorithm for discov-
ering overlapping communities in massive networks. Our approach
naturally interleaves subsampling the network and reestimating its
community structure.We focused on a specific Bayesian model but
we emphasize that this strategy can be used to accommodate many
kinds of assumptions. For example, we can posit varying degree
distributions to better capture the expected properties of real
networks or use Bayesian nonparametric assumptions (45) to infer
the number of communities within the analysis. In general, with the
ideas presented here, we can use sophisticated statistical models to
analyze massive real-world networks.
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Fig. 3. The performance of scalable algorithms on synthetic networks with
overlapping communities. The numbers of nodes in each network span ten
thousand to one million, and for each network size we generated five
networks. Our stochastic inference algorithm (SVI) outperforms scalable
alternatives, the INFOMAP algorithm (INF) (13) and the COPRA algorithm
(COP) (12), while performing as well as the Poisson community model (POI)
(2). We measure accuracy with normalized mutual information (NMI) (44).
We also compared with many other methods that could not scale up to one
million nodes; see SI Text for a full table of results.
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