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ABSTRACT

Models for recommender systems use latent factors to explain the
preferences and behaviors of users with respect to a set of items
(e.g., movies, books, academic papers). Typically, the latent factors
are assumed to be static and, given these factors, the observed pref-
erences and behaviors of users are assumed to be generated without
order. These assumptions limit the explorative and predictive capa-
bilities of such models, since users’ interests and item popularity
may evolve over time. To address this, we propose dPF, a dynamic
matrix factorization model based on the recent Poisson factoriza-
tion model for recommendations. dPF models the time evolving
latent factors with a Kalman filter and the actions with Poisson dis-
tributions. We derive a scalable variational inference algorithm to
infer the latent factors. Finally, we demonstrate dPF on 10 years
of user click data from arXiv.org, one of the largest repository of
scientific papers and a formidable source of information about the
behavior of scientists. Empirically we show performance improve-
ment over both static and, more recently proposed, dynamic rec-
ommendation models. We also provide a thorough exploration of
the inferred posteriors over the latent variables.

1. INTRODUCTION

The modern internet provides unprecedented access to products
and information—examples include books, clothes, movies, news

articles, social media streams, and academic papers—but these choices

increasingly overwhelm its users. Recommender systems can alle-
viate this problem. Using historical behavior about what a user
clicks (or purchases or watches), recommender systems can learn
the users’ preferences and form personalized suggestions for each.

Historical data accumulates. Today, services such as movie stream-

ing websites and academic paper repositories have had the same
customers for years, sometimes decades. During this time, user
preferences evolve. For example, a long-time fan of sports biogra-
phies might read a science fiction novel that she finds inspiring,
and then starts to read more science fiction in place of biographies.
Similarly, items may serve different audiences at different times.
For example, academic papers become popular in different fields
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as one community discovers the techniques of another; a 1950s pa-
per from signal processing might see renewed importance in the
context of modern machine learning.

The problem is that most widely-used recommendation methods
assume that user preferences and item attributes are static [20, 12,
5]. Such methods would continue to recommend sports biographies
to the new fan of science fiction, and they might not notice that the
1950s paper is now relevant to a new kind of audience. This is
the problem that we address in this paper. We develop a new rec-
ommendation method, dynamic Poisson factorization (dPF), that
captures how users and items change over time.

DPF is a factorization approach. It represents users in terms of
latent preferences; it represents items in terms of latent attributes;
and it allows both preferences and attributes to change smoothly
through time. As an example, we ran our algorithm on ten years of
data from arXiv.org, containing users clicking on computer science
articles. (ArXiv.org is a preprint server of scientific articles that has
been serving users since 1991. Our data span 2003-2013.)

Figure 1 illustrates the kinds of representations that it finds. It
shows the changing interests of an academic reader. Ten years ago,
this user was interested in graph theory and quantum cryptography
later the user was interested in data structures; now the user is inter-
ested in compressed sensing (For convenience we have named the
latent factors with meaningful labels.) Note that a static recommen-
dation engine would recommend graph theory papers as strongly
as compressed sensing papers, even though this user lost interest in
graph theory almost ten years ago. The figure also shows the latent
attributes of the arXiv paper “The Google Similarity Distance”, and
how those attributes changed over the years. At first it was popular
with graph theorists; since then it has found new audiences in math
and quantum computing. Again, a static recommendation system
would not capture this change in its audience. Further, for both
the user and the paper, the click data alone (pictured on top in the
figures) does not reveal the hidden structure at play.

Dynamic Poisson factorization efficiently uncovers sequences of
user preferences and sequences of item attributes from large col-
lections of sequential click data, i.e., implicit data. We used our
algorithm to study two large real-world data sets, one from Netflix
and one from arXiv.org. As we show in Section 3, the richer repre-
sentation of dPF leads to significantly improved recommendations.

Technical approach.  Formally, dynamic Poisson factorization
is a new probabilistic model that builds on Poisson factorization
(PF) [6]. PF is an effective model of implicit recommendation data,
and leads to scalable algorithms for computation about large data
sets. Dynamic PF extends PF to handle time series of clicks. It



mimics PF within each epoch, but allows the representations of
users and items to change across epochs.

While conceptually simple, this comes at the cost of some of the
nice mathematical properties of PF, specifically “conditional con-
jugacy.” Conditional conjugacy enables easy-to-derive algorithms
for analyzing data, i.e., for performing approximate posterior infer-
ence with variational methods. Even without this property, we will
derive an efficient algorithm for dPF (Section 2 and Appendix A).
As with PF, our algorithm scales with the number of non-zero en-
tries in the user behavior matrix, enabling large-scale analyses of
sequential behavior data.

Related Work. Several authors emphasize the importance of time
modeling in collaborative filtering. These approaches differ in how
they incorporate time information and their use of implicit data.

Koren [11] presents an approach based on matrix factorization
that models the ratings as a product of user and item factors. This
factorization is augmented with a user-item-time bias and user evolv-
ing factors. Our work is similar, but we allow for item-evolving
factors to capture the possibility that item traits change over time
(see Figure 1 for an example). Further, we provide a probabilis-
tic framework for our model with approximate Bayesian inference
to handle the considerable uncertainty that arises when modeling
time evolving user behaviors. Similarly, Chatzis posits that only
user membership to a discrete group (or class of users) evolves at
each time-step, with new groups being created over time [4].

Some methods propose factorization of the user-item-time ten-
sor [10, 19]. The intuition behind these methods is to project user
and item factors into click space using a time-specific factor. These
methods, rather than modeling the evolution of users and items over
time, quantify the activity of each dimension of the factor model
over time. Thus comparing the trajectories of specific users and
items is impossible.

Gultekin and Paisley [7] propose modeling both user and item
evolution with a Gaussian state-space model. For computational
reasons, they perform a single forward (filtering) pass in time. In
our work we show that we can perform both filtering and smooth-
ing on large datasets. Similarly, Li et al. [14] use Dirichlet dis-
tributed latent factors, though they take a sampling-based inference
approach that is not practical for real world datasets.

All the aforementioned methods are for explicit data. Two addi-
tional methods focus on implicit data, though with only user evolv-
ing preferences. Sahoo et al. [16] proposes an extension to the
hidden Markov model where clicks are drawn from a negative bi-
nomial distribution. This discrete class-based approach requires
many more classes to represent the same size of space that our ad-
ditive factors achieve. Acharya et al. [1], constructed from gamma
processes, has the advantage of inferring the dimensionality of the
latent space, but takes an approach to inference that is not scal-
able and does not allow for item evolution. Our work is the first
model that considers implicit data where both the users and items
can evolve over time.

It is worth noting that recommendation frameworks to model
general attributes, including context such as location and time, have
also been proposed [15, 8]. In principle our work could be used to
provide predictions within the framweork of Hidasi and Tikk [8].

2. DYNAMIC POISSON FACTORIZATION

In this section we review matrix factorization methods, Poisson ma-
trix factorization, and introduce dynamic Poisson factorization.

Background: Matrix Factorization and Poisson Matrix Factor-
ization. The work of Koren [11] is based on matrix factorization

as are several of the other time-based methods highlighted at the
start of this section. Matrix factorization aims at minimizing the
distance between an approximation of the matrix, U7V, and the
original matrix Y (dist(Y, UTV)). This distance often has a prob-
abilistic interpretation. Therefore, obtaining a good approximation
(a small distance) can be cast as a maximum likelihood problem.
For example, obtaining an approximation to the user-item matrix
in terms of [2-loss is equivalent to assuming Gaussian noise on the
observations. Similarly, [2 regularization of the optimization vari-
ables is equivalent to assuming Gaussian noise on the equivalent
variables of a probabilistic model [2].

Expressing a model in probabilistic terms can reveal previously
hidden perspectives. For example, a Gaussian distribution is not
appropriate for modelling discrete observations (implicit clicks or
explicit ratings) because its support is R and it places zero proba-
bility mass at any discrete point. Furthermore, probabilistic mod-
els come with powerful inference techniques rooted in Bayesian
statistics. Machine learning using probabilistic models (graphical
models) can be understood as a sequence of three steps: 1) posit a
generative model of how the observations are generated; 2) condi-
tion on the observed data to infer posterior distributions of model’s
unobserved (latent) variables; 3) use the posteriors according to
the generative model to predict unobserved datum. In the context
of matrix factorization, the Bayesian approach has been shown to
produce superior predictions because it can average over many ex-
planations of the data [17].

Poisson matrix factorization (PF) [6] addresses the mismatch
between Gaussian models and the discrete observations. Poisson
factorization assumes clicks are Poisson distributed' and user/item
factors are gamma distributed. This is another difference with re-
spect to Gaussian factorization where factors are typically Gaus-
sian distributed and can therefore be negative. Additively combin-
ing non-negative factors can lead to models that are easier to in-
terpret [13]. Poisson factorization has been shown to outperform
several types of matrix factorization models, including Gaussian
matrix factorization, on recommendation tasks [6]. Furthermore,
properties of the Poisson distribution allows the model to easily
scale to massive real-life recommendation datasets.

Dynamic Poisson Factorization. = Poisson matrix factorization
models users and items statically over time. This is unrealistic. For
example, the preferences of the user in Figure 1 change from from
“Graph Theory” and “Quantum Cryptography” to “Compressed
Sensing”. Similarly, the readership of the item in Figure 1 evolves
from “Graph Theory” to “Quantum & Computational Complexity”
and “Data Structures & Probability”. To be able to capture both
the changes of users and items over time, we introduce dynamic
Poisson factorization (dPF).

DPF is a model of user-item clicks over time where time is as-
sumed to be discrete (i.e., the modeler chooses a time window that
aggregates clicks in chunks of 1 week, 1 month etc.). The aim is to
capture the evolving preferences of users as well as the evolution of
item popularity over time. Specifically, dPF models a set of users
clicking, or rating, a set of items over time.”

We first give a high-level overview of dPF. The strengths of user
preferences and item popularities are assumed to be a combination
of static and dynamic processes. The static portion assigns each
user and item a time-independent representation, while the dynamic

'Tn this context maximizing a Poisson likelihood is equivalent to
minimizing the generalized-KL between the user-item matrix and
its approximation.

*In the rest of the exposition we will refer to clicks and ratings
interchangeably.
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Figure 1: Our method, dPF, discovers evolving user interests and item audiences over time from raw click data. The top left plot shows
the aggregate click frequencies for a user on arXiv.org for 8 years. dPF separates this aggregate data into a set of 20 interest groups with
varying strengths over time (bottom left). This user was initially interested in quantum cryptography and graph theory; then, five years later,
in compressed sensing and data structures. DPF decomposes raw access counts for items in a similar way. The top right plot shows the raw
access frequencies for the paper “The Google Similarity Distance” (http://arxiv.org/pdf/cs/0412098.pdf). The bottom right plot
indicates that the paper broadened its audience during its lifetime. It was initially popular only with graph theorists, then received attention
from quantum physicists and computational complexity readers, perhaps explained by the fact that it was cited in “Google in a Quantum

Network” (on arXiv and then in the Nature journal).

portion gives each user and item a time evolving model. The static
representation is the same as in traditional matrix factorization ap-
proaches and captures the baseline interest of users and the baseline
popularity of items, which is then modified by dynamic variables.
In this respect, dPF is a generalization of PF [6].

We now give the mathematical details for how to capture this
intuition in a model. To model time probabilistically, statisticians
typically use Gaussian time series models called state space models
[2]. In the simplest case, state space models draw the state at the
next time step from a Gaussian with mean equal to the previous

time step and fixed variance o:

xe|Tp—1 ~ N (21, 02).

We use state space models as the dynamic portion of dPF, where
both the users and items evolve. Formally, w, ¢, the kth compo-
nent of the nth user at time ¢ is constructed as

unk,t|unk,t—1 ~ N(unk,t—h Ui)

The state space process for items is symmetric. The static compo-
nents associated with each user u,x and item v, are also drawn
from a normal distribution. They form the intercepts for a time
evolving factorization with Poisson observations. That is, a user’s
expression of factor k at time ¢ is the sum wUni + Upnk,¢. In this
sense, the state space model can be viewed as governing correction
factors and thus capture the evolution of users’ preferences through
time, while static global factors capture the interest of users that are
not influenced by time.

One issue in using Gaussian state space models is that Poisson
observations have non-negative parameters (rates). Thus, we ex-
ponentiate the state-space models intercept sums for each user and
item before combining them to form the mean of the observed rat-
ing. Concretely, the rating for user n, item m at time ¢, Ynm, ¢+ has
the following distribution

K
Ynm,t ~ Poisson( E e(unkvt+ﬂnk)e(vmk,t+5n1k)).
k=1

Putting this all together, the observations are drawn as follows:
1. Draw user global factors: @ns ~ N (g, o2)
2. Draw item global factors: Tmi ~ N (g, 02)
3. Foreachtimestep:t=1...7T

Draw user and item correction factors:
ift=1
Ui, ~ N(pu, o03r)
Umk,1 ™~ /\/(Mv, 03)
else
Unk,t|unk:,t71 ~ N(’Mnk,tfl, Ui)
U'mk:,tlvmk:,tfl ~ N(’Umk,tfla 012;)
Draw a click:

Ynmt ~ Poisson(szzl e(unk,t+ﬁnk)e(vmk,t,Jrﬁmk))


http://arxiv.org/pdf/cs/0412098.pdf

Unlike Poisson matrix factorization [6] our model uses Gaussian-
distributed (global) user and item factors. We could have also used
Gamma-distributed factors [1] although the parametrization of Gaus-
sians allows us to independantly control the mean and variance of
each Gaussian in the chain. Further, even with this change, dPF can
still model the long-tail of users and items, an important advantage
of Poisson factorization over Gaussian matrix factorization [6].

Analysis and Predictions. We analyze data through the posterior,
p(u, @, v,0|Y). We use u to represent the set of all user factors and
Y the observations. The posterior distribution places probability
mass on the latent variables in proportion to how well they explain
the observations. The posterior of standard Poisson factorization
finds a single set of preferences and attributes, while the dPF pos-
terior places high probability on the sequences of preferences and
attributes that best describe the observed data. Figure 1 plots the
expected value under the posterior distribution of the expression of
factor k by user n, Unk,+ + Unk, and the similar posterior expecta-
tion for the items.

In recommendation applications, one wants to use the model to
predict the value of unobserved clicks. We obtain predictions by
taking the inner product of the expected value of the user factors
and item factors under the posterior distribution:

E[ynmt ‘Y] ~ Z Eposterior [e<unk,t+"1n,k ) e(”vnk,t+£'7n.k)} . (1)
k

In practice, recommender systems require rankings (e.g., to show
users their top 10 most recommended items when they log on to
a website, or to auto-play the most recommended video when the
current video has finished). To calculate rankings we use the pre-
dictive distribution in Equation 1 as a score for each unobserved
rating triplet (i.e., higher predictive probability results in a higher
score) and sort the triplets by these scores.

Computation. We approximate the posterior distribution with

variational inference, which transforms the posterior estimation prob-

lem into an optimization problem. In Appendix A we provide the
variational inference algorithm for dPF. The per iteration complex-
ity of performing posterior inference for dPF is O(T(R + NK +
MK)) where R is the number of non-zero observations of the most
populous time step (R = max; R;), T the number of time steps, NV
and M the number of users and items, and K the number of latent
components respectively.

The updates of each factor depend only on the other factors in its
Markov blanket (a factor’s parents, its children, and its children’s
parents). As a consequence, the updates to the variational param-
eters of each user are independent of all other users (and similarly
for items). Hence we can easily parallelize the posterior inference
computations. We implement dPF in C++ and use openMP for par-
allelization.> Empirically, we obtain a near linear speedup in the
number of threads.

Implementation Details. We initialize hyperparameters (ttv, (v,
[, flv) controlling the means to the priors to small random num-
bers close to 0 and variance hyperparameters (o, 0y, 0g, 05) tO
10. We found that these values work well across different datasets.
We provide indications that the model is well-behaved under a wide
range of hyperparameter settings (Section 3.4). We have found that
for interpretability, it is important to use the same initialization for
factors across time. We experimented with initializing the global
factors with PF but that did not provide an advantage. We ran the

3Code is available: https://github.com/Blei-Lab/

the numerical optimization routines for up to 500 iterations or until
convergence.

3. EXPERIMENTS

We now fit our model using datasets consisting of users consuming
movies and scientists clicking on papers. As we describe in Section
2 we can use the expectation of the posterior distributions over user
and item latent factors to provide item recommendations to users
through time. In addition to measuring the performance of dPF
against baselines we gain insights into the datasets and the model
by exploring its posteriors. We highlight the following results:

1. dPF provides better recommendations across multiple datasets
compared to several static and dynamic baselines.

2. dPF scales to large datasets.

3. dPF allows us to explore and gain interesting insights into
the arXiv dataset.

In Section 3.1, we describe the two datasets used in our exper-
iments. We then formalize the experimental methodology and the
comparative metrics in Section 3.2. Finally, we provide compara-
tive and explorative results in Sections 3.3, 3.4, and 3.5.

3.1 Datasets

We study two different datasets.

Netflix-time: First, we consider a movie dataset derived from the
Netflix challenge. We follow a similar procedure as described in Li
et al. [14] to obtain a subset of the original Netflix dataset focusing
on users and movies that have been active over several years. The
resulting dataset contains 7.5K users, 3.6K items, and 2 million
non-zero observations over 14 time steps (with a granularity of 3
months). The validation and test sets are composed of all the clicks
occurring in the final 9 months of the dataset (90K clicks). Since
our focus is on the implicit data case, we binarize the data such that
every observed rating is a “1” rating and all unobserved ratings are
Zeros.

Netflix-full: In addition to the Netflix-time dataset, we fit dPF on
the whole Netflix dataset (with a granularity of 6 months) where we
kept the last 1.5 years of click for validation and test. The resulting
dataset contains over 225K users and 14K items and 6.9M obser-
vations. This dataset is more challenging for inference because it
includes items in the long tail (i.e., a large number of items used by
very few users) and very inactive users.

arXiv: DPF is also fit on a click data from the arXiv.org site.
arXiv.org is a pre-print server for scientific papers. We have access
to ten years of clicks from registered users of arXiv. We keep 75K
papers with at least 20 clicks over the ten years and 5K users with
clicks spanning at least five years (1.3M observations). We set the
time granularity to be six months which seems reasonable to cap-
ture scientists’ changing preferences. We verified that the results
are similar with other time periods. The resulting dataset contains
19 time periods. We keep all observations of the last time step (the
last six months) for validation and testing.

arXiv-cs-stats: Physicists were early adopters of the arXiv. As
such, fits to the above dataset are dominated by that field. To gain
insights into our model’s discoveries we have found it useful to re-
strict our attention to subject areas that were closer to our computer
science expertise. This dataset is a cut of the data with papers that
are in either computer science (CS) or statistics (Stats) fields. The
field(s) of each paper is selected by its authors when submitting.
The resulting data has just under 1K users, 5K items and spans 7
years worth of clicks (58K observations). We use this data for ex-
plorative purposes (Section 3.5).


https://github.com/Blei-Lab/

3.2 Baselines

We are able to compare to BPTF, a recently-proposed dynamic
model based on tensor factorization approach. Xiong et al. [19]
model the changing strengths of factors over time with a proba-
bilistic tensor approach. In more detail, the observation matrix is
assumed to decompose into a tensor product between user prefer-
ences, item popularities, and temporal trends. Their approach cap-
tures aggregate changes in behavior but is not specific enough to
model the time-dependent shifts of individual users or items. They
use Gibbs sampling to infer the latent factors given explicit data
only, an approach that does not scale when considering implicit
data on larger datasets. To adapt this method to the implicit data
case we sampled a random subset of unobserved items such as to
observe an equal number of zeros and ones.

Another natural benchmark to demonstrate the benefits of time
modelling is Poisson matrix factorization, since our model builds
on that approach.

An effective time model should be able to learn how to weight
the different clicks based on recency and retain the information
from older clicks only to the extent that it is useful to predict new
ones. For example, in a system where user preferences quickly
evolve, the system may rapidly forget about older preferences. To
clearly demonstrate the benefits of time modelling we compare to
two different PF models. The first is trained using all past ratings
(PF-all) while the second is trained using only observations at the
last (train) time period (PF-last).

We note that the implicit data case is significantly more chal-
lenging than the usual explicit data case. First, the observations
are extremely imbalanced. For example in the datasets used in the
experiments “0” observations outnumber “1” observations by a ra-
tio of over 250 to 1 (arXiv). Second, implicit data methods train
on exactly VM observations. Finding baselines that will scale to
these data sizes is challenging. Furthermore, our focus on implicit
data means that we cannot readily compare to previously published
results.

We also fit the popular TimeSVD++ model [11]. It is not de-
signed for the implicit data case and preliminary experiments (where
we studied different methods of incorporating zero observations)
on our Netflix-time dataset showed that it performed significantly
worse than all baselines (including both static PF models).

For all experiments we set the number of components to K =
20. Our results generalize beyond this value.

3.3 Click prediction & Metrics

‘We simulate a realistic scenario where each method is given access
to past user clicks and the models must predict items of future in-
terest to the users. Further for each dataset we repeat this process
for each time step. That is for each time step ¢ we train with all
observations before ¢ (i.e., 1...¢ — 1) and evaluate predictions on
the observations at t. When reporting results we average over all
time steps.

Evaluating the accuracy of a collaborative filtering model for im-
plicit data is usually done using ranking-related error metrics. We
consider user recall given K top-items to recommend (“recall@K”
see below for details). However, we notice that on datasets con-
taining many items, models often fail to place any of the user’s
consumed items in the top K. These metrics limit our ability to un-
derstand the merits of different models. As a remedy we turn to
metrics which take into account all test items while discounting the
contribution of an item as a function of its predicted rank. The
popular NDCG, and mean reciprocal rank (MRR) both have this
property. MRR linearly decays the relevance of an item as a func-

tion of its rank while NDCG logarithmically decays them. We also
report the mean average rank (MAR) metric.
Formally, for binary data the four chosen metrics are:
-Recall@T: 3 320, 37 oo %
where I is the indicator function. In our experiments we set
T to 50 for all datasets which is a reasonable number of items
to present to a user. Results are consistent across other values
of T that we have studied.

- Normalized discounted cumulative gain (NDCG):
1N 1
N Zi:l ZjEle log(rank(z,5)+1) °

- Mean reciprocal rank (MRR): % Zf\; >

1
jeyy rank(i,5)
- Mean average rank (MAR): & 3" > jeyv rank(i, 7).

y7 is the set containing user i’s test observations and N the number
of users. rank(4, j) is the predicted rank of item j for user ¢.

3.4 Results

The results across all datasets consistently show the superior per-
formance of dPF according to all baselines. Below we examine
these results in more detail.

We first turn our attention to the Netflix data. On the Netflix-time
dataset dPF outperforms all baselines according to all metrics (Ta-
ble 1). We note that the BPTF baseline mostly outperforms PF-all
and PF-last. This indicates that while BPTF’s time model is useful,
modeling users’ and items’ individual evolutions is preferable.

The performance on Netflix-full is similar where dPF also out-
performs all baselines. Other authors have shown that outperform-
ing static models on Netflix is challenging [19]. As outlined in
Koren [11], Netflix users who change at a very fine level of gran-
ularity (daily) may be hard to capture with a coarser granularity.
Furthermore, we note that users who rarely use the service do not
provide enough data to disambiguate between a small number of
changing user interests and a wider number of szatic user interests
that happen to be exhibited over many time steps (a similar argu-
ment applies to movies in the long tail). Nonetheless dPF is able
to slightly outperform static methods by capturing evolving prefer-
ences and viewer ship where available.

Fitting BPTF to this larger dataset is prohibitively expensive even
with our proposed subsampling approach. As such we could not re-
port results on the larger Netflix dataset nor on the arXiv dataset.

The arXiv is a good testbed for our model since scientists and
science evolve and we believe that it may be possible to capture
such evolutions using arXiv’s click data. We note that dPF outper-
forms all other methods on arXiv (Table 3). This further validates
that dPF provides better recommendations by modelling the evolu-
tion of users and items.

From a methodological point of view it is also interesting to note
that there is not always perfect correlation between all the metrics
(that is the rank of the baselines change under different metrics).
Amongst them MAR seems to be noisiest metric. It can probably
be explained by the fact that it is less robust to outliers because it
weights every test observation evenly.

Effect of hyperparameter values.

We have found that dPF is fairly robust to the values of its hyper-
parameters. We demonstrate it more formally for the variance hy-
perparameters (Figure 2). We note that except at the extremes the
performance of dPF is good for a wide-range of variances. In our
experimental setup the last time step is used for predictions. This
can may explain the model’s robustness.
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Figure 2: dPF performs well across a large range of variances (2—
50) by MRR in a pilot study of a single timestep of the arXiv data.
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Figure 4: The expression level of five static factors of “The Google
Similarity Distance” paper. When compared to the dynamic trend
in Figure 1, we see that the static factors identify the paper’s main
field, graph theory. Moreover, dPF can use the local factors to ex-
press excursions to other fields.

Recall@50 MAR MRR NDCG

dPF 0.170 640  0.027 0.294
BPTF [19] 0.148 668  0.020 0.277
PF-all [6] 0.145 691  0.021 0.280
PF-last [6] 0.065 807 0.019 0.268
Table 1: Performance of dPF versus baselines on Netflix-

time. Bold numbers indicate the top performance for each met-
ric. We were unable to obtain competitive performance from
TimeSVD++[11].

Recall@50 MAR MRR NDCG
dPF 0.156 1605 0.021  0.358
PF-all [6] 0.120 1807 0.015 0.338
PF-last [6] 0.138 1635 0.018  0.351

Table 2: Performance of dPF versus PF on the Netflix-full dataset.
Bold numbers indicate the top performance for each metric. While
dPF does best according to all metrics, PF-last slightly outperforms
PF-all. The performance of PF-last seems to indicate that user pref-
erences and movie popularities vary rapidly.

3.5 Exploration

There are various ways of evaluating a probabilistic model. While
we have provided conclusive empirical results above we now turn
to exploration of the model’s posteriors. Exploring the posterior
can be a useful diagnosis tool [3]. Here our aim is to further vali-
date our modelling choices. We also want to better understand the
arXiv-cs-stats dataset.

In Figure 1 we showed, using the local expected value of its fac-
tors under their posterior distribution, an item that garnered interest
from different communities over time. We can also examine the
model’s global expected value under the posterior distribution (Fig-
ure 4). In addition to the four factors in Figure 1 we added an extra
factor (labeled “Optimization’) which is unused by this paper. The
“Graph Theory” factor is the highest global factor, which is sensi-
ble since it expresses the paper’s main field. The other three factors
are expressed at levels which are in between “Graph Theory” and
“Optimization”. The global popularity of this paper in these four
fields is the same. In particular, dPF can simply use local factors to
explain ephemeral popularity in other fields.

In addition to looking at single users and items we can explore
the model at the aggregate level to discover global patterns. For ex-
ample, we can look at the evolution of different scientific fields over
time. We plot the expected value of all 20 factors inferred using the
arXiv-cs-stats dataset (Figure 3). We corrected for arXiv’s growing
popularity over time. Scientific fields on arXiv are all well estab-
lished, and as such, their popularities are stable over time. Note that
this does not mean that fields do not evolve. We also notice that ac-
cording to dPF, some fields have gained in popularity (in particular
“Machine Learning & Information Theory” as well as “Networks
& Society”).

4. CONCLUSIONS & FUTURE WORK

We examined the problem of modelling user-item clicks through
time. Our main contribution is the dynamic Poisson factorization
model (dPF). In addition to modeling both users and items chang-
ing through time and being able to scale to large datasets using
implicit information, we showed the empirical advantages of mod-
elling the evolution of users and items. Importantly we used this



Recall@50 MAR MRR NDCG
dPF 0.035 21822  0.0062 0.186
PF-all [6] 0.032 22402 0.0056 0.182
PF-last [6] 0.023 25616 0.0040 0.168

Table 3: Performance of dPF versus baselines on arXiv. Bold num-
bers indicate the top performance for each metric.

model to explore and better understand the arXiv, an indispensable
tool to many scientific fields.

There are several opportunities to extend this work. It would be
interesting to model aggregate user trajectories to better understand
how (scientific) communities evolve. It would also be worthwhile
to allow users and items to be modelled at multiple different gran-
ularities. This would allow a model to understand both short and
long-term evolutions. Although we can set the granularity in our
current computation (and memory consumption) may become an
issue as the granularity gets small. Continuous time models may
offer interesting avenues to avoid specifying granularities.
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APPENDIX
A. INFERENCE

Performing Bayesian inference on the random variables of dPF re-
quires calculating the posterior distribution. This is difficult due
to the non-conjugacy (lack of analytic integrals) between the log-
normal distribution of the factors and the Poisson-distributed obser-
vations. We therefore resort to approximate inference techniques
(e.g., Markov chain Monte Carlo or variational methods).

Variational inference frames the posterior inference task as the
problem of minimizing the KL-divergence between an approximate
distribution and the true posterior. This optimization approach is
orders of magnitudes faster than sampling-based approaches, at the
cost of not being able to capture the full Bayesian posterior.

We assume that our approximating family (in variational infer-
ence) fully factorizes. The variational distribution of individual fac-
tors is normally-distributed:

q(unt) - Hq(unt,k|ﬂunt,k7a—int,k)
k

HN(unt,k I/:Lunt,ka a-zzl,nt,k)
k

We treat the other time-independent (v) and time-dependent (@ and
) latent variables in a similar way. To differentiate the variables of
the generative model from their variational counterparts we denote
the latter with a circumflex (a “hat”).

It is straightforward to show that minimizing the KL-divergence
between the q distribution and the true posterior is equivalent to
maximizing a lower bound on the model’s log evidence [9].4 We
use the bold symbols to denote sets of factors, for example the set
of all user factors: u = {Unt,k }n=0:N,t=1.7. ¢ stands for the set of
all hyperparameters: {fiw, Ou, ftv, Ov, la, Ou, s, 05 }. A denotes
all of the parameters to the variational distribution such as flynk,¢
and 62, k¢~ For our model, this evidence lower bound (ELBO) is

p(yl¢) = L(N) 2)
:= Eqllogp(y, u, v, 0, V|¢)] — Eq[log ¢(u, v, @, v)].

The fully-factorized approximation allows us to expand the ELBO
as follows:

N M
> Eqllogp(Tin|pa, 02D + > Eqllog p(¥m |pe, 031)]
n m
T,N N
+ Y Bgllogp(un,ilun,i—1,05D)] + Y Egllogp(up, 1|, o7 1)]
t=2,n n
M M

+ > Eqllogp(vint[Vim,e—1,05D)] + > Eqllog p(v,1|pe, o7T)]
t=2,m m

N,M,T

+ D Eqllogp(ynm,tl Y exp(unk,i + k) exp(vimk,i + k)]
n,m,t k

+ H(q)

where H (q) is the entropy of the variational distribution.

To optimize the ELBO one typically expands the expectations in
Equation 3. The variational parameters can then be optimized us-
ing coordinate or gradient ascent. The non-conjugacy in our model
implies that further manipulations are required to express the ex-
pectations from Equation 3 in closed form. In particular the term
requiring an additional approximation comes from the Poisson dis-

I . . LAk
tribution. The Poisson pdf, with rate A is %e X The first term

*The model evidence is also referred to as the marginal likelihood.

Fort=1...T:

L Vn,k
L VYm, k

Update flunk,: and Gunk,:with L-BFGS usingV

unk‘,,tv&unk,t

Update ftymk,: and Gymi,:with L-BFGS usingV

Aomk,t:Fvmk,t

Update ¢Enmk,t Vn,m, k,t | yn,mt > 0 using Eq. 8
Update fian,k and Gan,xwith L-BFGS usingV . 5. Vn, k

Update [igm, i and 65m,,With L-BFGS usingV L VYm,k

Aom, k:Fom,k

Repeat until convergence

Figure 5: Coordinate ascent algorithm for dPF. We first update
the (variational) correction factors and subsequently we update the
(variational) global factors. Prior to each update the corresponding
vector ¢y, must be evaluated.

in the ELBO as expressed in Equation 3 (the joint distribution over
latent and observed variables) can be re-written using the product
rule of probability as:

Eq[logp(y[u, v, @, ¥) + log p(u, v, @, ¥[()].
The first term corresponds to the Poisson distribution. It can be
expanded into:

k
Eq[log % exp ] = Eg[klog A — k! — )]

= Ey[klog A] — Eg[A] — k!

where A = >, exp(Unk,t + Unk) €XP(Vmk,t + Umk). We do not
know of a closed-form exact solution to the first expectation when
k is non-zero. Fortunately several known techniques can be used to
approximate this integral [18]. We re-use an idea from the recent
Poisson factorization which consists of adding a set of auxiliary
random variables. For dPF, this means adding auxilliary variables
¢mnt,k one for each user-item-timestep component for all of the
non-zero ratings. Formally, this allows for the following manipula-
tion:

log Z exp(Unk,t + Unk) €XP(Vmk,t + Umk) (3)
&

= log Z %nmk’t exp(Unk,t + Unk) €XP(Vmk,t + Umk)  (4)
%

nmk,t

[eXp(unk,t + Unk) eXpP(Vmk,t + ﬁmk)]

= logE 5
8¢ (bnmk,t ( )

> Eg[tnk,t + Unk + Vmk,t + Omk — 108 Gnmk,¢] ©)
7N

We obtain the last inequality by applying Jensen’s inequality. We
note that, unlike in Poisson factorization, the resulting model is not
conditionally conjugate, which intuitively means the distribution
of a variable given everything else has known form. As a result,
the equations do not yield closed-form updates. We use numerical
optimization and perform coordinate ascent on the ELBO using a
quasi-Newton optimizer (L-BFGS). The update for ¢pm¢,1 can be
solved for in expected value with respect to g of Eq. 7 as

¢nmk,t X eXp(ﬁnk,t + ﬁnk + ﬁmk,t + 'ﬁmk) (8)

The algorithm used to infer the variational posteriors (i.e., train
the model) is shown in Figure 5.
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