
https://doi.org/10.1007/s11129-021-09241-2

Counterfactual inference for consumer choice across
many product categories

Robert Donnelly1 ·Francisco J.R. Ruiz2,3 ·David Blei2 ·Susan Athey1

Received: 3 October 2021 / Accepted: 3 October 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021,

corrected publication 2021

Abstract
This paper proposes a method for estimating consumer preferences among discrete
choices, where the consumer chooses at most one product in a category, but selects
from multiple categories in parallel. The consumer’s utility is additive in the different
categories. Her preferences about product attributes as well as her price sensitivity
vary across products and may be correlated across products. We build on techniques
from the machine learning literature on probabilistic models of matrix factorization,
extending the methods to account for time-varying product attributes and products
going out-of-stock. We evaluate the performance of the model using held-out data
from weeks with price changes or out of stock products. We show that our model
improves over traditional modeling approaches that consider each category in isola-
tion. One source of the improvement is the ability of the model to accurately estimate
heterogeneity in preferences (by pooling information across categories); another
source of improvement is its ability to estimate the preferences of consumers who
have rarely or never made a purchase in a given category in the training data. Using
held-out data, we show that our model can accurately distinguish which consumers
are most price sensitive to a given product. We consider counterfactuals such as per-
sonally targeted price discounts, showing that using a richer model such as the one
we propose substantially increases the benefits of personalization in discounts.
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1 Introduction

Estimating consumer preferences among discrete choices has a long history in eco-
nomics and marketing. Domencich and McFadden’s (1975) pioneering analysis of
transportation choice articulated the benefits of using choice data to estimate latent
parameters of user utility functions (see also Hausman and Wise 1978): once esti-
mated, a model of user utility can be used to analyze counterfactual scenarios, such
as the impact of a change in price or of the introduction of an existing product to a
new market. McFadden (1974) also highlighted strong assumptions implicit in using
off-the-shelf multinomial choice models to estimate preferences and introduced vari-
ants such as the nested logit that relaxed some of the strong assumptions (including
“independent of irrelevant alternatives”).

Analysts have applied the discrete choice framework to a variety of different types
of data sets, including aggregate, market-level data (see, e.g., Berry et al. (1995),
Nevo (2001), and Petrin (2002)),1 as well as data from individual choices for a cross-
section of individuals. In this paper, we focus on models designed for a particularly
rich type of data, consumer panel data, where the same consumer is observed making
choices over a period of time. Supermarket scanner data is a classic example of this
type of data, but e-commerce firms also collect panel data and use it to optimize their
offerings and prices. Scanner data enables the analyst to enrich the analysis in a vari-
ety of ways, for example to account for dynamics (see Keane and Wasi (2013)) for
a survey. The vast majority of the literature based on individual choice data focuses
on one category2 at the time, e.g. Ackerberg (2001, 2003) analyzes yogurt, Erdem
et al. (2003) ketchup, Dubé (2004) soft drinks, and Hendel and Nevo (2006) deter-
gent. Often these analyses focus on the impact of marketing interventions, such as
advertising campaigns, coupons, or promotions, such as in the classic work by Rossi
et al. (1996).

In this paper, we analyze the demand for a large number of categories in parallel.
This approach has a number of advantages. First, there is the potential for large effi-
ciency gains in pooling information across categories if the consumer’s preferences
are related across categories. For example, the consumer’s sensitivity to price may be
related across categories, and there may be attributes of products that are common
across categories (such as being organic, convenient, healthy, or spicy). These effi-
ciency gains are likely to be particularly pronounced for less commonly purchased
items. Even among the top 100 categories in a supermarket, the baseline probability
of purchasing an item in the category is very low on any particular trip, and there are

1This literature grapples with the challenge that to the extent prices vary across markets, the prices are
often set in response to the market conditions in those markets. In addition, to the extent that products have
quality characteristics that are unobserved to the econometrician, these unobserved quality characteristics
may be correlated with the price.
2Throughout the paper we use category to refer to disjoint sets of products, such that products that are
within the same category are partial substitutes.
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thousands of categories in a typical store.3 For e-commerce, there may be millions
of products, most of which are rarely or never purchased by any particular consumer.
But by pooling data across categories, it is possible to make personalized predictions
about purchasing, even for categories in which the consumer has not purchased in the
past.

A second advantage of analyzing many categories at once is that from the perspec-
tive of marketing, it is crucial for retailers to understand their consumers in terms of
what drives their overall demand at the store, not just for individual products. For
example, there may be products that are very important to high-volume shoppers, but
where they are price-elastic; avoiding stock-outs on those products and offering com-
petitive prices may be very important in store-to-store competition. Although this
paper does not offer a complete model of consumers’ choice across stores, we view
the demand model we introduce as an important building block for such a model.

Our model makes use of recent advances in machine learning and scalable
Bayesian modeling to generate a model of consumer demand. Our approach learns
a concise representation of consumer preferences across multiple product categories
that allows for rich (latent, i.e. unobservable) heterogeneity in products as well as
preferences across consumers. Our model assumes that consumers select a single
item from a given category (a strong form of substitution, where in the empirical
analysis we drop categories that have large violations of this assumption), and further
assumes that purchases are independent across categories (thus ignoring budget con-
straints, which we argue are less likely to bind at the level of an individual shopping
trip). From a machine learning perspective, we extend matrix factorization techniques
developed by Gopalan et al. (2013) to focus on the case of shopping, which requires
incorporating time-varying prices and demand shifts as well as an appropriate func-
tional form. We introduce “sessions”, where prices and the availability of products
are constant within a session; but these elements may change across sessions. It is
common in stores for products to go in and out of stock, or to be promoted in var-
ious ways; accounting for these factors is helpful in allowing the model to estimate
the parameters that are most useful for counterfactual inference. Finally, relative to
the machine learning approach, we tune our model hyperparameters on the basis of
performance on counterfactual estimates, and we show that this makes a difference
relative to focusing on the typical machine learning objective, prediction quality. We
are able to do this because our data contains a large number of distinct price changes
and examples of products going out of stock, and thus we can hold out data related
to some of these changes and evaluate performance of the model in predicting the
impact of those changes.

The primitives of our model include the latent characteristics of products (a vec-
tor, whose dimension is tuned in the process of estimation on the basis of goodness
of fit), as well as each consumer’s latent preferences for each dimension. These latent
characteristics and preferences are constant over time. In addition, we do not assume

3In the sample we use in our empirical exercise, among the top 123 categories the average category is only
purchased on 3.7% of shopping trips. Only milk, lunch bread, and tomatoes are purchased on more than
15% of trips. Things are even sparser at the individual UPC level. The average purchase rate is 0.36% and
only one, avocados, is purchased in more than 2% of the trips in our Tuesday-Wednesday sample.
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that the consumer’s price sensitivity is constant across products; instead, each prod-
uct has a vector of latent characteristics that relate to consumers’ price sensitivity
toward the product, and each consumer’s price sensitivity is the inner product of a
consumer-specific latent vector and the product’s latent characteristics that relate to
price sensitivity. Thus, both the mean utility and the price sensitivity are allowed to
flexibly vary across consumers and products.4 In addition, the model includes con-
trols for week-specific demand for product categories. We use a Bayesian approach,
so our model produces a posterior distribution over each latent factor.

We apply our model to data from a single supermarket over a period of 23 months,
where we observe the same consumers shopping over time. The data originate from
shopper loyalty cards. Unlike many panels collected by third parties, the data is avail-
able at the level of the trip rather than aggregated to the weekly level, and we see
shopping at a high enough frequency to identify the timing of price changes and
stock-outs. In particular, we observe many weeks where prices change at midnight on
Tuesday night; and otherwise, behavior is very similar between Tuesday and Wednes-
day. This allows us to identify the effects of price changes and be able to make
counterfactual predictions. We conduct a variety of tests that assess our identification
strategy, and in a departure from the machine learning literature on which we build,
we evaluate model fit on the basis of the model’s ability to predict how behavior
changes when prices change. We compare our model to a variety of commonly-used
category-by-category models, including nested logit and mixed logit, showing that
our model performs better both in terms of overall ability to fit on a representative
test set, but also in terms of the model’s ability to predict responses to price changes.
We examine both own-price and cross-price effects. We also examine whether the
heterogeneity incorporated in our model is spurious or predictive by showing that
our model tends to produce more heterogeneity across groups in terms of own-price
and cross-price elasticities, and using held-out data, we show that this heterogeneity
predicts heterogeneity in consumer response to price changes. We also show that our
model has key advantages in terms of being able to predict the behavior of consumers
who have rarely or never purchased in the training data.

2 Related work

In the traditional discrete choice literature, it has become common to include many
latent variables describing user preferences; for example, in a mixed logit model, it
is common to include a user-item random effect, as well as individual-specific pref-
erence parameters for price and other observed item attributes (e.g. Berry et al. 2004,
Train 2009). However, it is less common to model latent item attributes, other than
perhaps a single dimension (quality). There are, however, several lines of work that

4We also ran alternative specifications with the per consumer price coefficients restricted to be the same
across all products, however this lead to a substantial reduction along both the predictive and counterfactual
fit measures of performance.
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estimate richer models that incorporate latent user characteristics, exploiting panel
data.5

An early example is the “market mapping” literature, where each product is
described as a vector of latent attributes. A market map can be used for a variety of
exercises; for example, one can consider the entry of a new product into a position
in the product space and forecast which consumers are likely to buy it. Empirical
applications have also typically focused on a single category, such as laundry deter-
gent (Elrod and Keane (1995) and Chintagunta (1994)).6 Outside of shopping, there
are several other social science applications making use of panel data to estimate
latent item attributes and individual preferences. Goettler and Shachar (2001) study
television viewing for a panel of users, and attempt to estimate latent attributes of
television shows based on this panel. Another application area is political science,
where panel data on legislators’ voting decisions is used to uncover their preferences
and the latent characteristics of legislation. Poole and Rosenthal (1985) use a trans-
formed logit model to estimate both the locations of legislators’ ideal points and the
locations of legislative bills in a unidimensional attribute space.

There has been some progress on estimating multiple-discrete choice models in
which consumers choose more than one of a single item (e.g. Dubé 2004, Hen-
del 1999, Kim et al. 2002), however a substantial portion of the literature continues
to focus on categories in which the unit-demand assumption plausibly holds.

Despite the extensive literature making use of consumer panel data, very little
literature in economics and marketing attempts to consider multiple categories simul-
taneously. A few papers study demand for bundles of products, where the products
may be substitutes or complements, and where the models attempt to estimate the
nature of interaction effects. These models are limited by the curse of dimensionality
and generally have difficulty incorporating more than two or three categories (e.g.
Athey and Stern (1998); see Berry et al. (2014) for a review). The only paper we are
aware of that estimates interaction effects across many categories is Ruiz et al. (2020)
which uses a similar approach to this paper, but focuses on estimating interactions
rather than exploiting available information about the category structure. We discuss
this in more detail below.

Our model focuses on sharing information about consumer preferences for item
attributes across categories where consumer preferences are additively separable
across categories. Our model differs from the past literature in social sciences in
the techniques used and in the scale and complexity of the model. In order to flex-
ibly estimate consumer heterogeneity across multiple product categories, this paper
builds on the Bayesian Hierarchical Poisson Factorization (HPF) model proposed in
Gopalan et al. (2013). The HPF model predicts the preferences each user (decision

5In data from a single cross-section of consumers, Athey and Imbens (2007) show that only a single latent
variable can be identified (or two if utility is restricted to be monotone in each) without functional form
restrictions, arguing that panel data is critical to uncover common latent characteristics of products.
6Elrod and Keane use a factor analytic probit model with normally distributed preferences, whereas Chin-
tagunta uses a logit model with discrete segments of consumer types. Elrod (1988a, b) use logit models to
estimate up to two latent attributes and the distribution of consumer preferences. The former study uses a
linear utility specification, and the latter uses an ideal-point model.
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maker) has for each item (product) based on a sum of the product of a latent vector
of item characteristics and a latent vector of consumer preferences for each of those
item characteristics.7

Gopalan et al. (2013) demonstrate that the HPF model can make accurate predic-
tions8 across a wide variety of contexts, including Netflix movies, New York Times
articles, and scientific articles in a researcher’s Mendeley account. Despite the rep-
utation that Bayesian methods have for being slow computationally, this model is
scalable across large data set sizes9 due to its use of mean-field variational inference
to approximate the computationally intractable exact posterior.

The HPF model is related to the extensive recommender systems literature that
uses matrix-factorization-based techniques to predict what items (movies, links, arti-
cles, search results, etc.) a user will enjoy based on their previous choice behavior
(Koren et al., 2009; Bobadilla et al., 2013). A core insight of this literature is that it is
often very effective to predict a user’s interests based on the preferences of other users
who have similar tastes. These approaches try to find a lower dimensional approxi-
mation of the full matrix of user and item preferences.10 The resulting factorization
often is able to make accurate predictions and can also provide an interpretable
representation of the user preferences in the data.

In our empirical exercise, using data from a supermarket loyalty program, we
show that simultaneously modeling consumers’ decisions across multiple product
categories helps improve our ability to characterize individual level preferences rel-
ative to estimating preferences in each category independently. This has similarities
to the growing area of transfer learning in machine learning (Pan & Yang, 2010;
Oquab et al., 2014) in which training a model on one domain (e.g. one for which
large amounts of data are available) can help improve the model’s ability to make
predictions in a different domain (potentially one for which less data is available).
This insight may have applications in other economics and marketing contexts, for
example, data on consumers’ purchasing decisions in one domain in which purchases
are frequent (grocery stores) may be able to improve our ability to estimate consumer
demand in a seemingly unrelated domain in which purchases are much less frequent
(cars).

Some researchers have begun using latent-factorization-based approaches in the
context of customer purchasing habits in grocery and retail. Jacobs et al. (2016)

7This approach has similarities to the econometrics literature on “interactive fixed effects models”
although that literature has focused primarily on decomposing common trends across individuals over
time rather than identifying common preferences for products across individuals (Moon & Weidner, 2015;
Moon et al., 2014; Bai, 2009)
8As is standard in the machine learning literature, the accuracy is estimated on a “held out” or “test” data
set that is not used during the training of the model. This is a more accurate way to evaluate how well a
model will be able to make predictions on new data that has not yet been observed.
9For example, when trained on Netflix data with 480,000 users, 17,700 movies, and 100 million
observations, they report the model took 13 hours to converge on a single CPU.
10The matrix has one row for each user and one column for each item. The i, j entry corresponds to how
much user i “likes” item j . We often only observe some of the entries of this large matrix, and would like
to make predictions for the unobserved entries. e.g. predict how much a user will like a movie that they
haven’t watched or rated yet.
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extend a widely-used approach known as latent Dirichlet allocation (LDA) towards
the task of predicting consumer purchases in online markets with large product
assortments. More recently, Jacobs et al. (2021) further extended their approach to
model a customer’s purchasing intents across multiple shopping trips and allow a cus-
tomer to have multiple distinct motivations within the latent factorization. Wan et al.
(2017) propose an alternative model for consumer grocery demand estimation which
uses a latent factorization model with three stages. In the first stage, the consumer
makes a binary choice for each category about whether or not to purchase something
from the category. Next, the consumer makes a multinomial choice of which item
from the category to purchase. Finally, the consumer makes a choice of how many
of this item to purchase, drawn from a Poisson distribution. Latent factorization is
carried out independently for each stage as regularized maximum likelihood estima-
tion. Ruiz et al. (2020) use a model closely related to ours and the same grocery
purchase data with a focus on heuristically identifying which products are likely to
be substitutes or complements to each other.

In comparison to these papers, this paper differs in its focus on designing a model
able to accurately make counterfactual predictions about how customers will respond
if prices were changed or the set of available products were different, for exam-
ple, due to a product being out-of-stock. This goal motivates our introduction of
two-stage nesting structure inspired by nested logistic regression, which allows the
model to capture more realistic patterns of substitution between products. This paper
also systematically evaluates the assumptions required to identify price elasticities,
and conducts a comparison of alternative category-by-category demand models. In
Section 6, we discuss in more detail the variety of approaches we use to evaluate
the models. In particular, we show several ways to go beyond the focus on predic-
tive fit in held-out data that is common in the machine learning literature. These
approaches include evaluating our predictions across large numbers of what we call
mini quasi-experiments, subsets of the held-out data that approximate the variation
we would like to make counterfactual predictions about. In our application, we focus
on pairs of sequential days in which either a product changes price or the set of
available products changes due to a stock out, and evaluate the ability of models to
predict the changes in individual-level and aggregate demand. We also evaluate the
ability of each model to capture “intuitive priors”, beliefs that we expect to hold in a
well-functioning model. For example, we look at whether the models predict higher
cross-price elasticities between products that are more similar along characteristics
that were not used while training the models. Finally, we contrast two approaches
for evaluating the business impact of marketing decisions that could be powered by
the model predictions. The first approach, which is common in the economics and
marketing literature, is to use a model to predict impact of an alternative treatment
policy, for example an allocation of coupons to a particular subset of customers. The
impact of the new policy is estimated by treating the model’s fitted data generating
process as ground truth. This approach can be useful for comparing the performance
of different treatment policies, as shown in the seminal paper on the value of pur-
chase history data in target marketing by Rossi et al. (1996). However treating a
model’s predictions as ground truth can overestimate the true impact, especially if
one does not properly account for the uncertainty in the fitted data generating process.
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This over-confidence can be especially significant when using models that allow rich
individual-level heterogeneity such as ours. An alternative approach is to evaluate
and compare different pricing policies directly in the held-out data in a model-free
way inspired by the policy learning literature (Dudik et al., 2011; Zhou et al., 2018).
We demonstrate this approach by selecting the two most common prices for each
product in the data and using the model to assign each user to the price that is pre-
dicted to lead to higher profits. We can then evaluate in the held-out shopping trips
whether we do in fact earn higher profits per trip when customers shop on days with
their assigned price.

3 Themodel

3.1 Random utility models and independence of irrelevant alternatives

In this section, we introduce the canonical random utility model (RUM). Consider
shopper i on a shopping trip at time t . In each product category, c = 1 . . . C

(e.g. bananas, laundry detergent, yogurt), there are j = 1 . . . Jc products to choose
between. Within each category, the shopper has unit demand and will purchase at
most one item. To simplify the model, we assume that the product categories are
disjoint and that there is no substitution or complementarity between products in sep-
arate categories.11 The shopper purchases the item that provides her with the highest
utility among the options in the category.

Uijt = uijt + εij t

yij t = 1 if j = argmax
k∈1...Jc

Uikt

If we assume that the εij t are drawn i.i.d. from an extreme value type 1
distribution,12 then

P
(
yijt = 1

) = exp(uij t )
∑Jc

j ′=1 exp(uij ′t )
(1)

The ratio of purchase probabilities between any two items j and j ′ in the same
category depend only on the ratio of their u values.

P(yijt = 1)

P (yij ′t = 1)
= exp(uij t )

exp(uij ′t )
(2)

11See Ruiz et al. (2020) for a related paper that uses a heuristic approach to identify potential substitutes
and complements automatically based on patterns of co-purchase.
12Also known as the Gumbel distribution.
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Similarly if we consider some subset of the products in a category Sc ⊂ Jc,
then conditional on the purchase of an item from the subset, the relative purchase
probability for item j ∈ Sc is given by

P

⎛

⎝yijt = 1 |
∑

j ′∈Sc

yij ′t = 1,
∑

j ′ /∈Sc

yij ′t = 0

⎞

⎠ = exp(uij t )
∑Sc

j ′=1 exp(uij ′t )
(3)

This property is known as “independence of irrelevant alternatives” (IIA). IIA
imposes strong constraints on the patterns of substitution between products due to
the assumption of the independence of the error terms εij t . Suppose that product j

became unavailable or its attractiveness to the consumer decreases due to an increase
in price. Under the assumption of IIA, the resulting customer choices will be real-
located proportionally to their initial levels; there can be no differential level of
substitutability between products. How problematic this is in practice depends on
what factors are included in the model of the uijt terms. A model with no hetero-
geneity in preferences across users would be unable to capture the intuitive result
that, when one product becomes unavailable, the other products most similar to it to
gain a disproportionate fraction of the displaced purchases. Similarly, when predict-
ing the effect of changing one product’s price on the demand for other products in
the same category (the “cross-price elasticity”), the predicted effect will not depend
on the similarity of the products.

This undesirable implication can be partially mitigated by extending the model to
allow customer preferences to vary across the population, even if each individual’s
demand is still assumed to satisfy IIA. For example, suppose that some customers
like spicy salsa and other customers like mild salsa. Within each group, customer
demand satisfies IIA and they proportionally substitute between the salsas that match
their tastes. However, when we aggregate across the full population, we get the intu-
itive result that when one brand of spicy salsa goes on sale, it steals more market
share from the other spicy salsas than from the mild salsas.13 However, even with
rich heterogeneity in customer preferences, assuming IIA may still be problematic
if there are unobserved factors that cause correlations in an individual consumer’s
choice probabilities across time. For example, the weather, the contents of the house-
hold’s cupboards, or the shopper’s mood, might simultaneously affect the utilities
Uijt of multiple products at the same time.14 Allowing customers to have different
purchasing intentions on different shopping trips is one way to potentially address
this limitation (e.g. Jacobs et al. 2021).

13McFadden (1974) provides a well known thought experiment illustrating this effect in the context of
commuters choosing between driving a car, riding a red bus, or riding a blue bus. Steenburgh and Ainslie
(2013) provides further details on the degree to which allowing heterogeneity in preferences reduces (but
does not eliminate) the problems of the homogeneous logit model.
14In the context of the model, this would manifest as a correlation in the error terms εij t across products,
which the model assumes to be independent and identically distributed.
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3.2 Estimation of the RUM using nested hierarchical factorizationmodel

3.2.1 Nested factorizationmodel

The Nested Factorization model builds on the Hierarchical Poisson Factorization
(HPF) model proposed by Gopalan et al. (2013), adding a number of additional fea-
tures important for capturing shopping behavior. It also extends the Time Travel
Factorization Model (TTFM) introduced in Athey et al. (2018). The TTFM model
predicts the choice of where to go to lunch, treating all restaurants as single large
category that a person is choosing from, rather than modeling preferences across mul-
tiple independent categories as we do here. A second important difference is that the
TTFM model predicted choice of restaurant conditional on the choice to go out to
eat, whereas in this paper, we wish to predict the unconditional purchase probabili-
ties for each product.15 That is, we predict both whether or not the shopper will make
a purchase from each product category and if so, which product she will choose.
This is critical for making pricing decisions, since changes to prices may affect not
only which product a customer chooses within a category, but also whether or not the
customer buys anything at all.

Suppose we treated buying nothing from a category, the “outside good”, as one
more option for the customer to choose from.16 This, however, makes the assump-
tion of IIA problematic, because the purchase rates for most product categories in a
grocery store are less than 5%. If consumer purchases nothing from a category on
95% of trips, then assuming IIA implies that if a product is out-of-stock, or its price
is increased, this change will almost never cause a consumer to purchase a differ-
ent product from the same category. Instead, most customers will switch to buying
nothing from the category, since that is the most common choice for most customers
on most trips. Under this assumption, because shampoo is purchased relatively infre-
quently, a price increase for one brand of shampoo will mostly cause consumers to
buy no shampoo at all, with very few consumers substituting to different choice of
shampoo.

To address this concern, we introduce a structure similar to a nested logistic regres-
sion. This gives the model flexibility to fit the degree to which consumers substitute
between different products within a product category rather than deciding to pur-
chase nothing instead. In this particular application, we use a simple nesting structure
with all of the products in a category in one nest and then a second nest with the
outside good for the category. However, a similar approach could be used to allow
for other more complex nesting structures, since it can be implemented via repeated
runs of the same code used in the TTFM model. First, a model is trained to predict
each customer’s choice of product conditional on the purchase of something from

15However these predictions are still conditioned on the shopper’s decision to visit the store, which we
treat as exogenous.
16i.e. we add an additional Ui0t = εi0t to each category, representing the decision to buy nothing from
the category. Now the set of options for the consumer are mutually exclusive, and collectively exhaustive.
On each shopping trip, for every category, a shopper either chooses something from the category or they
choose the outside good.
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the product’s category. The results of this model are aggregated to calculate a user-
category specific “inclusive value” term, which is used as an input into a second run
that predicts from which categories each user will make purchases. With a more com-
plex nesting structure, a similar process could be repeated in a bottoms up fashion,
with a separate run of the model for each nest, the outputs of which can be aggregated
up to use as inputs for the nests above it. While this multistage process is statistically
inefficient relative to simultaneous estimation of the full model, it does substantially
reduce the complexity and custom coding required for the computationally intensive
portion of the estimation.17

3.2.2 Product choice

To estimate the Nested Factorization model, we first train a model to predict the con-
sumer’s choice of which products they would purchase conditional on the decision to
purchase one item from the corresponding product category. For example, if the con-
sumer has decided to purchase yogurt—which brand, flavor, and size of yogurt will
she select. The mapping from utility values to conditional choice probabilities fol-
lows the standard multinomial logit form that arises from assuming a extreme value
type 1 distribution for εij t . Our model of product choice differs from the standard
multinomial logit in that it allows for rich heterogeneity in preferences and price
responsiveness across consumers and across items.

Similar to the HPF model from Gopalan et al. (2013), the Nested Factorization
model incorporates latent item characteristics (βjk) as well as latent user preferences
for the latent item characteristics (θik). The Nested Factorization model extends that
model by incorporating consumer and item level covariates, as well as allowing time
varying characteristics such as price or product availability (e.g. a product being
out-of-stock). These extensions allow for predictions at the level of individual shop-
ping trips and for predictions of the patterns of substitution between similar products
caused by price changes and changes to product availability. We assume consumers
have latent preferences for observable item characteristics (σik), while observable
user characteristics affect user preferences differentially for each product (ρjk). We
allow for heterogeneity in price elasticities across users and items that depends on
latent item characteristics (λj ) and latent user characteristics (γi). In addition, we
allow for certain items to be out-of-stock or unavailable on a particular shopping trip
(ajt = 0 if the item is out-of-stock, while ajt = 1 otherwise).

uijt = θT
i βj︸ ︷︷ ︸

Latent - Latent
Intercept

+ WT
i ρj︸ ︷︷ ︸

User Observables

+ σT
i Xj︸ ︷︷ ︸

Item Observables

− γ T
i λj pricej t︸ ︷︷ ︸
Latent - Latent

Price Sensitivity

(4)

Uijt = uijt + εij t (5)

P

⎛

⎝yijt = 1 |
Jc∑

j=1

yijt = 1

⎞

⎠ = ajt exp(uij t )
∑Jc

k=1 ajt exp(uikt )
(6)

17Train (2009) Section 4.2.4 provides a nice overview of the sequential estimation approach in the context
of the traditional nested logit model.
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3.2.3 Category choice

We model the consumer’s choice of whether or not to purchase something from each
category of goods as a series of independent binary choices. The choice to purchase
from a category is assumed to depend on the utility values of items in the category,
through their “inclusive value” IVict , which is the expectation (over the realiza-
tions of the εij t ) of the maximum of the utilities of all the available products in the
category.18

IVict ≡ E

[
max

j=1...Jc

Uijt

]
= log

Jc∑

j=1

ajt exp uijt (7)

uict = ϑT
i βc︸ ︷︷ ︸

Latent - Latent
Intercept

+ WT
i ρc︸ ︷︷ ︸

User Obs.

+ ψT
i Xc︸ ︷︷ ︸

Category Obs.

− φT
i λcIVict︸ ︷︷ ︸

Latent - Latent
Inclusive Value

+ μcδt︸︷︷︸
Week Trends

+ wct︸︷︷︸
Day of Week

(8)

Uict = uijt + εict

P (yict = 1) = exp(uict )

1 + exp(uict )
(9)

The first three terms of Eq. 8 capture the user’s general propensity to purchase
from this category, which is not affected by the utilities of any of the products in
the category. The fourth term captures the impact of the inclusive value on the user’s
choice. The fifth and sixth terms control for time trends that affect the popularity of
product categories. This helps control for product categories that are systematically
more popular at certain times of year or different days of the week. The two latent fac-
torization terms allow for rich flexibility in capturing the correlations in preferences
across users.

One interpretation of this model, is that the customer decision of whether or not to
purchase from a category depends in part on her expectation of the utility she will get
from choosing the product that maximizes her utility. In this interpretation, the φT

i λc

coefficients modulate how much the consumer’s choice to buy from the category
is affected by her expectation of utility she would get from picking an item in the
category. If φT

i λc = 1, then model simplifies to a non-nested logit—IIA holds across
all nests. If φT

i λc = 0, then model implies no substitution between items in different
nests—no price change within the product nest would ever change your decision of
whether or not to buy from the category.

An alternative interpretation of the model frames the nesting structure as capturing
the correlation in the error terms εij t of items that are in the same nest. In the context
of the two group nested structure used in this paper, this correlation might reflect

18If the ε are a standard Extreme Value Type 1 distribution, then there will be an extra term γ = mean(ε) ≈
0.577 added which in practice does not matter since it can be absorbed into the constant term. Alterna-
tively we can define ε = EV 1(−γ, 1) to get rid of the extra term without affecting any of the choice
probabilities.
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the consumer’s current need for products from this category, which depends on how
much of the product he has at home and what he is planning on cooking for the week.

3.2.4 Estimation with variational bayes and stochastic gradient descent

To estimate the Nested Factorization model, we build on the approach described in
Ruiz et al. (2020) and Athey et al. (2018) to fit a hierarchical Bayesian model to the
structure described in Section 3.2.1. We fit this model as a two step process using the
same variational inference code for each step.

In the first step, we estimate the posterior distribution for the latent parameters
�p = {θi, βj , ρj , σi, γi, λj } that govern each customers conditional purchase prob-
abilities for the products within each product category. Conditional on purchasing
something from a product category, the model predicts the choice probabilities for
each product within the category. In each shopping trip, only the categories that a
user makes a purchase from are included in the likelihood. We denote the product
purchase outcomes y = {yijt } and the observed data X which includes user charac-
teristics, item characteristics, prices, availability, and user shopping dates. We would
like to learn the posterior distribution of the latent parameters � across all of the
customers, products, and time periods.

p(� | y, x) = p(�)
∏

t p(yij t | �, xij t )

p(y | x)

As is common in many Bayesian models, the exact posterior distribution over the
latent variables is computationally intractable. We instead approximate the poste-
rior distribution using variational inference, which is typically faster on large scale
Bayesian problems than classical methods such as Markov Monte Carlo sampling
(Blei et al., 2017). In variational inference, we select a flexible parameterized fam-
ily of distributions q (�; ν) over the latent variables of the model � and then find the
value of ν that makes q (�; ν) “close” to the exact posterior in terms of Kullback-
Leibler divergence.19 In our application, we use a common approach of selecting a
mean-field family for the variational distribution, in which the latent variables are
mutually independent and each is distributed according to a normal distribution with
its own variational parameters for mean and variance. Minimizing the KL divergence
over that possible values of the variational parameters ν is equivalent to maximizing
what is called the evidence lower bound (ELBO):

L (ν) = Eq(�;ν)

[
log p(y | x, �) − log q(�; ν)

]
(10)

Although the expectations that form the ELBO are intractable, we can still seek to
maximize it by noticing that the gradient of the ELBO ∇νL (ν) can through clever
rearrangement be rewritten as the expectation of a tractable formula.20 This means

19KL divergence is similar to a distance function in that it is non-negative and KL(P || Q) = 0 iff P = Q

almost everywhere. It is not a true distance function, however, because it is not symmetric KL(Q || P) �=
KL(P || Q) and does not satisfy the triangle inequality.
20See Appendix B for more details and Athey et al. (2018), Blei et al. (2017), Ruiz et al. (2020) for
additional exposition.
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we can use Monte Carlo estimation of the gradient in order to produce noisy-but-
unbiased estimates of the gradient. We can then use stochastic gradient descent to
find the variational parameters that maximize the ELBO by repeatedly taking small
steps in the direction of these gradient estimates.

The result of this process is an approximation to the posterior distribution of the
latent variables. We can then use this posterior to obtain a distribution over uijt for
every user, product, and shopping trip (including for products in categories a user did
not make any purchases from). We use the means of these estimates to calculate the
inclusive value term for each user and category as in Eq. 7.21

We can then repeat the same variational inference process at the category level.
In this stage, each user makes the choice for each category of whether or not to
buy something from the category. In place of the price term from the first stage, we
instead use the predicted inclusive value term IVict = log

∑
j exp uijt . For this stage

the latent parameters are �c = {ϑi, βc, ρc, ψi, φi, λc, μc, δt , wct }
In order to reuse the variational inference code from the product level model, we

fit the category choice model as if there were two products for each category: the
“inside good” with IV calculated based on the products in the category, and “outside
good” with IV = 0. We then can transform the estimated parameters by subtracting
the outside good’s parameters from both, to be equivalent with a model with the
utility of the outside good equal to 0.

In order to make unconditional probabilities of purchase probabilities for each
user, product, and trip, we combine the predictions from the two models.

P(choose j) = P(buy from category) · P(choose j | buy from category)

4 Supermarket application

4.1 Data

We apply the Nested Factorization model to scanner panel data from one store in a
large national grocery store chain, using a data set originally assembled by Che et al.
(2012). The data is available to researchers at Stanford and Berkeley by application.
This store is located in an isolated mountain region and has no other large grocery
competitors within a 5 mile radius. For each transaction that a loyalty-card household
makes between May 2005 and March 2007, we observe the price and quantity of
each product purchased. In addition we incorporate several household demographic
variables that the store has compiled from a variety of sources, including estimated
age, gender, income, and household size (there are additional demographics in our
data set but we restricted attention to a subset). We restrict our analysis to a sample

21A downside of this two-step approach is that we are not able to take into account the full estimated
distributions of the latent variables from the product-level model when estimating the second category-
level model
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Fig. 1 Household Summary Statistics: Tuesday and Wednesday Only

of 2068 households who make between 20 and 300 shopping trips. These households
collectively make 1,551,213 purchases during 333,585 shopping trips.22 Of these,
455,445 purchases and 100,504 trips occur on a Tuesday or Wednesday. We use only
the data from Tuesday and Wednesday and exclude weeks with major US holidays23

in our estimation approach due to concerns about the potential for price endogeneity
as discussed in Section 5.

The data includes a product hierarchy for each product, with the smallest unit of
analysis (the unit at which prices are set) being the universal product code (UPC).
From examining the data, it is not a priori perfectly clear which level of the hierar-
chy best matches our desiderata for a “category,” which would be for the consumers
to buy at most one item from each category, while purchasing decisions are not cor-
related across separate categories.24 To ensure a good match between the model and
the application, we use the “category” level of the UPC hierarchy, and we focus on
categories and items that pass certain filters, reducing the number of product cate-
gories from 235 to 123. Across these categories, a total of 1263 UPCs are included
in the sample. The filters are reviewed in Appendix A, but important restrictions
include eliminating highly seasonal categories, as well as categories without suffi-
cient price variation, or where within-category price changes are highly correlated
across products.

Figure 1 illustrates summary statistics on household shopping frequency and
basket size in our restricted data set.

22We define a shopping trip as a set of all purchases a household makes on a calendar day.
23We exclude data from the week prior to Halloween, Thanksgiving, Christmas, 4th of July, and Labor
Day.
24At higher levels of aggregation, it was much more common to see multiple purchases in the same group-
ing on a single trip. At lower levels of aggregation, many categories were split into classes that contained
products that seemed likely to be substitutes. For example, the category Apples is split into classes such
as Fuji and Gala apples. Sharp Cheddar is in a separate class (but same category) as Mild Cheddar.
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4.2 Models

4.2.1 Nested factorization

Our primary model is the Nested Factorization model, as outlined in Section 3.2.1.
The key hyperparameters of the model are the dimensionality of the latent factor-
izations of the user preferences and elasticities. Allowing for a higher dimensional
factorization allows for more flexibility in the shopping patterns the model is able
to fit, at the expense of slower estimation speeds and larger potential for overfit-
ting the data. In order to choose the values for these hyperparameters, we follow
the standard practice in the computer science literature of selecting based on per-
formance on a “validation” subset of the data that is distinct from the subset used
to train the models (and distinct from the “test” subset that is “held out” and not
used until the final comparison between models). We discuss the model selection
criteria in more depth in Section 6. We compare the performance of the Nested Fac-
torization model against several alternative approaches described in the following
sections.

4.2.2 Multinomial logit

The simplest and most commonly used discrete choice model is the multinomial logit
(Train, 2016), which has a long history in economics tracing back to Luce (1959) and
McFadden (1974).

We focus on a baseline specification that controls for household demographics
(gender, age, marital status, and income25) and include the weekly mean category
purchase rates as pseudo-fixed effects for each calendar week, which helps control for
seasonal trends that shift the demand for the product category and which may be cor-
related with the product prices. We have also tried alternative specifications that add
behavioral controls based on splitting the population into 20% buckets based on total
spending in the store and a model without demographic controls, all of which had
similar predictive performance. Because of its poor predictive performance across all
of the measures we focus on in this paper, we have omitted the multinomial logit
results from some of the results charts and tables, when the additional entries detract
from clarity.

Homogeneous with Demographic Controls:26

Uijt = αj + η log pjt + βjDi + weekt + weekdayt + εij t

25We divide age into buckets {Under 45, 45–55, Over 55}. We split income at $100k, which is roughly the
median for this store.
26In this model and all of the subsequent variations, “outside good” (the choice to not buy anything in the
category, is assumed to take the form Ui0t = εij t .
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4.2.3 Mixed logit

The mixed, or random coefficients, logit is one approach for increasing the flexibility
of the multinomial logit. By allowing the coefficients of the model to vary across
the population, the mixed logit allows for correlation in unobserved factors over time
and for more flexible patterns of substitution between products. McFadden and Train
(2000) show that any choice probabilities derived from random utility maximization
can be approximated arbitrarily well by a appropriately chosen mixed logit model.
As Steenburgh and Ainslie (2013) point out, the mixed logit still constrains demand
at the individual level to satisfy IIA, so it “improves upon, but does not completely
solve the problems of the homogeneous logit model”.

Mixed with Demographic Controls and Random Price:

Uijt = αj + ηi log pjt + βjDi + weekt + weekdayt + εij t

Mixed with Random Intercept and Price:

Uijt = αij + ηi log pjt + weekt + weekdayt + εij t

With sufficiently flexible distributional assumptions for the random coefficients
αij , a mixed logit model could have a similar degree of flexibility as the latent fac-
torization based approach that we use in the Nested Factorization model.27 However,
scaling such an approach can be computationally challenging, especially when the
number of products is large. We estimate mixed logit models using the Stata imple-
mentation from Hole (2007), which allows each of the product intercepts αij to be
distributed across households as independent normal distributions.

4.2.4 Nested logit

Another method for relaxing the homogeneous logit model to allow for more flexible
patterns of substitution is the nested logit model. In the nested logit model, the deci-
sions a user faces are partitioned into “nests.” One interpretation of the nested logit
structure is that a user first chooses which nest to purchase from, and then which
product to choose from within the nest. An alternative interpretation frames the nest-
ing structure as capturing common shocks that lead to correlation among the choice
probabilities of products in the same nest. Within each nest, the choices satisfy the
IIA substitution pattern, but the substitution between products in different nests is
able to vary more flexibly. We choose the same simple nesting structure as was used
in the NF model. We put the outside good in its own nest, and the remaining prod-
ucts in each category in a single shared nest. An additional term called the nesting
coefficient or inclusive value term controls how the decision of which nest to choose
depends on the utilities of the items within the nest. This nesting coefficient is analo-
gous to the γ T

i λc term in the Nested Factorization (Eq. 8) with the restriction that the
value be homogeneous across households. Within the product nest, choice follows

27For a closer match to the Nested Factorization model, one could use a random coefficients nested logit
model with product-specific random coefficients on the price in addition to the product intercepts.
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the same functional form as used in the homogeneous logit model with demographic
controls. In essence, the Nested Factorization can be thought of as an extension to
a nested logit that allows for rich heterogeneity in consumer preferences and price
sensitivities by means of a latent factorization approach.

Nested with Demographics:

Uijt = αj + η log pjt + βjDi + εij t

4.2.5 Discrete choice models with HPF controls

One disadvantage of the Nested Factorization functional form relative to the HPF
form used in Gopalan et al. (2013) is that it leads to substantially slower estimation
of the approximate posterior. The choice of functional form and priors in the original
HPF form allows for a closed form for the gradient of the variational Bayes objective
function. With the Nested Factorization model, we have to perform stochastic gradi-
ent descent using a noisy estimate of the gradient. In practice this leads the model to
require substantially more time and iterations before convergence.

This motivates an alternative approach that approximates the full Nested Factor-
ization model with a two step approach. Estimate each shopper’s preferences over
items using the HPF model.28 Then, take the estimated utility values for each shopper
and item and plug these values in as covariates into standard discrete choice models.
This “HPF controls” approach can be thought of as an approximation to the gener-
ally infeasible approach of having separate fixed effects for each household item pair
(i.e. N × J separate parameters).

Hierarchical Poisson Factorization (HPF):29

yijt ∼ Poisson(μij )

μij = θT
i βj︸ ︷︷ ︸

Latent - Latent

+ WT
i ρj︸ ︷︷ ︸

User Observables

+ σT
i Xj︸ ︷︷ ︸

Item Observables

This model predicts user i will purchase item j at a mean rate of μij , so we
can analogize it to a discrete choice model within a category with utility taking the
form uijt = log(μijt ) + εij t , which will generate approximately the same choice
probabilities for each item in the category c.30

28We extent the model proposed by Gopalan et al. (2013) to allow for each customer to face multiple
independent choice occasions, one for each trip they make to the store. This extension also allows for
time varying characteristics such as changes to prices and product availability. However for the application
presented here, we do not include prices within the HPF model, since these outputs are used to plug into
models that separately control for prices.
29Our extension of the original HPF model allows for observed user and item characteristics (including
time varying characteristics), however on this dataset we found little or no improvement for out of sample
predictive fit relative to a purely latent factorization.
30With the appropriate choice of utility for the outside good ui0 = log

(
1 − ∑

k∈Jc
μik

)
, so that P(yijt =

1) = exp uijt

exp ui0t +∑
k∈Jc

exp uikt
≈ μijt This approximation works best when

∑
k∈Jc

μik 
 1, which is gen-

erally true in our supermarket application, but may be less appropriate in other contexts where purchase
probabilities are larger.
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This two step procedure may also prove helpful in contexts where it is important to
incorporate additional complications that are difficult to directly embed into the full
NF Bayesian model. For example, it may be effective to include these HPF controls
into models of dynamic discrete choice such as those that arise from storable goods
(Hendel & Nevo, 2006) or from consumer learning (Ackerberg, 2003) as a simple
way to allow richer heterogeneity in consumer preferences (at the cost of lower sta-
tistical efficiency and potentially bias from estimating as a two step procedure rather
than simultaneously).

This approach may also add value by allowing researchers to take advantage of
data that might otherwise go unused. Often researchers have access to a broader
set of data than the sample they focus on for their primary analysis. This might be
done in order to take advantage of a subset of the data which was affected by some
source of quasi-experimental variation or may be due to other desirable properties of
a particular subset of users or products. Latent factorization approaches, such as HPF,
may be able to extract useful signal from the broader set of data, which can then be
applied to improve the precision or flexibility of the primary analysis that focuses on
a specific subsample of the data.

5 Identification and placebo tests

In our data, almost all price changes occur on Tuesday nights, near midnight,
when very few customers are shopping. Thus, we can think of the price change as
separating Tuesday and Wednesday.

This motivates an empirical specification in which we use only the data from Tues-
day and Wednesday in order to focus narrowly to the days immediately before and
after price changes. We then include controls at the category level for each week and
a indicator variable for Wednesday. The “identifying assumption” for learning price
elasticities from this specification is that any differences in a particular consumer’s
preferences for items between Tuesday and Wednesday are constant across weeks;
in other words, weeks may differ from one another, but the Tuesday to Wednesday
trend is constant over time. We also exclude the data from weeks immediately prior
to major US Holidays out of a concern that this assumption is less likely to hold in
these weeks e.g. the difference between the shopping patterns on the Tuesday and
Wednesday before Thanksgiving may systematically differ from pattern that holds
during more typical weeks. We find in our analysis that the Wednesday effect is small,
with the average difference in category purchase probabilities between Tuesday and
Wednesday of 0.127% (a 3.5% relative change in purchase probability).

In order to assess the validity of our assumptions, we present some supplementary
analysis in the spirit of the literature on treatment effects (Athey & Imbens, 2017).
In particular, we test for the presence of certain types of price endogeneity by taking
the price coefficients we get from the actual price data and comparing to the price
coefficients we would get from a model fit on a data with the prices shifted forwards
or backwards across time. We do this in two ways, first by shifting the price of a
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Fig. 2 Comparison of price coefficients and p-values with actual price series vs. with prices shifted
forwards or backwards

single UPC in each category (and giving that UPC a separate price coefficient), and
second by simultaneously shifting the prices of all items in the category. To create the
forward shifted price series for a product, we move each week with a price change
forward to the first week that had no price changes in the real data.31 We repeat this
process for each of the 123 product categories and plot the resulting distribution of
price coefficients and p-values for the price coefficients. The desired result is that the
shifted price series result in an approximately uniform distribution of p-values, since
the artificial price changes should have no effect on consumer purchase behavior.
The following results are based on the basic multinomial logit specification (with the
pseudo week effects, which are calculated as the category level mean purchase rate
in the week).32

Out of the 123 categories, 13 fail one of the four placebo tests at the 1% level.
If we only considered unconfoundedness checks that shift prices backwards, only 4
categories fail one of the two backward shifting tests. Backwards shifts would fail in
the presence of consumers who are aware of future price changes. Forward shifts can
fail for goods for which stockpiling is possible. Some of the categories that fail with
the forward shifted price are durable/storable (e.g. Baking Mixes, Ketchup, and Bag
Frozen Vegetables), but other categories seem more likely be failing for other reasons
(e.g. Refrigerated Turkey and Tomatoes) (Fig. 2).

31Thus in the shifted data all price changes occur on weeks without price changes in the real data and all
weeks with price changes in the real data have no price changes in the shifted data. A naive shift of all
prices by exactly 1 week fails to break the correlation between the price changes in the shifted and real
price data, due to the frequency of week-long temporary price changes.
32We focus on the basic multinomial logit specification due to it’s computational speed and relative sim-
plicity. Running similar tests for the other specifications including the Nested Factorization is possible in
theory, but requires a larger computational cost.

388 R. Donnelly et al.



6 Assessingmodel performance and fit

In the machine learning literature, it is typical to split data into three non-overlapping
parts: a training set, a validation set, and a test set. The training data is used to fit the
parameters of the model. To the extent the model has hyperparameters33 that must
be set prior to estimation, the model estimation can be repeated under different val-
ues of the hyperparameters. The validation set is used to select a model (i.e. to make
a choice of hyperparameters) based on each model’s predictive performance on the
validation set. Finally, the predictive performance on held-out test data is used to eval-
uate the performance of the chosen model. Under the assumption that all observations
are drawn from the same data generating process, then the predictive performance
on the test set is an unbiased estimate of the model’s ability to make predictions on
new data. In Section 6.1, we compare Nested Factorization and the set of alternative
models in terms of their predictive fit on the held-out test sample of data.

However, this notion of predictive performance on held-out data does not evaluate
the ability of a model to make causal predictions of what “would” happen if we took
actions that changed the distribution of the data. For example, a model trained to pre-
dict the demand for hotel rooms, might correctly identify that hotels are often full
when prices are high and have many empty rooms when prices are low. This, how-
ever, may be due to hotels setting prices in expectation of demand, rather than because
consumers prefer to pay high prices. Such a model could be highly predictive of hotel
demand based on a randomly selected held-out test set (which is drawn from data
generated under the existing data generating process), however such a model would
perform poorly at predicting what prices a hotel ought to charge (since changing
prices will change the data generating process). It is concerns about such endogene-
ity of prices34 that motivates our identification approach that relies on focusing on
data immediately before and after price changes (Tuesdays and Wednesdays), includ-
ing weekly time controls (which can absorb any seasonal/holiday trends), including
a indicator variable for Wednesdays (to absorb any consistent differences in Tuesday
vs Wednesday demand), and excluding data from the weeks of major US Holidays.
Since all models include the weekly controls at the category level, they all have
the ability to predict average demand in a week at that level. However, in weeks
with price changes, only a model that has accurately estimated consumer preferences
about price can account for which day within the week is expected to have more
purchases.

33For example the regularization coefficient λ in a LASSO regression, or in the case of Nested
Factorization, the number of latent factors of each type to include.
34As discussed in Rossi (2014), with consumer level data, our biggest concern for the identification of
price effects, is that the store may be setting prices in response to variations in expected demand caused
by seasonal trends or advertising. For example, there is more demand for fresh berries when they are in
season or for turkeys immediately before Thanksgiving. It is not always clear which direction such price
endogeneity will bias our estimates. The retailer may decide to take advantage of high demand by raising
prices, but in other cases we see prices reduced during high demand periods e.g. bags of candy going on
sale before Halloween.
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To validate the ability to make predictions about counterfactuals, we focus on three
types of changes that can occur during a week for a particular product: (a) change
in the price of the product (b) a change in the price of a different product in the
same category and (c) another item in the category going into or out of stock. If the
identifying assumptions35 of our models hold, then we can think of each of these
events as a small sources of quasi-experimental variation. While the outcomes of

each of these quasi-experiments is likely to be noisy, we can improve the precision
of our estimates by averaging across a large number of them.

In Section 6.2, we compare the log likelihoods of the individual household level
predictions during weeks in which one of these “counterfactuals” occurs in order to
evaluate how well each model is able to make predictions that capture the change in
predicted demand before and after the change (relative to the week-level average cap-
tured by the weekly time controls). In addition, we also compare the ability of each
model to make predictions about the change in aggregate demand from Tuesday to
Wednesday during weeks in which one of these events occurs. Our test set holds out
data at the household-week level; this allows us to estimate overall consumer prefer-
ences and test our ability to predict household purchases on trips that were excluded
from the training data, and in particular in weeks where the week-category effect
estimated using other consumers’ purchases in that week is insufficient to predict the
average probability of consumers purchasing on a particular day of the week (since
prices differ across days). We use select hyperparameters (tune the model) using only
validation set data from item-weeks with price changes, and we evaluate performance
in the test set based on the three changes (a)-(c) outlined above.

In Section 6.3, we further evaluate the performance of our model at making pre-
dictions in scenarios of interest for counterfactual inference. We compare models in
terms of their ability to capture heterogeneity in preferences across the population of
households and evaluate the degree to which the predicted heterogeneity is predictive
of actual behavior in the held-out test set. For example, we compare the predictions
made for households who in the training data sample never purchased a particular
UPC or have made no purchases at all from an entire product category. Among this
group of “never buyers”, we show that the Nested Factorization model is able to cor-
rectly predict which of these households are relatively more or less likely to make a
purchase in the held-out test data.

Section 6.4 examines the estimated own-price and cross-price elasticities. Finally,
Section 6.5 looks at the potential for targeted marketing efforts that are personalized
based on the rich heterogeneity estimated by the Nested Factorization model.

6.1 Predictive fit

In Table 1, we compare the predictive fits of each of the models.36 Comparing the
overall predictive accuracy across all models, the Nested Factorization model has

35i.e. that controlling for week and day of week effects at the category level is sufficient to make potential
demand orthogonal to price level and product availability.
36Mean Log Likelihood and Mean Squared Error are calculated by dividing by the total number of
purchases in order to make the values comparable between the test and training sets.
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Table 1 Comparison of predictive fit

Mean Log Likelihood Mean Squared Error

Model Train Test Train Test

Nested Factorization −4.2271 −4.9096 0.8981 0.9268

Mixed Logit with Random Price and HPF Controls −4.9233 −5.3125 0.9473 0.9660

Nested Logit with HPF Controls −5.2345 −5.4230 0.9583 0.9650

Multinomial Logit with HPF Controls −5.2307 −5.4248 0.9583 0.9651

Mixed Logit with Random Price and Demographics −5.2976 −5.5690 0.9780 0.9898

Mixed Logit with Random Price and Random Intercepts −5.3956 −5.5827 0.9785 0.9849

Nested Logit with Demographic Controls −5.6080 −5.6779 0.9788 0.9801

Multinomial Logit with Demographic Controls −5.6142 −5.6791 0.9791 0.9803

the highest likelihood and the lowest sum of squared errors among all models on
both the training data and the held-out test sample. In addition, each of the models
that include HPF controls37 perform better than the models that use control only for
demographics.38

6.1.1 Comparison of predictive fit by category

We can also compare how each model performs relative to the NF model at the level
of individual categories. In Table 2, we calculate the relative rank of each model’s
performance in the test set separately for each category. The Nested Factorization
model has the highest log likelihood in 86% of categories and the lowest squared error
in 96%. This demonstrates the effectiveness of learning preferences simultaneously
across many product categories. Even if we were only interested in understanding
consumer preferences in one particular category, e.g. yogurt, it can be effective to
train a model using the data from other categories as well, either using the full Nested
Factorization model or by using the HPF controls, which also consistently improve
predictive performance on the held-out test data in most categories.

6.1.2 Comparison of fits by household and UPC

To help understand where the improvement in predictive performance is coming
from, we can spit the results by the popularity of the products or by the shopping
frequency of the households. In Fig. 3, we can see that all models are more accurate
in their predictions for the more commonly purchased UPCs (percentile 100) than
for the less common items. Across all percentiles, the Nested Factorization model

37i.e. user-item specific covariates that are estimated from the HPF model run on all categories
simultaneously as described in Section 4.2.5
38These trends also hold in additional specifications of the alternative logit models that included controls
for shopping frequency and previous purchase behavior.
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Table 2 Comparison of predictive fit by category

Mean Rank % Best Performance

Model Log L SE Log L SE

Nested Factorization 1.53 1.10 86.2% 95.9%

Mixed Logit with Random Price and HPF Controls 2.40 5.33 9.8% 0.8%

Nested Logit with HPF Controls 3.87 3.38 0.0% 0.8%

Multinomial Logit with HPF Controls 4.21 3.63 0.8% 0.8%

Mixed Logit with Random Price and Random Intercepts 4.69 5.65 0.8% 1.6%

Mixed Logit with Random Price and Demographics 5.21 7.07 2.4% 0.0%

Nested Logit with Demographic Controls 6.96 4.93 0.0% 0.0%

Multinomial Logit with Demographic Controls 7.13 4.91 0.0% 0.0%

Mean rank is calculated as the average across product categories of the rank ordering of models based on
predictive fit, with rank 1 corresponding to the model with the lowest error.

does consistently better than the alternative models. The models that use HPF effects
(solid lines) have much smaller, but consistent gains over the nested and mixed logit
models that use demographic or behavioral controls. Similar trends can be seen when
we divide the results based on the number of purchases each household made in the
training data in Fig. 4. This suggests the benefits from a latent-factorization-based
approach are relatively uniform across households and products.

6.2 Price change and availability counterfactuals

In the economics and marketing literatures, models of consumer demand are used
to make inferences about what would happen if change were made to a market. For
example, such models have been used to predict what would happen if prices were
changed, if products are added or removed from a market, or if competing firms in

Fig. 3 Test set predictive fit by UPC purchase frequency
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Fig. 4 Test set predictive fit by household purchase frequency

the market were to merge. As discussed in Section 6, evaluating the predictive fit
of a model, even when done on a held-out test sample, does not reliably determine
whether a model can be used to make predictions under counterfactual states of the
world such as these. To evaluate the ability to make predictions under changes to
prices or product availability, we focus on each model’s predictions on held-out test
set data immediately before and after such changes occur. Under the assumption that
these changes are exogenous conditional on our week and weekday controls, we can
think of each of these changes as a miniature experiment. By pooling across many
such small noisy experiments, we can increase our precision in detecting differences
in performance. We focus on three types of changes that can occur between Tuesday
and Wednesday for a particular UPC. First, we look at weeks in which the focal prod-
uct’s price changes, which we can think of as evaluating the accuracy of the model’s
own-price elasticity estimates. Second, we look at weeks in which some other product
in the focal product’s category has a price change, in order to evaluate the predicted
cross-price elasticities. Finally, we look at weeks in which some other product in the
focal product’s category goes into or out of stock, which is another measure of the
patterns of substitution between products.39 We asses fit on the test data using three
measures. The first measure is the mean log likelihood of the individual household
level predictions for product weeks that experienced the corresponding counterfac-
tual event. The second and third measure compare the actual aggregate demand to
the predicted aggregate demand across all households in the test set who shopped
during the corresponding weeks. For products that are purchased at least 2.5 times
on average per day, we calculate the likelihood of the Tuesday to Wednesday change

39In all cases we exclude weeks in which the focal product is out-of-stock on either day. For the cross-
price and out-of-stock counterfactuals, we exclude weeks in which the focal product has a price change.
For the price change counterfactuals, we exclude weeks in which the magnitude of the price change is less
than $0.10
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Table 3 Mean log likelihood by counterfactual event

Individual Aggregate

Model Popular Less Common Popular Less Common

All Weeks

Nested Factorization −0.1070 (0.0004) −0.0173 (0.0001) −2.5356 (0.0146) −1.3072 (0.0044)

Mixed Logit with Random Price and HPF Controls −0.1156 (0.0004) −0.0188 (0.0001) −2.5562 (0.0145) −1.3365 (0.0037)

Nested Logit with HPF Controls −0.1194 (0.0005) −0.0191 (0.0001) −2.5568 (0.0154) −1.3105 (0.0040)

Multinomial Logit with HPF Controls −0.1194 (0.0005) −0.0191 (0.0001) −2.5554 (0.0154) −1.3086 (0.0040)

Mixed Logit with Random Price and Random Intercepts −0.1263 (0.0005) −0.0194 (0.0001) −2.5712 (0.0146) −1.3316 (0.0037)

Mixed Logit with Random Price and Demographics −0.1240 (0.0004) −0.0195 (0.0001) −2.5934 (0.0153) −1.3543 (0.0038)

Multinomial Logit with Demographic Controls −0.1290 (0.0005) −0.0197 (0.0001) −2.5722 (0.0157) −1.3105 (0.0040)

Nested Logit with Demographic Controls −0.1289 (0.0005) −0.0197 (0.0001) −2.5740 (0.0157) −1.3113 (0.0041)

Cross Price Weeks

Nested Factorization −0.0925 (0.0008) −0.0149 (0.0001) −2.4527 (0.0262) −1.2017 (0.0084)

Mixed Logit with Random Price and HPF Controls −0.1006 (0.0008) −0.0163 (0.0001) −2.4846 (0.0258) −1.2584 (0.0069)

Nested Logit with HPF Controls −0.1041 (0.0009) −0.0164 (0.0001) −2.4844 (0.0277) −1.2177 (0.0076)

Multinomial Logit with HPF Controls −0.1041 (0.0009) −0.0164 (0.0001) −2.4836 (0.0276) −1.2165 (0.0076)

Mixed Logit with Random Price and Random Intercepts −0.1139 (0.0009) −0.0168 (0.0001) −2.5002 (0.0260) −1.2527 (0.0069)

Mixed Logit with Random Price and Demographics −0.1111 (0.0009) −0.0170 (0.0001) −2.5132 (0.0280) −1.2752 (0.0071)

Multinomial Logit with Demographic Controls −0.1162 (0.0010) −0.0170 (0.0001) −2.4966 (0.0279) −1.2182 (0.0077)

Nested Logit with Demographic Controls −0.1161 (0.0010) −0.0170 (0.0001) −2.5066 (0.0292) −1.2194 (0.0078)

Own Price Weeks

Nested Factorization −0.1374 (0.0009) −0.0229 (0.0001) −2.7871 (0.0360) −1.5544 (0.0104)

Mixed Logit with Random Price and HPF Controls −0.1465 (0.0009) −0.0243 (0.0001) −2.8004 (0.0357) −1.5475 (0.0086)

Nested Logit with HPF Controls −0.1493 (0.0009) −0.0249 (0.0001) −2.7986 (0.0371) −1.5356 (0.0092)

Multinomial Logit with HPF Controls −0.1493 (0.0009) −0.0249 (0.0001) −2.7949 (0.0373) −1.5321 (0.0092)

Mixed Logit with Random Price and Random Intercepts −0.1530 (0.0009) −0.0251 (0.0001) −2.8003 (0.0348) −1.5408 (0.0085)

Mixed Logit with Random Price and Demographics −0.1525 (0.0009) −0.0251 (0.0001) −2.8544 (0.0374) −1.5709 (0.0090)

Multinomial Logit with Demographic Controls −0.1557 (0.0010) −0.0256 (0.0002) −2.8097 (0.0369) −1.5344 (0.0092)

Nested Logit with Demographic Controls −0.1555 (0.0010) −0.0256 (0.0002) −2.8186 (0.0372) −1.5377 (0.0093)

Out of Stock Weeks

Nested Factorization −0.0924 (0.0040) −0.0159 (0.0002) −2.3349 (0.1114) −1.2746 (0.0129)

Mixed Logit with Random Price and HPF Controls −0.1033 (0.0044) −0.0173 (0.0002) −2.3679 (0.1225) −1.3064 (0.0111)

Nested Logit with HPF Controls −0.1068 (0.0046) −0.0176 (0.0002) −2.3427 (0.1243) −1.2817 (0.0122)

Multinomial Logit with HPF Controls −0.1068 (0.0046) −0.0176 (0.0002) −2.3446 (0.1259) −1.2774 (0.0121)

Mixed Logit with Random Price and Demographics −0.1091 (0.0045) −0.0180 (0.0002) −2.3669 (0.1132) −1.3249 (0.0118)

Mixed Logit with Random Price and Random Intercepts −0.1125 (0.0046) −0.0181 (0.0002) −2.3403 (0.1156) −1.3068 (0.0113)

Multinomial Logit with Demographic Controls −0.1146 (0.0048) −0.0183 (0.0002) −2.3261 (0.1189) −1.2800 (0.0122)

Nested Logit with Demographic Controls −0.1145 (0.0047) −0.0183 (0.0002) −2.2974 (0.0990) −1.2840 (0.0123)

in aggregate demand as approximated by a Skellam distribution.40 For less popu-
lar products, we calculate the likelihood of observing aggregate demand greater than
zero, which we approximate with a Bernoulli distribution whose mean is the sum of
the household level predictions (Table 3).

6.3 Comparison of degree of personalization across households

To examine the extent to which each of these models is able to flexibly model the dif-
ferences in preferences between households, we calculate two measures of the degree

40If the individual purchasing decisions are distributed as independent Bernoulli variables, then their
sum, the aggregate demand has a Poisson distribution. Then the Tuesday-Wednesday change in aggregate
demand has a Skellam distribution, which is the difference between two independent Poisson distributions
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Table 4 Comparison of degree of personalization of predictions across models

Coef. of Variation Regression Coef.

Model UPC Category UPC Category

Nested Factorization 3.2546 1.7756 0.9955 1.0023

Mixed Logit with Random Price and HPF Controls 2.0747 1.6085 0.6861 0.7007

Mixed Logit with Random Price and Demographics 1.3869 1.5724 0.4718 0.5968

Multinomial Logit with HPF Controls 1.2590 0.7276 0.8402 0.8893

Nested Logit with HPF Controls 1.2368 0.7520 0.8417 0.8725

Mixed Logit with Random Price and Random Intercepts 1.0834 1.0446 0.4666 0.6959

Nested Logit with Demographic Controls 0.4465 0.2967 0.8947 0.9314

Multinomial Logit with Demographic Controls 0.4337 0.2756 0.9077 0.9411

of “personalization” of the predicted purchase rates that each model predicts for each
household. First, we compare the coefficient of variation of a models predictions at
the UPC level and the category level.41 As a second measure, we regress the predicted
purchase rate on the actual purchase rate in the in the held-out test sample.42

Table 4 shows that the Nested Factorization model has the largest variation in
the predictions across households and that this variation is strongly correlated with
variation in the actual purchase rates in the held-out test data. For each 1% increase
in the Nested Factorization model’s prediction of a household’s purchase for a UPC,
the household’s actual purchase rate in the test set increases by 0.9955%.

6.3.1 Predicting preference for products a household has not yet purchased

The Nested Factorization model is also able to make predictions about the strength of
a households preferences for a given UPC, even if the household has never purchased
that particular item before. To demonstrate this, we look at the set of all households
who have made 0 purchases of a particular UPC in the training sample. For each
UPC and each predictive model, we can rank these households based on their pre-
dicted purchase rate and group them into deciles. We carry out a similar analysis of
households who made no purchases from an entire product category during the train-
ing sample. Figure 5 shows that the Nested Factorization model is able to correctly
predict which households are relatively more or less likely to purchase a category or
UPC that they never purchased during the training sample. The decile of households
with the highest predicted likelihood to purchase a product category for the first time,
purchases at roughly 3 times the frequency of the lowest decile. At the UPC level, this
ratio of purchase rates in the held-out test sample is more than 10 fold difference. The
models with HPF controls (solid lines) are able to capture a smaller amount of this

41Coefficient of variation is defined as sd
mean

42The coefficients are from a regression of actual purchase rate on the predicted purchase rate (both calcu-
lated on the test set) with item/category specific fixed effects to absorb heterogeneity in the mean purchase
rates across items/categories.
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Fig. 5 True purchase rate in held out test set for households who never purchased the UPC/Category in
the training sample

variation The models without either approach for latent factorization (dotted lines)
have substantially less predictive power for these first time buyers. This may be use-
ful to applied marketing practitioners who may be interested in targeting advertising
or promotions towards new customers who might be interested in a product that they
have not yet tried.

6.4 Estimated elasticities

6.4.1 Cross-price elasticities within and between products subcategories

A different approach for assessing models is to see how well each does at learning
patterns that we believe to be true about the world. None of the models were given

Table 5 Comparison of cross-price elasticities

Class Cross Price Subclass Cross Price

Model Inside Outside % Inside Outside %

Nested Factorization 0.0186 0.0080 132% 0.0196 0.0181 8.4%

Nested Logit with Demographic Controls 0.0119 0.0086 37% 0.0125 0.0115 8.5%

Mixed Logit with Random Price and Random Intercepts 0.0062 0.0053 16% 0.0062 0.0062 −0.7%

Mixed Logit with Random Price and HPF Controls 0.0063 0.0054 16% 0.0063 0.0065 −3.9%

Multinomial Logit with HPF Controls 0.0035 0.0030 16% 0.0036 0.0035 0.8%

Multinomial Logit with Demographic Controls 0.0034 0.0029 16% 0.0034 0.0034 2.1%

Mixed Logit with Random Price and Demographics 0.0067 0.0060 13% 0.0066 0.0069 −4.6%

Nested Logit with HPF Controls 0.0148 0.0158 −7% 0.0140 0.0157 −10.7%

We compare the mean estimated elasticities for products that are/aren’t in the same product class or product
subclass. We would expect the cross-price elasticities inside of a class or subclass to be higher than those
outside the class, since this implies substitution towards products that are more similar.
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Fig. 6 Test set aggregate demand change by elasticity tercile

data from the product hierarchy data about the “class” or “subclass” each product is
categorized under. These groupings are more fine grained than the “category” level
that we focused on for modeling product substitution. Nevertheless, we show that
the Nested Factorization model correctly infers that products that are in the same
class or subclass are more similar to each other, and as a result these models predict
higher levels of cross-price elasticities between products that are in the same class or
subclass than between items that are in different classes/subclasses (Table 5).

6.4.2 Aggregate demand curves

In Fig. 6, we validate whether the households with higher predicted elasticities do in
fact respond more to price changes in held-out test data. To do this, for each UPC
we split households into terciles based on their predicted elasticity. We then com-
pare the Tuesday-Wednesday change in aggregate demand in the test set depending
on the size of the price change during the week. The household’s with the higher
predicted elasticities do in fact appear to have aggregate demand that is more respon-
sive to price changes. This establishes that the heterogeneity we estimate is useful
for counterfactual predictions about heterogeneity in consumer response to price
changes.

6.5 Target marketing

Understanding how preferences vary across customers can serve as an important
input into the decision of how to allocate resources across marketing efforts such as
advertising and coupons. In Table 6, we carry out an analysis similar to the classic
study by Rossi et al. (1996) to estimate the potential impact of targeting coupons to
customers based on their purchase histories. For each product category, we use each
model to select the 30% of households for whom it would be most profitable for the

397Counterfactual inference for consumer choice



Table 6 Gains from targeted discounts

% Gains Relative to Uniform

Model Behavioral Demographic Individualized

Nested Factorization (linear) 2.57% 4.55% 28.5%

Mixed Logit with Random Price Effects and HPF Controls (linear) 1.51% 2.38% 5.7%

Multinomial Logit with HPF Controls (linear) 1.37% 1.60% 5.7%

Nested Logit with HPF Controls (linear) 1.41% 1.57% 5.4%

Nested Logit with Demographic Controls (linear) 0.56% 3.03% 4.7%

Multinomial Logit with Demographic Controls (linear) 0.77% 2.17% 3.4%

Mixed Logit with Random Price Effects and Demographics (linear) 0.75% 2.53% 3.1%

Mixed Logit with Random Price and Random Intercepts (linear) 0.86% 1.31% 2.5%

store to offer a 30% off coupon for the most popular UPC in the category.43 We then
evaluate how profitable this coupon targeting would be using the Nested Factoriza-
tion model as ground truth. For each model, we evaluate three approaches to targeting
the coupons. Under individualized targeting, the store is able to select individual
households when choosing whom to target with the coupons. Under demographic
targeting, the coupons must be allocated in a way that is uniform within demographic
groups.44 Under behavioral targeting, the coupons must be allocated based on the
number of times a household has made purchases in the product category. Under each
scenario, we compare the predicted store profits to the profits that would have been
earned if the store had allocated the coupons uniformly at random.

Unfortunately, without the ability to run an experiment, it is difficult to validate our
model’s predictions of the household specific profitability of pricing decisions. We
can however approximate such an experiment by looking at consumers’ purchasing
behavior under the various price regimes that happened to have occurred during each
consumer’s test sample shopping trips.45 For each UPC, we identify the two most
common prices,46 and for each consumer use our model to predict which of the prices
will lead to higher store profits. We can then compare the average profit per shopping
trip from the focal UPC under the two chosen prices. We aggregate these profits
across the two groupings of households47 and calculate the increase in average profits
per shopping trip from households shopping at their targeted price relative to the other

43Profits are calculated as price - marginal cost. Marginal costs come from the retailer’s records, which
are available for most products. For items with no marginal cost data, we treat the minimum retail price in
the data as the marginal cost.
44We define demographic groups in terms of marital status, income level, age, and number of children.
45The validity of this analysis requires that customers are not strategically choosing which days to shop in
response to prices. In our context with prices frequently changing across many categories, we believe that
this effect is small. However, it is possible that some customers might be able to time their shopping trips
in response to the prices of a few products that they consider particularly important.
46We exclude all prices that are less than the item’s marginal cost, since those prices would lead to negative
profits, and thus would never be chosen as the more profitable price for any consumer.
47i.e. the household’s who are predicted to have higher profits under price 1 and the households who are
predicted to have higher profits under price 2.
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Fig. 7 Distribution of Gain in Profit from Targeted Price Percent gain calculated as Difference in Average Profit
Average Profit

for each item and price group, where the difference in average profit is the mean profit per shopping trip
under the preferred price minus the mean profit per shopping trip under the alternative price

price.48 In Fig. 7, we can see that on average the store earns substantially more profit
from households when they shop on days with the price that we predicted would lead
to higher profits.

In principal, a similar approach could be used to evaluate a model’s predictions
about which users are most likely to switch brands when a new product enters a cate-
gory. Unfortunately in our application, the sample selection criteria we used dropped
most products that entered or exited the market during the sample period.

7 Conclusion

This paper proposes the Nested Factorization model for learning consumer prefer-
ences from panel data. This model allows rich heterogeneity in preferences and price
responsiveness across consumers, and it gains efficiency and precision from simulta-
neously learning consumer preferences across many product categories. Using recent
advances in variational Bayesian inference with stochastic gradient descent allows
the model to remain tractable on the types of relatively large data sets that are increas-
ingly becoming available as digitization progresses. We show that this approach can
yield substantial improvements in out of sample predictive accuracy. This model is
also able to predict price elasticities and patterns of substitution between products,
which are often ignored or explicitly assumed away in most of the related recom-
mender systems literature from computer science. Using the nested functional form,
inspired by the nested logit model, allows our model to more efficiently learn these
patterns of cross product substitution. We demonstrate an approach for validating a
model’s ability to make predictions for counterfactual questions, by leveraging the

48We restrict ourselves to the two most common prices in order to increase the frequency with which we
observe shopping trips with the selected prices in the test sample.
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large number of price changes and changes in product availability that occur in the
data. Treating each such change as a “mini experiment”, we can evaluate a model’s
predictions before and after the change on held-out data that was not used to fit the
model. Pooling across many such sources of variation in the data reduces the noise
and allows us to compare models in terms of their ability to make counterfactual
predictions. We evaluate the potential gains from using flexible personalized models
such as the one we propose here for targeting marketing efforts such as personalized
price discounts or for identifying new consumers who might be interested in trying a
product. More generally, we believe that flexible models of consumer demand, such
as the Nested Factorization model proposed here, can be a useful tool for guiding the
marketing strategies of firms or as part of a larger model for understanding patterns
of competition between firms.

Appendix A: Data construction and sample selection

The filters we use to select categories for study are outlined as follows:

1. For many of the mixed and nested logit specifications, we encountered difficulty
with convergence in some of the product categories. To reduce these issues we
ran all of the logit specifications using the top 10 items in each category along
with an eleventh “pooled” option that combined all of the less popular items in
the category. The NF and HPF models were run without any pooling of items.
To make for a fair comparison, we evaluate model fit using only the top 10 items
in each category. The relative performance of the NF model improves further if
we compare the sum of the predicted purchase probabilities for the pooled items
to the pooled item prediction from the logit models.

2. We eliminate categories in which more than 15% of shopping trips contain mul-
tiple items from the category or more than 10% of trips contain multiple top 10
items, since for these categories the assumption of unit demand was substan-
tially violated. For any remaining shopping trips in which multiple items from
the same category were purchased, we selected one item at random from among
the purchased items (and treated the remaining items as unpurchased).

3. We eliminate categories where the average absolute within-category correlation
of the top 10 items’ prices is greater than 0.75. This address the challenge of
identifying cross-price elasticities in a handful of categories in which virtually
all prices move in parallel.

4. We only include categories where at least 2 of the top 10 items have price vari-
ation from Tuesday to Wednesday in one of the sample weeks and at least 1 of
them top 10 UPCs has price changes of at least 10 cents in a least 10% of the
sample weeks.

5. We eliminate the top 15% of categories with the strongest demand seasonality.
For each UPC, we first calculate seasonality as the Herfindahl index of daily
demands over the sample period. We then calculate the percentile of each UPCs
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Herfindahl index over all UPCs and define a category’s seasonality as the average
of the category’s top 10 items’ percentiles. While our approach of category level
time controls at the week level should be able to control for any category level
seasonality, it is not able to control for seasonal trends that affect individual
UPCs.

The pricing information in our data comes from the transactions, which means
we need to infer the prices a customer would have paid for any items they did not
purchase. In addition, we need to account for coupons and deals (e.g. buy 2 get 1 free)
that may cause different customers shopping on the same day to pay different price
per unit. To resolve this, we use the daily median transacted price per unit calculated.
In the event of a day with zero purchases, we carry forward the price data from the
previous day.

Our data on product availability (i.e. out-of-stock items) is at granular level as
described Che et al. (2012) based on the times employees scan items as out of stock
and when they are restocked. However, for simplicity all of the models are run at a
daily level. We consider an item unavailable to all shoppers on any days in which it
is listed as out-of-stock during more than 75% of shopping trips on that day.

Appendix B: Variational inference algorithm

In this section, we provide additional details on the implementation of the variational
inference model that is used to estimate the Nested Factorization model.

Recall from Section 3.2.4 that for the product choice stage of the model, we
would like to approximate the posterior distribution of the latent parameters �p =
{θi, βj , ρj , σi, γi, λj }. For notational convenience we will rewrite this as � =
{�1, . . . , �K} where the number of latent parameters K = 3N + 3J , where N is the
number of households and J is the number of products. We will approximate the pos-
terior using a multivariate Gaussian distribution with a diagonal covariance matrix.
In general, imposing this “mean-field” assumption may limit the ability of our vari-
ational distribution to approximate the exact posterior, however this structure often
works quite well in practice and still allows substantial flexibility in the resulting
posterior approximation.

q (�; ν) = N (�; μ, �) =
K∏

k=1

N (�k; μk, σ
2
k ) (11)

We want to find the variational parameters ν = {μ1, . . . , μK, . . . , σ 2
K } that minimize

the KL divergence between the variational distribution q (�; ν) and the exact posterior
p(� | y, x).

q∗(�; ν) = arg min
ν

KL (q(�; ν) || p(� | y, x)) (12)
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This can be rearranged to show that minimizing the KL divergence is equivalent to
maximizing an expression known as the evidence lower bound (ELBO) (Blei et al.,
2017).

L (ν) = Eq(�;ν)

[
log p(y | x, �) − log q(�; ν)

]

= Eq(�;ν)

[
∑

t

log p(yt | xt , �) + log p(�) + log q(�; ν)

]

(13)

Unfortunately, the expectation in Eq. 13 is analytically intractable. However, we
can still seek the value of ν that maximizes L (ν) with stochastic gradient descent
if we are able to find a tractable expression for an unbiased estimate of the gradient
∇νL (ν). We can do this by applying an approach that is known as the reparametriza-
tion trick (Kingma & Welling, 2014; Titsias & Lázaro-Gredilla, 2014; Rezende et al.,
2014).

To do this, we introduce a transformation of the latent variables, so that rather than
directly drawing from the distribution � ∼ q (�; ν), we instead draw a new auxiliary
random variable ε ∼ N (0, IK) from a standard multivariate Gaussian distribution.
By applying the transformation T (ε; ν) = μ + �

1
2 ε we can generate draws � =

T (ε; ν) such that � ∼ q(�; ν).
For notational ease, we will denote the expression inside the expectation in Eq. 13

as f (�; ν). We can now rewrite the expectation in the gradient of the ELBO as

∇νL (ν) = ∇νEq(�;ν) [f (�; ν)] = ∇νEε [f (T (ε; ν); ν)] (14)

Now, bringing the gradient inside of the expectation and applying the chain rule
gives us

∇νL (ν) = Eε

[∇�f (�; ν); ν) |�=T (ε;ν) ∇νT (ε; ν)
]

(15)

To obtain this expression, we used the fact that Eε

[∇νf (�, ν) |�=T (ε;ν)

] = 0, since
the only dependence of f (�; ν) on ν is through the term log q(�; ν) and the expected
value of the score function is 0.

Now we can obtain a Monte Carlo estimate of the gradient of the ELBO by sam-
pling values of ε from the standard multivariate Gaussian in order to approximate
this expectation. In addition to making draws of ε to evaluate the expectation, we
also subsample customer shopping trips in each iteration. This allows the estimation
to more easily scale to large datasets. By scaling the gradient estimates to account for
this sampling, we can maintain the unbiasedness of the gradient estimator.
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B.1 Hyperparameters

For each of the variational parameters we use a prior variance of 1.0 and a prior mean
of 0 and a batch size of 5000 (number of customer trips to sample in each step of the
stochastic gradient descent). We do a hyperparameter grid search across:

• {20,40,80} for the dimension of the latent factorization θiβj

• {20,40,80} for the dimension of the price term γiλj

• With and without user demographics Wi

• With and without product characteristics Xj

• {0.001,0.005,0.01} learning rates (i.e. step size for gradient descent)
• Product level model only: whether price should enter linearly or in logs
• Category level model only: {10,20} for the dimension of the time factorization

μcδt

We selected models based on counterfactual price performance on the validation
set. The selected product level model has hyperparameters {80, 20, yes, no, 0.005,
linear price}. The selected category level model has hyperparameters {40, 40, no, no,
0.01, 10}.

Appendix C: Estimated elasticities and purchase probabilities

In this section we compare the predicted own price elasticities across models and
how those predicted elasticities vary within and between products. Table 7 shows
the median own price elasticity estimated by each model. SD(Mean) is the stan-
dard deviation across the mean product level own-price elasticities. This captures
how much variability there is in elasticities across products. Mean(SD) is the mean
of the standard deviation of elasticities across consumers within a specific product.

Table 7 Comparison of own-price elasticities

Model Median SD(Mean) Mean(SD)

Nested Factorization −1.7121 1.2008 1.7774

Nested Logit with Demographic Controls −1.2976 1.0377 0.0532

Mixed Logit with Random Price and Random Intercepts −2.2024 1.7822 0.8387

Mixed Logit with Random Price and HPF Controls −2.7077 1.9084 1.1294

Multinomial Logit with HPF Controls −1.1841 0.8904 0.0060

Multinomial Logit with Demographic Controls −1.1813 0.8837 0.0017

Mixed Logit with Random Price and Demographics −3.0897 2.4546 1.4785

Nested Logit with HPF Controls −1.1017 0.8783 0.0182
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Fig. 8 Category level elasticities and predicted purchase probabilities

Fig. 9 UPC level elasticities and predicted purchase probabilities

This captures the amount of variability in elasticities across consumers for the same
product.

Figures 8 and 9 show the predicted elasticities and purchase rates for a sample of
products and categories (entries are hidden when their text box would overlap with
another entry).

Acknowledgements We are grateful to Tilman Drerup and Ayush Kanodia for exceptional research assis-
tance. We thank the seminar participants at Harvard Business School, Stanford, the Microsoft Digital
Economy Conference, and the Munich Lectures.

Author Contributions We follow the machine learning tradition in author ordering, with Robert
Donnelly having the greatest contribution.

Funding We acknowledge generous financial support from Microsoft Corporation, the Sloan Founda-
tion, the Cyber Initiative at Stanford, and the Office of Naval Research grant N00014-17-1-2131. Robert
Donnelly is currently employed at Instacart (San Francisco, USA) but contributed to this research while

404 R. Donnelly et al.



a graduate student at Stanford Graduate School of Business. Ruiz is currently affiliated with DeepMind
(London, UK) but contributed to this research while at Columbia University (New York, USA) and the
University of Cambridge (London, UK), supported by the EU H2020 programme (Marie Skłodowska-
Curie grant agreement 706760). The views expressed herein do not necessarily represent the views of
Instacart or DeepMind.

Availability of Data and Materials The dataset is available to researchers at Stanford and Berkeley by
application; it has been used previously in other research papers (see https://are.berkeley.edu/SGDC).

Declarations

Code Availability https://www.github.com/rodonn/nested-factorization Additional implementations of
related variational inference models are available at https://github.com/franrruiz/shopper-src and https://
www.openicpsr.org/openicpsr/project/114442/version/V1/view

References

Ackerberg, D. (2001). Empirically distinguishing informative and prestige effects of advertising. The
RAND Journal of Economics, 32(2), 316–333. ISSN 0741-6261. https://doi.org/10.2307/2696412.

Ackerberg, D. (2003). Advertising, learning, and consumer choice in experience good markets: An empir-
ical examination. International Economic Review, 44(3), 1007–1040. http://www.jstor.org/stable/
3663546.

Athey, S., & Imbens, G. W. (2007). Discrete choice models with multiple unobserved choice character-
istics. International Economic Review, 48(4), 1159–1192. ISSN 00206598. https://doi.org/10.1111/
j.1468-2354.2007.00458.x.

Athey, S., & Imbens, G. W. (2017). The state of applied econometrics - causality and policy evaluation.
Journal of Economic Perspectives, 31(2), 3–32. ISSN 0895-3309. https://doi.org/10.1257/jep.31.2.3.

Athey, S., & Stern, S. (1998). An empirical framework for testing theories about complementarities in
organizational design. NBER Working Paper, 6600, 1–38. https://doi.org/10.1080/135943297399097.

Athey, S., Blei, D., Donnelly, R., Ruiz, F., & Schmidt, T. (2018). Estimating heterogeneous consumer
preferences for restaurants and travel time using mobile location data. AEA Papers and Proceedings,
108, 64–67. https://doi.org/10.1257/pandp.20181031.

Bai, J. (2009). ISSN 0012-9682. https://doi.org/10.3982/ECTA6135. Econometrica, 77(4), 1229–1279.
Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica,

63(4), 841. ISSN 00129682. https://doi.org/10.2307/2171802.
Berry, S., Levinsohn, J., & Pakes, A. (2004). Differentiated products demand systems from a combination

of micro and macro data: the new car market. Journal of Political Economy, 112(1), 68–105. ISSN
0022-3808. https://doi.org/10.1086/379939.

Berry, S., Khwaja, A., Kumar, V., Musalem, A., Wilbur, K., Allenby, G., Anand, B., Chintagunta, P., Hane-
mann, W., Jeziorski, P., & Mele, A. (2014). Structural models of complementary choices. Marketing
Letters, 25(3), 245–256. ISSN 0923-0645. https://doi.org/10.1007/s11002-014-9309-y.

Blei, D. M., Kucukelbir, A., & McAuliffe, J.D. (2017). Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518), 859–877. https://doi.org/10.1080/01621
459.2017.1285773.

Bobadilla, J., Ortega, F., Hernando, A., & Gutirrez, A. (2013). Recommender systems survey. Knowledge-
Based Systems, 46, 109–132. ISSN 09507051. https://doi.org/10.1016/j.knosys.2013.03.012.

Che, H., Chen, X. J., & Chen, Y. (2012). Investigating effects of out-of-stock on consumer stockkeep-
ing unit choice. Journal of Marketing Research (JMR), 49(4), 502–513. https://doi.org/10.1509/jmr.
09.0528.

Chintagunta, P. K. (1994). Heterogeneous logit model implications for brand positioning. Journal of
Marketing Research, 31(May), 304–311. https://doi.org/10.2307/3152201.

Domencich, T., & McFadden, D. (1975). Urban travel demand: A behavioral analysis. North-Holland
Publishing Co. https://trid.trb.org/view.aspx?id=48594.
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