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Most leading implementations of black-box variational inference
(BBVI) are based on optimizing a stochastic evidence lower bound
(ELBO). But such approaches to BBVI often converge slowly due to
the high variance of their gradient estimates. In this work, we propose
batch and match (BaM), an alternative approach to BBVI based on a
score-based divergence. Notably, this score-based divergence can be
optimized by a closed-form proximal update for Gaussian variational
families with full covariance matrices. We analyze the convergence
of BaM when the target distribution is Gaussian, and we prove that
in the limit of infinite batch size the variational parameter updates
converge exponentially quickly to the target mean and covariance.
We also evaluate the performance of BaM on Gaussian and non-
Gaussian target distributions that arise from posterior inference in
hierarchical and deep generative models. In these experiments, we find
that BaM typically converges in fewer (and sometimes significantly
fewer) gradient evaluations than leading implementations of BBVI
based on ELBO maximization.

1. Introduction. Probabilistic modeling plays a fundamental role in many problems of
inference and decision-making, but it can be challenging to develop accurate probabilistic models
that remain computationally tractable. In typical applications, the goal is to estimate a target
distribution that cannot be evaluated or sampled from exactly, but where an unnormalized form
is available. A canonical situation is applied Bayesian statistics, where the target is a posterior
distribution of latent variables given observations, but where only the model’s joint distribution
is available in closed form. Variational inference (VI) has emerged as a leading method for fast
approximate inference (Blei et al., 2017; Jordan et al., 1999). The idea behind VI is to posit a
parameterized family of approximating distributions, and then to find the member of that family
which is closest to the target distribution.

Recently, VI methods have become increasingly “black box,” in that they only require calculation
of the log of the unnormalized target and (for some algorithms) its gradients (Kingma and
Welling, 2014; Ranganath et al., 2014). Further applications have built on advances in automatic
differentiation, and now black-box variational inference (BBVI) is widely deployed in robust
software packages for probabilistic programming (Bingham et al., 2019; Kucukelbir et al., 2017;
Salvatier et al., 2016).

In general, the ingredients of a BBVI strategy are the form of the approximating family, the
divergence to be minimized, and the optimization algorithm to minimize it. Most BBVI algorithms
work with a factorized (or mean-field) family, and minimize the reverse Kullback-Leibler (KL)
divergence via stochastic gradient descent (SGD). But this approach has its drawbacks. The
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optimizations can be plagued by high-variance gradients and sensitivity to hyperparameters
of the learning algorithms (Dhaka et al., 2020, 2021). These issues are further exacerbated in
high-dimensional problems and when using richer variational families that model the correlations
between different latent variables. There has been recent work on BBVI which avoids SGD for
Gaussian variational families (Modi et al., 2023), but this approach does not minimize an explicit
divergence and requires additional heuristics to converge for non-Gaussian targets.

In this paper, we develop a new approach to BBVI. It is based on a different divergence,
accommodates expressive variational families, and does not rely on SGD for optimization. In
particular, we introduce a novel score-based divergence that measures the agreement of the scores,
or gradients of the log densities, of the target and variational distributions. This divergence can
be estimated for unnormalized target distributions, thus making it a natural choice for BBVI. We
study the score-based divergence for Gaussian variational families with full covariance, rather
than the factorized family. We also develop an efficient stochastic proximal point algorithm, with
closed-form updates, to optimize this divergence.

Our algorithm is called batch and match (BaM), and it alternates between two types of steps.
In the “batch” step, we draw a batch of samples from the current approximation to the target and
use those samples to estimate the divergence; in the “match” step, we estimate a new variational
approximation by matching the scores at these samples. By iterating these steps, BaM finds a
variational distribution that is close in score-based divergence to the target.

Theoretically, we analyze the convergence of BaM when the target itself is Gaussian. In the
limit of an infinite batch size, we prove that the variational parameters converge exponentially fast
to the target mean and covariance. Empirically, we evaluate BaM on a variety of Gaussian and
non-Gaussian target distributions, including Bayesian hierarchical models and deep generative
models. On these same problems, we also compare BaM to a leading implementation of BBVI
based on ELBO maximization (Kucukelbir et al., 2017) and a recently proposed algorithm for
Gaussian score matching (Modi et al., 2023). By and large, we find that BaM converges faster
and to more accurate solutions.

In what follows, we begin by reviewing BBVI and then developing a score-based divergence
for BBVI with several important properties (Section 2). Next, we propose BaM, an iterative
algorithm for score-based Gaussian variational inference, and we study its rate of convergence
(Section 3). We then present a discussion of related methods in the literature (Section 4). Finally,
we conclude with a series of empirical studies on a variety of target distributions (Section 5).

2. BBVI with the score-based divergence. VI was developed as a way to estimate an
unknown target distribution with density p; here we assume that the target is a distribution
on RD. The target is estimated by first positing a variational family of distributions Q, then
finding the particular q ∈ Q that minimizes an objective L (q) measuring the difference between
p and q.

2.1. From VI to BBVI to score-based BBVI. In the classical formulation of VI, the objec-
tive L (q) is the (reverse) Kullback-Leibler (KL) divergence:

KL(q; p) :=
∫

log
(
q(z)
p(z)

)
q(z) dz. (1)

For some models the derivatives of KL(q; p) can be exactly evaluated, but for many others they
cannot. In this case a further approximation is needed. This more challenging situation is the
typical setting for BBVI.
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In BBVI, it is assumed that (a) the target density p cannot be evaluated pointwise or sampled
from exactly, but that (b) an unnormalized target density is available. BBVI algorithms use
stochastic gradient descent to minimize the KL divergence, or equivalently, to maximize the
evidence lower bound (ELBO). The necessary gradients in this case can be estimated with access
to the unnormalized target density. But in practice this objective is difficult to optimize: the
optimization can converge slowly due to noisy gradients, and it can be sensitive to the choice of
learning rates.

In this work, we will also assume additionally that (c) the log target density is differentiable,
and its derivatives can be efficiently evaluated. We define the target density’s score function
s : RD → RD as

s(z) := ∇z log p(z).

It is often possible to compute these scores even when p is intractable because they only depend
on the logarithm of the unormalized target density. In what follows, we introduce the score-based
divergence and study its properties; in Section 3, we will then propose a BBVI algorithm based
on this score-based divergence.

Notation. For Σ ∈ RD×D, let Σ ≻ 0 denote that Σ is positive definite and Σ ⪰ 0 denote
that Σ is positive semi-definite. Define the set of symmetric, positive definite matrices as
SD++ := {Σ ∈ RD×D : Σ = Σ⊤,Σ ≻ 0}. Let tr(Σ) :=

∑D
d=1Σdd denote the trace of Σ and let

I ∈ RD×D denote the identity matrix. We primarily consider two norms throughout the paper:
first, given z ∈ RD and Σ ∈ RD×D, we define the Σ-weighted vector norm, ∥z∥Σ :=

√
z⊤Σz, and

second, given Σ ∈ RD×D, we define the matrix norm ∥Σ∥ to be the spectral norm.

2.2. The score-based divergence. We now introduce the score-based divergence, which will be
the basis for a BBVI objective. Here we focus on a Gaussian variational family, i.e.,

Q = {N (µ,Σ) : µ ∈ RD,Σ ∈ SD++},

but we generalize the score-based divergence to non-Gaussian distributions in Appendix A.
The score-based divergence between densities q ∈ Q and p on RD is defined as

D(q; p) :=

∫ ∥∥∥∇z log
(
q(z)
p(z)

)∥∥∥2
Cov(q)

q(z) dz, (2)

where Cov(q) ∈ SD++ is the covariance matrix of the variational density q. Importantly, the
score-based divergence can be evaluated when p is only known up to a normalization constant, as
it only depends on the target density through the score ∇ log p. Thus, not only can this divergence
be used as a VI objective, but it can also be used for goodness-of-fit evaluations, unlike the KL
divergence.

The divergence in eq. (2) is well-defined under mild conditions on p and q (see Appendix A),
and it enjoys two important properties:

Property 1 (Non-negativity & equality): D(q; p) ≥ 0 with D(q; p) = 0 iff p = q.
Property 2 (Affine invariance): Let h : RD → RD be an affine transformation, and consider

the induced densities q̃(h(z))= q(z)|J (z)|−1 and p̃(h(z))= p(z)|J (z)|−1, where J is the
determinant of the Jacobian of h. Then D(q; p) = D(q̃; p̃).

We note that these properties are also satisfied by the KL divergence (Qiao and Minematsu,
2010). The first property shows that D(q; p) is a proper divergence measuring the agreement
between p and q. The second property states that the score-based divergence D(q, p) is invariant
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under affine transformations; this property is desirable to maintain a consistent measure of
similarity under coordinate transformations of the input. This property depends crucially on the
weighted vector norm, mediated by Cov(q), in the divergence of eq. (2).

There are several related divergences in the research literature. A generalization of the score-
based divergence is the weighted Fisher divergence (Barp et al., 2019), given by Eq[∥∇ log(q/p)∥2M ],
where M ∈RD×D; the score-based divergence is recovered by the choice M=Cov(q). A special case
of the score-based divergence is the Fisher divergence (Hyvärinen, 2005) given by Eq[∥∇ log(q/p)∥2I ],
but this divergence is not affine invariant. (See the proof of Theorem A.4 for further discussion.)

3. Score-based Gaussian variational inference. The score-based divergence has many
favorable properties for VI. We now show that this divergence can also be efficiently optimized by
an iterative black-box algorithm.

3.1. Algorithm. Our goal is to find some Gaussian distribution q∗∈Q that minimizes D(q; p).
Without additional assumptions on the target p, the score-based divergence D(q; p) is not
analytically tractable. So instead we consider a Monte Carlo estimate of D(q; p): given samples
z1, . . . , zB ∼ q, we construct the approximation

D(q; p) ≈ 1

B

B∑
b=1

∥∥∥∇z log
(
q(zb)
p(zb)

)∥∥∥2
Cov(q)

. (3)

This estimator is unbiased, but it does not lend itself to optimization: we cannot simultaneously
sample from q while also optimizing over the family Q to which it belongs.

To circumvent this difficulty, we take an iterative approach whose goal is to produce a sequence
of distributions {qt}∞t=0 that converges to q∗. At a high level, the approach alternates between two
steps—one that constructs a biased estimate of D(q; p), and another that updates q based on this
biased estimate, but not too aggressively (so as to minimize the effect of the bias). Specifically, at
the tth iteration, we first estimate D(q; p) with samples from qt: i.e., given z1, . . . , zB ∼ qt, we
compute

D̂qt(q; p) :=
1

B

B∑
b=1

∥∥∥∇z log
(
q(zb)
p(zb)

)∥∥∥2
Cov(q)

. (4)

We call eq. (4) the batch step because it estimates D(q, p) from the batch of samples z1, . . . , zB ∼ qt.
The batch step of the algorithm relies on stochastic sampling, but it alternates with a determin-

istic step that updates q by minimizing the empirical score-based divergence D̂qt(q; p) in eq. (4).
Importantly, this minimization is subject to a regularizer: we penalize large differences between qt
and qt+1 by their KL divergence. Intuitively, when q remains close to qt, then D̂qt(q; p) in eq. (4)
remains a good approximation to the unbiased estimate D̂q(q; p) in eq. (3). With this in mind,
we compute qt+1 by minimizing the regularized objective function

L BaM(q) := D̂qt(q; p) +
2
λt

KL(qt; q), (5)

where q ∈ Q and λt>0 is the inverse regularization parameter. When λt is small, the regularizer
is large, encouraging the next iterate qt+1 to remain close to qt; thus λt can also be viewed as a
learning rate.

The objective function in eq. (5) has the important property that its global minimum can be
computed analytically in closed form. In particular, we can optimize eq. (5) without recourse
to gradient-based methods that are derived from a linearization around qt. We refer to the
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minimization of L BaM(q) in eq. (5) as the match step because the updated distribution qt+1

always matches the scores at z1, . . . , zB better than the current one qt.
Combining these two steps, we arrive at the batch and match (BaM) algorithm for BBVI with

a score-based divergence. The intuition behind this iterative approach will be formally justified in
Section 3.2 by a proof of convergence. We now discuss each step of the algorithm in greater detail.

Batch Step. This step begins by sampling z1, z2, . . . , zB ∼ qt and computing the scores
gb = ∇ log p(zb) at each sample. It then calculates the means and covariances (over the batch) of
these quantities; we denote these statistics by

z =
1

B

B∑
b=1

zb, C =
1

B

B∑
b=1

(zb − z)(zb − z)⊤ (6)

g =
1

B

B∑
b=1

gb, Γ =
1

B

B∑
b=1

(gb − g)(gb − g)⊤, (7)

where z, g ∈ RD are the means, respectively, of the samples and the scores, and C,Γ ∈ RD×D are
their covariances. In Appendix C, we show that the empirical score-based divergence D̂qt(q; p) in
eq. (4) can be written in terms of these statistics as

D̂qt(q; p) = tr(ΓΣ) + tr(CΣ−1) +
∥∥µ−z−Σg

∥∥2
Σ−1+ const.,

where for clarity we have suppressed additive constants that do not depend on the mean µ or
covariance Σ of q. This calculation completes the batch step of BaM.

Match Step. The match step of BaM updates the variational approximation q by setting

qt+1 = argmin
q∈Q

L BaM(q), (8)

where L BaM(q) is given by eq. (5). This optimization can be solved in closed form; that is, we can
analytically calculate the variational mean µt+1 and covariance Σt+1 that minimize L BaM(q).

The details of this calculation are given in Appendix C. There we show that the updated
covariance Σt+1 satisfies a quadratic matrix equation,

Σt+1UΣt+1 +Σt+1 = V, (9)

where the matrices U and V in this expression are positive semidefinite and determined by
statistics from the batch step of BaM. In particular, these matrices are given by

U = λtΓ + λt
1+λt

g g⊤ (10)

V = Σt + λtC + λt
1+λt

(µt − z)(µt − z)⊤. (11)

The quadratic matrix equation in eq. (9) has a symmetric and positive-definite solution (see
Appendix B), and it is given by

Σt+1 = 2V
(
I + (I + 4UV )

1
2

)−1
. (12)

The solution in eq. (12) is the BaM update for the variational covariance. The update for the
variational mean is given by

µt+1 =
1

1+λt
µt +

λt
1+λt

(Σt+1 g + z) . (13)
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Algorithm 1 Batch and match VI
1: Input: Iterations T , batch size B, inverse regularization λt>0, target score function s : RD → RD,

initial variational mean µ0 ∈ RD and covariance Σ0 ∈ SD++

2: for t = 0, . . . , T−1 do
3: Sample batch zb ∼ N (µt,Σt) for b = 1, . . . , B
4: Evaluate scores gb = s(zb) for b = 1, . . . , B
5: Compute statistics z, g ∈ RD and Γ, C ∈ RD×D

z = 1
B

B∑
b=1

zb, C = 1
B

B∑
b=1

(zb − z)(zb − z)⊤

g = 1
B

B∑
b=1

gb, Γ = 1
B

B∑
b=1

(gb − g)(gb − g)⊤

6: Compute matrices U and V needed to solve the quadratic matrix equation ΣUΣ+ Σ = V

U = λtΓ + λt

1+λt
g g⊤

V = Σt + λtC + λt

1+λt
(µt − z)(µt − z)⊤

7: Update variational parameters

Σt+1 = 2V
(
I + (I + 4UV )

1
2

)−1

µt+1 = 1
1+λt

µt +
λt

1+λt
(Σt+1 g + z)

8: end for
9: Output: variational parameters µT ,ΣT

Note that the update for µt+1 depends on Σt+1, so these updates must be performed in the order
shown above. The updates in eq. (12–13) complete the match step of BaM.

More intuition for BaM can be obtained by examining certain limiting cases of the batch
size and learning rate. When λt→0, the updates have no effect, with Σt+1=Σt and µt+1=µt.
Alternatively, when B=1 and λt→∞, the BaM updates reduce to the recently proposed updates
for BBVI by (exact) Gaussian score matching (Modi et al., 2023); this equivalence is shown in
Appendix C. Finally, when B → ∞ and λ0→∞ (in that order), BaM converges to a Gaussian
target distribution in one step; see Corollary D.5 of Appendix D.

We provide pseudocode for BaM in Algorithm 1. We note that it costs O(D3) to compute
the covariance update as shown in eq. (12), but for small batch sizes, when the matrix U is of
rank O(B) with B≪D, it is possible to compute the update in O(B2D + B3); this update is
presented in Lemma B.3 of Appendix B.

BaM incorporates many ideas from previous work. Like the stochastic proximal point (SPP)
method (Asi and Duchi, 2019; Davis and Drusvyatskiy, 2019), it minimizes a Monte Carlo estimate
of a divergence subject to a regularization term. In proximal point methods, the updates are
always regularized by squared Euclidean distance, but the KL divergence has been used elsewhere
as a regularizer—for example, in the EM algorithm (Chrétien and Hero, 2000; Tseng, 2004) and
for approximate Bayesian inference (Dai et al., 2016; Khan et al., 2015, 2016; Theis and Hoffman,
2015). KL-based regularizers are also a hallmark of mirror descent methods (Nemirovskii and
Yudin, 1983), but in these methods the objective function is linearized—a poor approximation
for objective functions with high curvature. Notably, BaM does not introduce any linearizations
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because its optimizations in eq. (8) can be solved in closed form.

3.2. Proof of convergence for Gaussian targets. In this section we analyze a concrete setting
in which we can rigorously prove the convergence of the updates in Algorithm 1.

Suppose the target distribution is itself a Gaussian and the updates are computed in the
limit of infinite batch size (B→∞). In this setting we show that BaM converges to the target
distribution. More precisely, we show that the variational parameters converge exponentially
fast to their target values for all fixed levels of regularization λ>0 and no matter how they are
initialized. Our proof does not exclude the possibility of convergence in less restrictive settings,
and in Section 5, we observe empirically that the updates also converge for non-Gaussian targets
and finite batch sizes. Though the proof here does not cover such cases, it remains instructive in
many ways.

To proceed, consider a Gaussian target distribution p = N (µ∗,Σ∗). At the tth iteration of
Algorithm 1, we measure the normalized errors in the mean and covariance parameters by

εt := Σ
− 1

2
∗ (µt−µ∗), (14)

∆t := Σ
− 1

2
∗ (Σt−Σ∗) Σ

− 1
2

∗ . (15)

The theorem below shows that εt,∆t → 0 in spectral norm. Specifically, it shows that this
convergence occurs exponentially fast at a rate controlled by the quality of initialization and
amount of regularization.

Theorem 3.1 (Exponential convergence). Suppose that p = N (µ∗,Σ∗) in Algorithm 1,

and let α>0 denote the minimum eigenvalue of the matrix Σ
− 1

2
∗ Σ0Σ

− 1
2

∗ . For any fixed level of
regularization λ>0, define

β := min

(
α,

1+λ

1+λ+∥ε0∥2

)
, δ :=

λβ

1+λ
, (16)

where β ∈ (0, 1] measures the quality of initialization and δ ∈ (0, 1) denotes a rate of decay. Then
with probability 1 in the limit of infinite batch size (B→∞), and for all t≥ 0, the normalized
errors in eqs. (14–15) satisfy

∥εt∥ ≤ (1−δ)t∥ε0∥, (17)

∥∆t∥ ≤ (1−δ)t∥∆0∥ + t(1−δ)t−1∥ε0∥2. (18)

Before sketching the proof we make three remarks. First, these error bounds behave sensibly:
they suggest that the updates converge more slowly when the learning rate is small (with
λ≪1), when the variational mean is poorly initialized (with ∥ε0∥2≫1), and/or when the initial
estimate of the covariance is nearly singular (with α≪1). Second, the theorem holds under very
general conditions—not only for any initialization of µ0 and Σ0≻0, but also for any λ>0. This
robustness is typical of proximal algorithms, which are well-known for their stability with respect
to hyperparameters (Asi and Duchi, 2019), but it is uncharacteristic of many gradient-based
methods, which only converge when the learning rate varies inversely with the largest eigenvalue
of an underlying Hessian (Garrigos and Gower, 2023). Third, with more elaborate bookkeeping,
we can derive tighter bounds both for the above setting and also when different iterations use
varying levels of regularization {λt}∞t=0. We give a full proof with these extensions in Appendix D.
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Proof Sketch. The crux of the proof is to bound the normalized errors in eqs. (14–15) from
one iteration to the next. Most importantly, we show that

∥εt+1∥ ≤ (1−δ)∥εt∥, (19)

∥∆t+1∥ ≤ (1−δ)∥∆t∥ + ∥εt∥2, (20)

where δ is given by eq. (16), and from these bounds, we use induction to prove the overall rates
of decay in eqs. (17-18). Here we briefly describe the steps that are needed to derive the bounds
in eqs. (19–20).

The first is to examine the statistics computed at each iteration of the algorithm in the infinite
batch limit (B→∞). This limit is simplifying because by the law of large numbers, we can
replace the batched averages over B samples at each iteration by their expected values under the
variational distribution qt=N (µt,Σt). The second step of the proof is to analyze the algorithm’s
convergence in terms of the normalized mean εt in eq. (14) and the normalized covariance matrix

Jt = Σ
− 1

2
∗ ΣtΣ

− 1
2

∗ = I +∆t, (21)

where I denotes the identity matrix. In the infinite batch limit, we show that with probability 1
these quantities satisfy

λJt+1

(
Jt+

1
1+λεtε

⊤
t

)
Jt+1 + Jt+1 = (1+λ)Jt, (22)

εt+1 =
(
I − λ

1+λJt+1

)
εt. (23)

The third step of the proof is to sandwich the matrix Jt+1 that appears in eq. (22) between two
other positive-definite matrices whose eigenvalues are more easily bounded. Specifically, at each
iteration t, we introduce matrices Ht+1 and Kt+1 defined by

λHt+1

(
Jt+

∥εt∥2
1+λ I

)
Ht+1 +Ht+1 = (1+λ)Jt, (24)

λKt+1 JtKt+1 +Kt+1 = (1+λ)Jt. (25)

It is easier to analyze the solutions to these equations because they replace the outer-product
εtε

⊤
t in eq. (22) by a multiple of the identity matrix. We show that for all times t ≥ 0,

Ht+1 ⪯ Jt+1 ⪯ Kt+1, (26)

so that we can prove ∥Jt−I∥→0 by showing ∥Ht−I∥→0 and ∥Kt−I∥→0. Finally, the last (and
most technical) step is to derive the bounds in eqs. (19–20) by combining the sandwich inequality
in eq. (26) with a detailed analysis of eqs. (22–25).

4. Related work. BaM builds on intuitions from earlier work on Gaussian score matching
(GSM) (Modi et al., 2023). GSM is an iterative algorithm for BBVI that updates a full-covariance
Gaussian by analytically solving a system of nonlinear equations. As previously discussed, BaM
recovers GSM as a special limiting case. One limitation of GSM is that it aims to match the scores
exactly; thus, if the target is not exactly Gaussian, the updates for GSM attempt to solve an
infeasible problem, In addition, the batch updates for GSM perform an ad hoc averaging that is
not guaranteed to match any scores exactly, even when it is possible to do so. BaM overcomes these
limitations by optimizing a proper score-based divergence on each batch of samples. Empirically,
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Fig 1: Gaussian targets of increasing dimension. Solid curves indicate the mean over 10 runs
(transparent curves). Both ADVI and GSM use a batch size of B=2. The batch size for BaM is
given in the legend.

with BaM, we observe that larger batch sizes lead to more stable convergence. The score-based
divergence behind BaM also lends itself to analysis, and we are able to provide theoretical
guarantees on the convergence of BaM for Gaussian targets.

Proximal point methods have been studied in several papers in the context of variational
inference; typically the objective is a stochastic estimate of the ELBO with a (forward) KL
regularization term. For example, Theis and Hoffman (2015) optimize this objective using
alternating coordinate ascent. In other work, Khan et al. (2015, 2016) propose a splitting method
for this objective, and by linearizing the difficult terms, they obtain a closed-form solution when
the variational family is Gaussian and additional knowledge is given about the structure of the
target. By contrast, BaM does not resort to linearization in order to obtain an analytical solution,
nor does it require additional assumptions on the structure of the target.

Several works consider score matching with a Fisher divergence in the context of VI. For
instance, Yu and Zhang (2023) propose a score-matching approach for semi-implicit variational
families based on stochastic gradient optimization of the Fisher divergence. Zhang et al. (2018)
use the Fisher divergence with an energy-based model as the variational family. BaM differs
from these approaches by working with a Gaussian variational family and an affine-invariant
score-based divergence.

Finally, we note that the idea of score matching (Hyvärinen, 2005) with a (weighted) Fisher
divergence appears in many contexts beyond VI (Barp et al., 2019; Song and Ermon, 2019).
One such context is generative modeling: here, given a set of training examples, the goal is to
approximate an unknown data distribution p by a parameterized model pθ with an intractable
normalization constant. Note that in this setting one can evaluate ∇ log pθ but not ∇ log p. This
setting is quite different from the setting of VI in this paper where we do not have samples from p,
where we can evaluate ∇ log p, and where the approximating distribution q has the much simpler
and more tractable form of a multivariate Gaussian.

5. Experiments. We evaluate BaM against two other BBVI methods for Gaussian varia-
tional families with full covariance matrices. The first of these is automatic differentiation VI
(ADVI) (Kucukelbir et al., 2017), which is based on ELBO maximization, and the second is
GSM (Modi et al., 2023), as described in the previous section. We implement all algorithms using
JAX (Bradbury et al., 2018),1 which supports efficient automatic differentiation both on CPU and
GPU. We provide pseudocode for these methods in Appendix E.1.

5.1. Synthetically-constructed target distributions. We first validate BaM in two settings where
we know the true target distribution p. In the first setting, we construct Gaussian targets with

1Code for the implementations is available online at: https://github.com/modichirag/GSM-VI/tree/dev.

https://github.com/modichirag/GSM-VI/tree/dev
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Fig 2: Non-Gaussian targets constructed using the sinh-arcsinh distribution, varying the skew s
and the tail weight t. ADVI and GSM use a batch size of B=5.

increasing number of dimensions. In the second setting, we study BaM for distributions with
increasing (but controlled) amounts of non-Gaussianity. As evaluation metrics, we use empirical
estimates of the KL divergence in both the forward direction, KL(p; q), and the reverse direction,
KL(q; p).

5.1.1. Gaussian targets with increasing dimensions. We construct Gaussian targets of increas-
ing dimension with D=4, 16, 64, 256. In Figure 1, we compare BaM, ADVI, and GSM on each of
these target distributions, plotting the forward KL divergence against the number of gradient
evaluations. Results for the reverse KL divergence and other parameter settings are provided in
Appendix E.2. In all of these experiments, we use a constant learning rate λt = BD for BaM. Here
we find that BaM converges orders of magnitude faster than ADVI. While GSM is competitive
with BAM in some experiments, BaM converges more quickly with increasing batch size; this is
unlike GSM which was observed to have marginal gains beyond B=2 for Gaussian targets (Modi
et al., 2023).

5.1.2. Non-Gaussian targets with varying skew and tails. The sinh-arcsinh normal distribution
transforms a Gaussian random variable via the hyperbolic sine function and its inverse (Jones and
Pewsey, 2009, 2019). If y ∼ N (µ,Σ), then a sample from the sinh-arcsinh normal distribution is
given by

z = sinh
(
1
τ

(
sinh−1(y) + s

))
,

where the parameters s ∈ R and τ >0 control, respectively, the skew and the heaviness of the
tails. The Gaussian distribution is recovered when s=0 and τ=1.

We construct different non-Gaussian target distributions by varying these parameters. The
results are presented in Figure 2. Here we use a decaying learning rate λt = BD/(t+1) for BaM,
as some decay is necessary for BaM to converge when the target distribution is non-Gaussian.
First, we construct target distributions with normal tails (t=1) but varying skew (s=0.2, 1.0, 1.8).
Here we observe that BaM converges faster than ADVI. For large skew (s = 1.0, 1.8), BaM
converges to a higher value of the forward KL divergence but to similar values of the reverse KL
divergence. In these experiments, we see that GSM and ADVI often have similar performance
but that BaM stabilizes more quickly with larger batch sizes. Notably, the reverse KL divergence
for GSM diverges when the target distribution is highly skewed (s=1.8).
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Fig 3: Posterior inference in Bayesian models. The curves denote the mean over 5 runs, and
shaded regions denote their standard error. Solid curves (B=32) correspond to larger batch sizes
than dashed curves (B=8).

Next we construct target distributions with no skew (s= 0) but tails of varying heaviness
(t=0.1, 0.9, 1.7). Here we find that all methods tend to converge to similar values of the reverse
KL divergence. In some cases, BaM and ADVI converge to better values than GSM, and BaM
typically converges in fewer gradient evaluations than ADVI.

5.2. Application: hierarchical Bayesian models. We now consider the application of BaM to
posterior inference. Suppose we have observations {xn}Nn=1, and the target distribution is the
posterior density

p
(
z | {xn}Nn=1

)
∝ p(z) p

(
{xn}Nn=1 | z

)
, (27)

with prior p(z) and likelihood p({xn}Nn=1 | z). We examine three target distributions from
posteriordb (Magnusson et al., 2022), a database of Stan (Carpenter et al., 2017; Roualdes
et al., 2023) models with reference samples generated using Hamiltonian Monte Carlo (HMC).
The first target is nearly Gaussian (arK, D=7). The other two targets are non-Gaussian: one is a
Gaussian process (GP) Poisson regression model (gp-pois-regr, D=13), and the other is the
8-schools hierarchical Bayesian model (eight-schools-centered, D=10).

In these experiments, we evaluate BaM, ADVI, and GSM by computing the relative errors (We-
landawe et al., 2022) in the posterior mean and standard deviation (SD) estimated from the HMC
reference samples; we define these quantities and present additional results in Appendix E.4. In
all experiments, we use a decaying learning rate λt = BD/(t+1) for BaM.

Figure 3 compares the relative mean errors of BaM, ADVI, and GSM for batch sizes B=8
and B=32. We observe that BaM outperforms ADVI. For smaller batch sizes GSM can converge
faster than BaM, but it oscillates around the solution. BaM performs better with increasing batch
size, converging more quickly and to a more stable result, while GSM and ADVI do not benefit
from increasing batch size. In the appendix, we report the relative SD error and find similar
results except that in the hierarchical example, BaM converges to a larger relative SD error.

5.3. Application: deep generative model. In a deep generative model, the likelihood is parame-
terized by the output of a neural network Ω. For example, we may take

zn ∼ N (0, I) (28)

xn | zn ∼ N (Ω(zn, θ̂), σ
2I), (29)

where xn corresponds to a high-dimensional object, such as an image, and zn is a low-dimensional
representation of xn. The neural network Ω is parametrized by θ̂ and maps zn to the mean of
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Fig 4: Image reconstruction and error when the posterior mean of z′ is fed into the generative
neural network. The beige and purple stars highlight the best outcome for ADVI and BaM,
respectively, after 3,000 gradient evaluations.

the likelihood p(xn|zn). For this example, we set σ2 = 0.1. The above joint distribution underlies
many deep learning models (Tomczak, 2022), including the variational autoencoder (Kingma and
Welling, 2014; Rezende et al., 2014). We train the neural network on the CIFAR-10 image data
set (Krizhevsky, 2009). We model the images as continuous, with xn ∈ R3072, and learn a latent
representation zn ∈ R256; see Appendix E.5 for details.

Given a new observation x′, we wish to approximate the posterior p(z′|x′). As an evaluation
metric, we examine how well x′ is reconstructed by feeding the posterior expectation E[z′|x′]
into the neural network Ω(·, θ̂). The quality of the reconstruction is assessed visually and using
the mean squared error (MSE, Figure 4). For ADVI and BaM, we use a pilot run of T =100
iterations to find a suitable learning rate; we then run the algorithms for T =1000 iterations.
(GSM does not require this tuning step.) BaM performs poorly when the batch size is very small
(B=10) relative to the dimension of the latent variable z′, but it becomes competitive as the
batch size is increased. When the batch size is comparable to the dimension of zn (i.e. B=300),
BaM converges an order of magnitude (or more) faster than ADVI and GSM.

To refine our comparison, suppose we have a computational budget of 3000 gradient evaluations.
Under this budget, ADVI achieves its lowest MSE for B=10 and T =300, while BaM produces a
comparable result for B=300 and T =10. Hence, the gradient evaluations for BaM can be largely
parallelized. By contrast, most gradients for ADVI must be evaluated sequentially.

Depending on how the parameter θ̂ of the neural network is estimated, it possible to learn an
encoder and perform amortized variational inference (AVI) on a new observation x′. When such an
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encoder is available, estimations of p(z′|x′) can be obtained essentially for free. In our experiment,
both BaM and ADVI eventually achieve a lower reconstruction error than AVI. This is because
AVI uses a factorized Gaussian approximation, whereas BaM and ADVI use a full-covariance
approximation, and the latter provides better compression of x′ even though the dimension of z′

and the weights of the neural network remain unchanged.

6. Discussion and future work. In this paper, we introduce a score-based divergence that
is especially well-suited to BBVI with Gaussian variational families. We show that the score-based
divergence has a number of desirable properties. We then propose a regularized optimization
based on this divergence, and we show that it admits a closed-form solution, leading to a fast
iterative algorithm for score-based BBVI. We analyze the convergence of score-based BBVI when
the target is Gaussian, and in the limit of an infinite batch size, we show that the updates
converge exponentially quickly to the target mean and covariance. Finally, we demonstrate the
effectiveness of BaM in a number of empirical studies involving both Gaussian and non-Gaussian
targets; here we observe that for sufficiently large batch sizes, our method converges much faster
than other BBVI algorithms.

There are a number of fruitful directions for future work. First, it remains to analyze the
convergence of BaM in the finite-batch case and for a larger class of target distributions. Second,
it seems promising to develop score-based BBVI for other (non-Gaussian) variational families, and
more generally, to study what divergences lend themselves to stochastic proximal point algorithms.
Finally, we note that the score-based divergence, which can be computed for unnormalized models,
has useful applications beyond VI (Hyvärinen, 2005); for instance, the property of affine invariance
makes it attractive as a goodness-of-fit diagnostic for general methods of approximate inference.
Further study remains to characterize the relationship of the score-based divergence to other such
diagnostics (Barp et al., 2019; Gorham and Mackey, 2015; Liu et al., 2016; Welandawe et al.,
2022).
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APPENDIX A: SCORE-BASED DIVERGENCE

In Section 2 we introduced a score-based divergence between two distributions, p and q, over RD,
and specifically we considered the case where q was Gaussian. In this section, we define this
score-based divergence more generally. In particular, here we assume only that these distributions
satisfy the following properties:

(i) p(z)>0 and q(z)>0 for all z ∈ RD.
(ii) ∇p and ∇q exist and are continuous everywhere in RD.
(iii) Eq

[
∥∇ log q∥2

]
< ∞.

There may be weaker properties than these that also yield the following results (or various
generalizations thereof), but the above will suffice for our purposes.

This appendix is organized as follows. We begin with a lemma that is needed to define a
score-based divergence for distributions (not necessarily Gaussian) satisfying the above properties.
We then show that this score-based divergence has several appealing properties in its own right:
it is nonnegative and invariant under affine reparameterizations, it takes a simple and intuitive
form for distributions that are related by annealing or exponential tilting, and it reduces to the
KL divergence in certain special cases.

Lemma A.1. The matrix defined by Γq = Eq

[
(∇ log q)(∇ log q)⊤

]
exists in RD×D and is

positive definite.

Proof. Let u be any unit vector in RD. We shall prove the theorem by showing that
0<u⊤Γqu<∞, or equivalently that all of the eigenvalues of Γq are finite and positive. The
boundedness follows easily from property (iii) since

u⊤Γqu = Eq

[
(∇ log q · u)2

]
≤ Eq

[
∥∇ log q∥2

]
< ∞. (30)

To show positivity, we appeal to property (ii) that q is differentiable; hence for all t > 0 we can
write

q(tu) = q(0) +

∫ t

0
dτ u⊤∇q(τu) = q(0) +

∫ t

0
dτ q(τu)∇ log q(τu) · u. (31)

To proceed, we take the limit t → ∞ on both sides of this equation, and we appeal to property (i)
that q(0)>0. Moreover, since limt→∞ q(tu)=0 for all normalizable distributions q, we see that∫ ∞

0
dτ q(τu)∇ log q(τu) · u < 0. (32)

For this inequality to be satisfied, there must exist some t0 ≥ 0 such that ∇ log q(t0u) · u < 0.
Let z0 = t0u, and let δ = −∇ log q(z0) · u. Since q and ∇q are continuous by properties (iii-iv),
there must exist some finite ball B around z0 such that ∇ log q(z) · u < − δ

2 for all z ∈ B. Let
qB = minz∈B q(z), and note that qB > 0 since it is the minimum of a positive-valued function on
a compact set. It follows that

u⊤Γqu = Eq

[
(∇ log q · u)2

]
> qB · vol(B) ·

(
δ
2

)2
> 0, (33)

where the inequality is obtained by considering only those contributions to the expected value
from within the volume of the ball B around z0. This proves the lemma.
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The lemma is needed for the following definition of the score-based divergence. Notably, the
definition assumes that the matrix Eq

[
(∇ log q)(∇ log q)⊤

]
is invertible.

Definition A.2 (Score-based divergence). Let p and q satisfy the properties listed above,
and let Γq be defined as in Lemma A.1. Then we define the score-based divergence between q
and p as

D(q; p) = Eq

[(
∇ log q

p

)⊤
Γ−1
q

(
∇ log q

p

)]
. (34)

Let us quickly verify that this definition reduces to the previous one in Section 2 where q is
assumed to be Gaussian. In particular, suppose that q = N (ν,Ψ). In this case

Γq = Eq[(∇ log q)(∇ log q)⊤] = Eq[Ψ
−1(z−ν)(z−ν)⊤Ψ−1] = Ψ−1ΨΨ−1 = Ψ−1 = [Cov(q)]−1. (35)

Substituting this result into eq. (34), we recover the more specialized definition of the score-based
divergence in Section 2.

We now return to the more general definition in eq. (34). Next we show this score-based
divergence shares many desirable properties with the Kullback-Leibler divergence; indeed, in
certain special cases of interest, these two divergences, D(q; p) and KL(q; p), are equivalent. These
properties are demonstrated in the following theorems.

Theorem A.3 (Nonnegativity). D(q; p) ≥ 0 with equality if and only if p(z) = q(z) for all
z ∈ RD.

Proof. Nonnegativity follows from the previous lemma, and it is clear that the divergence
vanishes if p = q. To prove the converse, we note that for any z ∈ RD, we can write

log
p(z)

q(z)
= log

p(0)

q(0)
+

∫ 1

0
dt ∇ log

[
p(tz)

q(tz)

]
· z. (36)

Now suppose that D(q; p) = 0. Then it must be the case that ∇ log p = ∇ log q everywhere in RD.
(If it were the case that ∇ log p(z0) ̸= ∇ log q(z0) for some z0 ∈ RD, then by continuity, there
would also exist some ball around z0 where these gradients were not equal; furthermore, in this
case, the value inside the expectation of eq. (34) would be positive everywhere inside this ball,
yielding a positive value for the divergence.) Since the gradients of log p and log q are everywhere
equal, it follows from eq. (36) that

log
p(z)

q(z)
= log

p(0)

q(0)
, (37)

or equivalently, that p(z) and q(z) have some constant ratio independent of z. But this constant
ratio must be equal to one because both distributions yield the same value when they are
integrated over RD.

Theorem A.4 (Affine invariance). Let f : RD → RD be an affine transformation, and
consider the induced densities q̃(f(z))=q(z)|J (z)|−1 and p̃(f(z))=p(z)|J (z)|−1, where J (z)
is the determinant of the Jacobian of f . Then D(q; p) = D(q̃; p̃).
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Proof. Denote the affine transformation by z̃ = Az + b where A ∈ RD×D and b ∈ RD. Then
we have

∇z

[
log p(z)

]
= ∇z

[
log

(
p̃(z̃)

∣∣∣∣dz̃dz
∣∣∣∣)] = ∇z[log (p̃(z̃) |A|)] =

(
dz̃

dz

)⊤
∇z̃[log p̃(z̃)] = A⊤∇z̃

[
log p̃(z̃)

]
,

(38)
and a similar relation holds for ∇x log q(z). It follows that

D(q; p) = Eq

[
(∇ log p−∇ log q)⊤

(
Eq

[
(∇ log q)(∇ log q)⊤

])−1
(∇ log p−∇ log q)

]
(39)

= Eq̃

[
(∇ log p̃−∇ log q̃)⊤A

(
A⊤Eq̃

[
(∇ log q̃)(∇ log q̃)⊤

]
A
)−1

A⊤(∇ log p̃−∇ log q̃)

]
(40)

= Eq̃

[
(∇ log p̃−∇ log q̃)⊤

(
Eq̃

[
(∇ log q̃)(∇ log q̃)⊤

])−1
(∇ log p̃−∇ log q̃)

]
(41)

= D
(
q̃, p̃
)
. (42)

Note the important role played by the matrix Γq = Eq

[
(∇ log q)(∇ log q)⊤

]
in this calcula-

tion. In particular, the unscaled quantity Eq[∥∇ log p−∇ log q∥2] is not invariant under affine
reparameterizations of RD.

Theorem A.5 (Annealing). If p is an annealing of q, with p ∝ qβ , then D(q; p) = D(β−1)2.

Proof. In this case ∇ log p = β∇ log q. Thus, with Γq defined as in Lemma A.1, we have

D(q; p) = (β−1)2 Eq

[
(∇ log q)⊤ Γ−1

q (∇ log q)
]
= (β−1)2 tr

(
Γ−1
q Γq

)
= D(β−1)2. (43)

Here we see that D(q; p) measures the difference in inverse temperature from the annealing.
Note that in the limit β → 0 of a uniform distribution, eq. (43) yields a divergence of D that is
independent of the base distribution q.

Theorem A.6 (Exponential tilting). If p is an exponential tilting of q, with p(z) ∝ q(z) eθ
⊤z,

then D(q; p) = θ⊤Γ−1
q θ where Γq is defined as in Lemma A.1.

Proof. In this case ∇ log p−∇ log q = θ, and the result follows at once from substitution into
eq. (34).

Proposition A.7 (Gaussian score-based divergences). Suppose that p is multivariate
Gaussian with mean µ and covariance Σ and that q is multivariate Gaussian with mean ν and
covariance Ψ, respectively. Then

D(q; p) = tr
[(
I −ΨΣ−1

)2]
+ (ν−µ)⊤Σ−1ΨΣ−1(ν−µ). (44)

Proof. We use the previous result in eq. (35) that Γq = Ψ−1 when q is Gaussian with
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covariance Ψ. Then from eq. (34) the score-based divergence is given by

D(q; p) = Eq

[
(∇ log p−∇ log q)⊤ Γ−1

q (∇ log p−∇ log q)
]
, (45)

= Eq

[(
Σ−1(z−µ)−Ψ−1(z−ν)

)⊤
Ψ
(
Σ−1(z−µ)−Ψ−1(z−ν)

)]
, (46)

= Eq

[((
Σ−1−Ψ−1

)
(z−ν)− Σ−1(µ−ν)

)⊤
Ψ
((
Σ−1−Ψ−1

)
(z−ν)− Σ−1(µ−ν)

)]
, (47)

= tr
[
Ψ(Σ−1−Ψ−1)Ψ(Σ−1−Ψ−1)

]
+ (ν−µ)⊤Σ−1ΨΣ−1(ν−µ), (48)

= tr
[(
I −ΨΣ−1

)2]
+ (ν−µ)⊤Σ−1ΨΣ−1(ν−µ). (49)

Corollary A.8 (Relation to KL divergence). Let p and q be multivariate
Gaussian distributions with different means but the same covariance matrix. Then
1
2D(q; p) = KL(q; p) = KL(p; q).

Proof. Let µ and ν denote, respectively, the means of p and q, and let Σ denote their shared
covariance. From the previous result, we find

D(q; p) = (ν−µ)⊤Σ−1(ν−µ). (50)

Finally, we recall the standard derivation for these distributions that

KL(q; p) = Eq

[
log q

p

]
(51)

= 1
2Eq

[
(z−ν)⊤Σ−1(z−ν)− (z−µ)⊤Σ−1(z−µ)

]
(52)

= 1
2Eq

[
((z−µ)− (ν−µ))⊤Σ−1((z−µ)− (ν−µ))− (z−µ)⊤Σ−1(z−µ)

]
(53)

= 1
2(ν−µ)⊤Σ−1(ν−µ), (54)

thus matching the result for 1
2D(q; p). Moreover, we obtain the same result for KL(p; q) by noting

that the above expression is symmetric with respect to the means µ and ν.

In sum, the score-based divergence D(q; p) in eq. (34) has several attractive properties as a
measure of difference between most smooth distributions p and q with support on all of RD. First,
it is nonnegative and equal to zero if and only if p=q. Second, it is invariant to affine reparame-
terizations of the underlying domain. Third, it behaves intuitively for simple transformations such
as exponential tilting and annealing. Fourth, it is normalized such that every base distribution q
has the same divergence to (the limiting case of) a uniform distribution. Finally, it reduces to a
constant factor of the KL divergence for the special case of two multivariate Gaussians with the
same covariance matrix but different means.

APPENDIX B: QUADRATIC MATRIX EQUATIONS

In this appendix we show how to solve the quadratic matrix equation XUX+X=V where
U and V are positive semidefinite matrices in RD×D. We also verify certain properties of these
solutions that are needed elsewhere in the paper but that are not immediately obvious. Quadratic
matrix equations of this type (and of many generalizations thereof) have been studied for
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decades (Kučera, 1972a,b; Potter, 1966; Shurbet et al., 1974; Yuan et al., 2021), and our main
goal here is to collect the results that we need in their simplest forms. These results are contained
in the following four lemmas.

Lemma B.1. Let U⪰0 and V ≻0, and suppose that XUX+X=V . Then a solution to this
equation is given by

X = 2V
[
I + (I + 4UV )

1
2

]−1
. (55)

Proof. We start by turning the left side of the equation XUX+X=V into a form that can
be easily factored. Multiplying both sides by U , we see that

UXUX + UX = UV. (56)

The next step is to complete the square by adding 1
4I to both sides; in this way, we find that(

UX + 1
2I
)2

= UV + 1
4I. (57)

Next we claim that the matrix UV + 1
4I on the right side of eq. (57) has all positive eigenvalues.

To verify this claim, we note that

UV + 1
4I = V − 1

2

(
V

1
2UV

1
2 + 1

4I
)
V

1
2 . (58)

Thus we see that this matrix is similar to (and thus shares all the same eigenvalues as) the positive
definite matrix U

1
2V U

1
2 + 1

4I in parentheses on the right side of eq. (58). Since the matrix has all
positive eigenvalues, it has a unique principal square root, and from eq. (57) it follows that

UX = (UV + 1
4I)

1
2 − 1

2I. (59)

If the matrix U were of full rank, then we could solve for X by left-multiplying both sides of
eq. (59) by its inverse; however, we desire a general solution even in the case that U is not full
rank. Thus we proceed in a different way. In particular, we substitute the solution for UX in
eq. (59) into the original form of the quadratic matrix equation. In this way we find that

V = XUX +X, (60)

= X(UX + I), (61)

= X
[((

UV + 1
4I
) 1

2 − 1
2I
)
+ I
]
, (62)

= X
[
(UV + 1

4I)
1
2 + 1

2I
]
, (63)

= 1
2X
[
(4UV + I)

1
2 + I

]
. (64)

Finally we note that the matrix in brackets on the right side of eq. (64) has all positive eigenvalues;
hence it is invertible, and after right-multiplying eq. (64) by its inverse we obtain the desired
solution in eq. (55).

Lemma B.2. The solution to XUX+X=V in eq. (55) is symmetric and positive definite.
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Proof. The key idea of the proof is to simultaneously diagonalize the matrices U and V −1

by congruence. In particular, let Λ and E be, respectively, the diagonal and orthogonal matrices
satisfying

V
1
2UV

1
2 = EΛE⊤, (65)

where Λ⪰0. Now define C=V
1
2E. It follows that C⊤V −1C=I and C⊤UC=Λ, showing that C

simultaneously diagonalizes V −1 and U by congruence. Alternatively, we may use these relations
to express U and V in terms of C and Λ as

V = CC⊤, (66)

U = C−⊤ΛC−1. (67)

We now substitute these expressions for U and V into the solution from eq. (55). The following
calculation then gives the desired result:

X = 2V
[
I + (I + 4UV )−

1
2

]−1
, (68)

= 2CC⊤
[
I +

(
I + 4C−⊤ΛC⊤

) 1
2

]−1

, (69)

= 2CC⊤
[
I +

(
C−⊤(I + 4Λ)C⊤

) 1
2

]−1

, (70)

= 2CC⊤
[
I + C−⊤(I + 4Λ)

1
2C⊤

]−1
, (71)

= 2CC⊤
[
C−⊤

(
I + (I + 4Λ)

1
2

)
C⊤
]−1

, (72)

= 2CC⊤C−⊤
[
I + (I + 4Λ)

1
2

]−1
C⊤, (73)

= 2C
[
I + (I + 4Λ)

1
2

]−1
C⊤. (74)

Recalling that Λ⪰0, we see that the above expression for X is manifestly symmetric and positive
definite.

Next we consider the cost of computing the solution to XUX+X = V in eq. (55). On the
right side of eq. (55) there appear both a matrix square root and a matrix inverse. As written, it
therefore costs O(D3) to compute this solution when U and V are D×D matrices. However, if U
is of very low rank, there is a way to compute this solution much more efficiently. This possibility
is demonstrated by the following lemma.

Lemma B.3 (Low rank solver). Let U =QQ⊤ where Q ∈RD×K . Then the solution in
eq. (55), or equivalently in eq. (74), can also be computed as

X = V − V ⊤Q

[
1
2I +

(
Q⊤V Q+ 1

4I
) 1

2

]−2

Q⊤V. (75)

Before proving the lemma, we analyze the computational cost to evaluate eq. (75). Note that
it costs O(KD2) to compute the decomposition U = QQ⊤ as well as to form the product Q⊤V ,
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while it costs O(K3) to invert and take square roots of K×K matrices. Thus the total cost of
eq. (75) is O(KD2+K3), in comparison to the O(D3) cost of eq. (55). This computational cost
results in a potentially large savings if K≪D. We now prove the lemma.

Proof. We will show that eq. (75) is equivalent to eq. (74) in the previous lemma. Again we
appeal to the existence of an invertible matrix C that simultaneously diagonalizes V −1 and U as
in eqs. (66–67). If U=QQ⊤, then it follows from eq. (67) that

Q = C−⊤Λ
1
2R (76)

for some orthogonal matrix R. Next we substitute V =CC⊤ from eq. (66) and Q=C−⊤Λ
1
2R

from eq. (76) in place of each appearance of V and Q in eq. (75). In this way we find that

X = V − V ⊤Q

[
1
2I +

(
Q⊤V Q+ 1

4I
) 1

2

]−2

Q⊤V, (77)

= CC⊤ − CΛ
1
2R

[
1
2I +

(
(R⊤Λ

1
2C−1)(CC⊤)(C−⊤Λ

1
2R) + 1

4I
) 1

2

]−2

R⊤Λ
1
2C⊤, (78)

= C

[
I − Λ

1
2R

[
1
2I +

(
R⊤ΛR+ 1

4I
) 1

2

]−2

R⊤Λ
1
2

]
C⊤, (79)

= C

[
I − Λ

1
2R
[
1
2I +R⊤ (Λ + 1

4I
) 1

2 R
]−2

R⊤Λ
1
2

]
C⊤, (80)

= C

[
I − Λ

1
2R
[
R⊤

(
1
2I +

(
Λ + 1

4I
) 1

2

)
R
]−2

R⊤Λ
1
2

]
C⊤, (81)

= C

[
I − Λ

1
2R

[
R⊤

(
1
2I +

(
Λ + 1

4I
) 1

2

)2
R

]−1

R⊤Λ
1
2

]
C⊤, (82)

= C

[
I − Λ

1
2R

[
R⊤

(
1
2I +

(
Λ + 1

4I
) 1

2

)−2

R

]
R⊤Λ

1
2

]
C⊤, (83)

= C

[
I − Λ

1
2

(
1
2I +

(
Λ + 1

4I
) 1

2

)−2

Λ
1
2

]
C⊤. (84)

We now compare the matrices sandwiched between C and C⊤ in eqs. (74) and (84). Both of
these sandwiched matrices are diagonal, so it is enough to compare their corresponding diagonal
elements. Let ν denote one element along the diagonal of Λ. Then starting from eq. (84), we see
that

1− ν(
1
2 +

√
ν + 1

4

)2 = 1− 4ν

(1 +
√
4ν + 1)2

=
(1 +

√
4ν + 1)2 − 4ν

(1 +
√
4ν + 1)2

=
2

1 +
√
4ν + 1

. (85)

Comparing the left and right terms in eq. (85), we see that the corresponding elements of diagonal
matrices in eqs. (74) and (84) are equal, and we conclude that eqs. (55) and (75) yield the same
solution.

The last lemma in this appendix is one that we will need for the proof of convergence of
Algorithm 1 in the limit of infinite batch size. In particular, it is needed to prove the sandwiching
inequality in eq. (26).
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Lemma B.4 (Monotonicity). Let X, Y , and V be positive-definite matrices satisfying
XTX +X = Y UY + Y = V , where T ⪰ U ⪰ 0. Then X ⪯ Y .

Proof. The result follows from examining the solutions for X and Y directly. As shorthand,
let S = V

1
2 . By Lemma B.1, we have the solutions

X = 2S
[
I + (S + 4STS)

1
2

]−1
S, (86)

Y = 2S
[
I + (S + 4SUS)

1
2

]−1
S. (87)

If T ⪰ U , then the positive semi-definite ordering is preserved by the following chain of implications:

STS ⪰ SUS, (88)

S + 4STS ⪰ S + 4SUS, (89)

(S + 4STS)
1
2 ⪰ (S + 4SUS)

1
2 , (90)

I + (S + 4STS)
1
2 ⪰ I + (S + 4SUS)

1
2 , (91)

where in eq. (90) we have used the fact that positive semi-definite orderings are preserved by
matrix square roots. Finally, these orderings are reversed by inverse operations, so that[

I + (S + 4STS)
1
2

]−1
⪯
[
I + (S + 4SUS)

1
2

]−1
. (92)

It follows from eq. (92) and the solutions in eqs. (86–87) that X ⪯ Y , thus proving the lemma.

APPENDIX C: DERIVATION OF BATCH AND MATCH UPDATES

In this appendix we derive the updates in Algorithm 1 for score-based variational inference. The
algorithm alternates between two steps—a batch step that draws samples from an approximating
Gaussian distribution and computes various statistics of these samples, and a match step that
uses these statistics to derive an updated Gaussian approximation, one that better matches the
scores of the target distribution. We explain each of these steps in turn, and then we review the
special case in which they reduce to the previously published updates (Modi et al., 2023) for
Gaussian Score Matching (GSM).

C.1. Batch step. At each iteration, Algorithm 1 solves an optimization based on samples
drawn from its current Gaussian approximation to the target distribution. Let qt denote this
approximation at the tth iteration, with mean µt and covariance Σt, and let z1, z2, . . . , zB denote
the B samples that are drawn from this distribution. The algorithm uses these samples to compute
a (biased) empirical estimate of the score-based divergence between the target distribution, p,
and another Gaussian approximation q with mean µ and covariance Σ. We denote this empirical
estimate by

D̂qt(q; p) =
1

B

B∑
b=1

∥∥∥∇ log q(zb)−∇ log p(zb)
∥∥∥2
Σ
. (93)

To optimize the Gaussian approximation q that appears in this divergence, it is first necessary
to evaluate the sum in eq. (93) over the batch of samples z1, z2, . . . , zB that have been drawn
from qt.
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The batch step of Algorithm 1 computes the statistics of these samples that enter into this
calculation. Since q is Gaussian, its score at the bth sample is given by ∇ log q(zb) = −Σ−1(zb−µ).
As shorthand, let gb = ∇ log p(zb) denote the score of the target distribution at the bth sample.
In terms of these scores, the sum in eq. (93) is given by

D̂qt(q; p) =
1

B

B∑
b=1

∥∥∥− Σ−1(zb − µ)− gb

∥∥∥2
Σ
. (94)

Next we show that D̂qt(q, p) depends in a simple way on certain first-order and second-order
statistics of the samples, and it is precisely these statistics that are computed in the batch step.
In particular, we compute the following:

z =
1

B

B∑
b=1

zb, g =
1

B

B∑
b=1

gb, C =
1

B

B∑
b=1

(zb− z)(zb− z)⊤, Γ =
1

B

N∑
n=1

(gb−g)(gb−g)⊤. (95)

Note that the first two of these statistics compute the means of the samples and scores in the
current iteration of the algorithm, while the remaining two compute their covariance matrices.
With these definitions, we can now express D̂qt(q, p) in an especially revealing form. Proceeding
from eq. (94), we have

D̂qt(q; p) =
1

B

B∑
b=1

∥∥∥(g − gb) + Σ−1(z − zb) + Σ−1(µ− z − Σg)
∥∥∥2
Σ
, (96)

=
1

B

B∑
b=1

[∥∥gb − g
∥∥2
Σ
+
∥∥zb − z

∥∥2
Σ−1 +

∥∥µ− z − Σg
∥∥2
Σ−1 + 2(gb − g)(zb − z)

]
, (97)

= tr(ΓΣ) + tr(CΣ−1) +
∥∥µ− z − Σg

∥∥2
Σ−1 + constant, (98)

where in the second line we have exploited that many cross-terms vanish, and in the third line
we have appealed to the definitions of C and Γ in eqs. (95). We have also indicated explicitly
that the last term in eq. (98) has no dependence on µ and Σ; it is a constant with respect to the
approximating distribution q that the algorithm seeks to optimize. This optimization is performed
by the match step, to which we turn our attention next.

C.2. Match step. The match step of the algorithm updates the Gaussian approximation
of VI to better match the recently sampled scores of the target distribution. The update at the
tth iteration is computed as

qt+1 = argmin
q∈Q

[
L BaM(q)

]
, (99)

where Q is the Gaussian variational family of Section 2 and L BaM(q) is an objective function that
balances the empirical estimate of the score based divergence in in eq. (98) against a regularizer
that controls how far qt+1 can move away from qt. Specifically, the objective function takes the
form

L BaM(q) = D̂qt(q; p) +
2
λt

KL(qt; q), (100)
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where the regularizing term is proportional to the KL divergence between the Gaussian distribu-
tions qt and q. This KL divergence is in turn given by the standard result

KL(qt; q) = 1
2

[
tr(Σ−1Σt)− log

|Σt|
|Σ|

+ ∥µ− µt∥2Σ−1 −D

]
. (101)

From eqs. (98) and (101), we see that this objective function has a complicated coupled dependence
on µ and Σ; nevertheless, the optimal values of µ and Σ can be computed in closed form. The
rest of this section is devoted to performing this optimization.

First we perform the optimization with respect to the mean µ, which appears quadratically in
the objective L BaM through the third terms in (98) and (101). Thus we find

∂L BaM

∂µ
=

∂

∂µ

{∥∥µ− z − Σg
∥∥2
Σ−1 +

1

λt
∥µ− µt∥2Σ−1

}
= 2Σ−1

[
µ− z − Σg + 1

λt
(µ− µt)

]
.

(102)
Setting this gradient to zero, we obtain a linear system which can be solved for the updated
mean µt+1 in terms of the updated covariance Σt+1. Specifically we find

µt+1 =
λt

1+λt
(z +Σt+1g) +

1

1+λt
µt, (103)

matching eq. (13) in Section 3 of the paper. As a sanity check, we observe that in the limit of
infinite regularization (λt→0), the updated mean is equal to the previous mean (with µt+1=µt),
while in the limit of zero regularization (λt→∞), the updated mean is equal to precisely the
value that zeros its contribution to D̂qt(q, p) in eq. (98).

Next we perform this optimization with respect to the covariance Σ. To simplify our work, we
first eliminate the mean µ from the optimization via eq. (103). When the mean is eliminated in
this way from eqs. (98) and (101), we find that

D̂qt(q; p) = tr(ΓΣ) + tr(CΣ−1) +
1

(1 + λt)2
∥∥µt−z−Σg

∥∥2
Σ−1 + constant, (104)

KL(qt; q) = 1
2

[
tr(Σ−1Σt)− log

|Σt|
|Σ|

+
λ2
t

(1 + λt)2
∥∥µt−z−Σg

∥∥2
Σ−1 −D

]
. (105)

Combining these terms via eq. (100), and dropping additive constants, we obtain an objective
function of the covariance matrix Σ alone. We denote this objective function by M (Σ), and it is
given by

M (Σ) = tr(ΓΣ) + tr
([

C+
1

λt
Σt

]
Σ−1

)
+

1

1 + λt

(∥∥µt−z
∥∥2
Σ−1 +

∥∥g∥∥2
Σ

)
+

1

λt
log |Σ|. (106)

All the terms in this objective function can be differentiated with respect to Σ. To minimize M (Σ),
we set its total derivative to zero. Doing this, we find that

0 = Γ +
1

1+λt
g g⊤ − Σ−1

[
C+

1

λt
Σt+

1

1+λt
(µt−z)(µt−z)⊤

]
Σ−1 +

1

λt
Σ−1. (107)

The above is a quadratic matrix equation for the inverse covariance matrix Σ−1; multiplying on
the left and right by Σ, we can rewrite it as a quadratic matrix equation for Σ. In this way we
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find that

ΣUΣ+ Σ = V where


U = λtΓ +

λt

1+λt
g g⊤,

V = Σt + λtC +
λt

1+λt
(µt−z)(µt−z)⊤,

(108)

matching eq. (9) in Section 3 of the paper. The solution to this quadratic matrix equation is
given by Lemma B.1, yielding the update rule

Σt+1 = 2V
[
I + (I + 4UV )

1
2

]−1
(109)

and matching eq. (12) in Section 3 of the paper. Moreover, this solution is guaranteed to be
symmetric and positive definite by Lemma B.2.

C.3. Gaussian score matching as a special case. In this section, we show that the
updates for BaM include the updates for GSM (Modi et al., 2023) as a limiting case. In BaM,
this limiting case occurs when there is no regularization (λ→∞) and when the batch size is equal
to one (B=1). In this case, we show that the updates in eqs. (103) and (108) coincide with those
of GSM.

To see this equivalence, we set B=1, and we use zt and gt to denote, respectively, the single
sample from qt and its score under p at the tth iteration of BaM. The equivalence arises from a
simple intuition: as λ→∞, all the weight in the loss shifts to minimizing the divergence D̂qt(q; p),

which is then minimized exactly so that D̂qt(q; p)=0. More formally, in this limit the batch step
can be written as

lim
λ→∞

min
q∈Q

[
D̂qt(q; p) +

2

λt
KL(qt; q)

]
= min

q∈Q

[
KL(qt; q)

]
such that D̂qt(q; p)=0. (110)

The divergence term D̂qt(q; p) only vanishes when the scores match exactly; thus the above can
be re-written as

min
q∈Q

[
KL(qt; q)

]
such that ∇ log q(zt)=∇ log p(zt), (111)

which is exactly the variational formulation of the GSM method (Modi et al., 2023)
We can also make this equivalence more precise by studying the resulting update. Indeed, the

batch statistics in eq. (95) simplify in this setting: namely, we have z = zt and g = gt (because
there is only one sample) and C=Γ=0 (because the batch has no variance). Next we take the
limit λt→∞ in eq. (108). In this limit we find that

U = gtg
⊤
t , (112)

V = Σt + (µt−zt)(µt−zt)
⊤, (113)

so that the covariance is updated by solving the quadratic matrix equation

Σt+1gtg
⊤
t Σt+1 +Σt+1 = Σt + (µt−zt)(µt−zt)

⊤. (114)

Similarly, taking the limit λt→∞ in eq. (103), we see that the mean is updated as

µt+1 = Σt+1gt + zt. (115)

These BaM updates coincide exactly with the updates for GSM: specifically, eqs. (114) and (115)
here are identical to eqs. (42) and (23) in Modi et al. (2023).
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APPENDIX D: PROOF OF CONVERGENCE

In this appendix we provide full details for the proof of convergence in Theorem 3.1. We
repeat equations freely from earlier parts of the paper when it helps to make the appendix more
self-contained. Recall that the target distribution in this setting is assumed to be Gaussian with
mean µ∗ and covariance Σ∗; in addition, we measure the normalized errors at the tth iteration by

εt = Σ
− 1

2
∗ (µt − µ∗), (116)

∆t = Σ− 1
2ΣtΣ

− 1
2 − I. (117)

If the mean and covariance iterates of Algorithm 1 converge to those of the target distribution,
then equivalently the norms of these errors must converge to zero. Many of our intermediate
results are expressed in terms of the matrices

Jt = Σ
− 1

2
∗ ΣtΣ

− 1
2

∗ , (118)

which from eq. (117) we can also write as Jt = I +∆t. For convenience we restate the theorem in
section D.1; our main result is that in the limit of an infinite batch size, the norms of the errors
in eqs. (116–117) decay exponentially to zero with rates that we can bound from below.

The rest of the appendix is organized according to the major steps of the proof as sketched in
section 3.2. In section D.2, we examine the statistics that are computed by Algorithm 1 when the
target distribution is Gaussian and the number of batch samples goes to infinity. In section D.3,
we derive the recursions that are satisfied for the normalized mean εt and covariance Jt in this
limit. In section D.4, we derive a sandwiching inequality for positive-definite matrices that arise in
the analysis of these recursions. In section D.5, we use the sandwiching inequality to derive upper
and lower bounds on the eigenvalues of Jt. In section D.6, we use these eigenvalue bounds to derive
how the normalized errors εt and ∆t decay from one iteration to the next. In section D.7, we use
induction on these results to derive the final bounds on the errors in eqs. (121–122), thus proving
the theorem. In the more technical sections of the appendix, we sometimes require intermediate
results that digress from the main flow of the argument; to avoid too many digressions, we collect
the proofs for all of these intermediate results in section D.8.

D.1. Main result. Recall that our main result is that as B → ∞, the spectral norms of the
normalized mean and covariance errors in decay exponentially to zero with rates that we can
bound from below.
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Theorem D.1 (Restatement of Theorem 3.1). Suppose that p = N (µ∗,Σ∗) in Algorithm 1,

and let α>0 denote the minimum eigenvalue of the matrix Σ
− 1

2
∗ Σ0Σ

− 1
2

∗ . For any fixed level of
regularization λ>0, define

β := min

(
α,

1+λ

1+λ+∥ε0∥2

)
, (119)

δ :=
λβ

1+λ
, (120)

where β ∈ (0, 1] measures the quality of initialization and δ ∈ (0, 1) denotes a rate of decay.
Then with probability 1 in the limit of infinite batch size (B →∞), and for all t ≥ 0, the
normalized errors in eqs. (116–117) satisfy

∥εt∥ ≤ (1−δ)t∥ε0∥, (121)

∥∆t∥ ≤ (1−δ)t∥∆0∥ + t(1−δ)t−1∥ε0∥2. (122)

We emphasize that the theorem holds under very general conditions: it is true no matter how
the variational parameters are initialized (assuming only that they are finite and that the initial
covariance estimate is not singular), and it is true for any fixed degree of regularization λ>0.
Notably, the value of λ is not required to be inversely proportional to the largest (but a priori
unknown) eigenvalue of some Hessian matrix, an assumption that is typically needed to prove the
convergence of most gradient-based methods. This stability with respect to hyperparameters is a
well-known property of proximal algorithms, one that has been previously observed beyond the
setting of variational inference in this paper.

Finally we note that the bounds in eqs. (121–122) can be tightened with more elaborate
bookkeeping and also extended to updates that use varying levels of regularization {λt}∞t=0

at different iterations of the algorithm. At various points in what follows, we indicate how to
strengthen the results of the theorem along these lines. Throughout this section, we use the
matrix norm ∥·∥ to denote the spectral norm, and we use the notation νmin(J) and νmax(J) to
denote the minimum and maximum eigenvalues of a matrix J .

D.2. Infinite batch limit. The first step of the proof is analyze how the statistics computed
at each iteration of Algorithm 1 simplify in the infinite batch limit (B →∞). Let qt denote
the Gaussian variational approximation at the tth iteration of the algorithm, let zb ∼ N (µt,Σt)
denote the bth sample from this distribution, and let gb = ∇ log p(zb) denote the corresponding
score of the target distribution p at this sample. Recall that step 5 of Algorithm 1 computes the
following batch statistics:

zB =
1

B

B∑
b=1

zb, CB =
1

B

B∑
b=1

(zb − zB)(zb − zB)
⊤, (123)

gB =
1

B

B∑
b=1

gb, ΓB =
1

B

B∑
b=1

(gb − gB)(gb − gB)
⊤, (124)

Here we use the subscript on these averages to explicitly indicate the batch size. (Also, to avoid
an excess of indices, we do not explicitly indicate the iteration t of the algorithm.) These statistics
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simplify considerably when the target distribution is multivariate Gaussian and the number of
batch samples goes to infinity. In particular, we obtain the following result.

Lemma D.2 (Infinite batch limit). Suppose p=N (µ∗,Σ∗). Then with probability 1, as
the number of batch samples goes to infinity (B→∞), the statistics in eqs. (123–124) tend to

lim
B→∞

zB = µt, (125)

lim
B→∞

CB = Σt, (126)

lim
B→∞

gB = Σ−1
∗ (µ∗ − µt), (127)

lim
B→∞

ΓB = Σ−1
∗ ΣtΣ

−1
∗ . (128)

Proof. The first two of these limits follow directly from the strong law of large numbers. In
particular, for the sample mean in eq. (123), we have with probability 1 that

lim
B→∞

zB = lim
B→∞

[
1

B

B∑
b=1

zb

]
=

∫
z qt(dz) = µt, (129)

thus yielding eq. (125). Likewise for the sample covariance in eq. (123), we have with probability 1
that

lim
B→∞

CB = lim
B→∞

[
1

B

B∑
b=1

(zb−zB)(zb−zB)
⊤

]
=

∫
(z−µt)(z−µt)

⊤qt(dz) = Σt, (130)

thus yielding eq. (126). Next we consider the infinite batch limits for gB and ΓB, in eq. (124),
involving the scores of the target distribution. Note that if this target distribution is multivariate
Gaussian, with p = N (µ∗,Σ∗), then we have

gb = ∇ log p(zb) = Σ−1
∗ (µ∗−zb), (131)

showing that the score gb is a linear function of zb. Thus the infinite batch limits gB and ΓB

follow directly from those for zB and CB . In particular, combining eq. (131) with the calculation
in eq. (129), we see that

lim
B→∞

gB = lim
B→∞

[
1

B

B∑
b=1

gb

]
= lim

B→∞

[
Σ−1
∗ (µ∗ − zB)

]
= Σ−1

∗ (µ∗ − µt) (132)

for the mean of the scores in this limit, thus yielding eq. (127). Likewise, by the same reasoning,
we see that

lim
B→∞

ΓB = lim
B→∞

[
1

B

B∑
b=1

(gb − gB)(gb − gB)
⊤

]
= lim

B→∞
Σ−1
∗ CBΣ

−1
∗ = Σ−1

∗ ΣtΣ
−1
∗ (133)

for the covariance of the scores in this limit, thus yielding eq. (128). This proves the lemma.
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D.3. Recursions for εt and Jt. Next we use Lemma D.2 to derive recursions for the
normalized error εt in eq. (116) and the normalized covariance Jt in eq. (118). Both follow directly
from our previous results.

Proposition D.3 (Recursion for εt). Suppose p=N (µ∗,Σ∗), and let B→∞ in Algorithm 1.
Then with probability 1, the normalized error at the (t+1)th iteration of satisfies

εt+1 =

[
I − λt

1 + λt
Jt+1

]
εt. (134)

Proof. Consider the update for the variational mean in step 7 of Algorithm 1. We begin by
computing the infinite batch limit of this update. Using the limits for zB and gB from Lemma D.2,
we see that

µt+1 = lim
B→∞

[(
1

1+λt

)
µt +

(
λt

1+λt

)(
Σt+1gB + zB

)]
, (135)

=

(
1

1+λt

)
µt +

(
λt

1+λt

)(
Σt+1Σ

−1
∗ (µ∗−µt) + µt

)
, (136)

= µt +
λt

1+λt
Σt+1Σ

−1
∗ (µ∗−µt). (137)

The proposition then follows by substituting eq. (137) into the definition of the normalized error
in eq. (116):

εt+1 = Σ
− 1

2
∗ (µt+1−µ∗), (138)

= Σ
− 1

2
∗

[
µt +

λt

1+λt
Σt+1Σ

−1
∗ (µ∗−µt)− µ∗

]
, (139)

=

[
I − λt

1+λt
Σ
− 1

2
∗ Σt+1Σ

− 1
2

∗

]
Σ
− 1

2
∗ (µt−µ∗), (140)

=

[
I − λt

1+λt
Jt+1

]
εt. (141)

This proves the proposition, and we note that this recursion takes the same form as eq. (23), in
the proof sketch of Theorem 3.1, if a fixed level of regularization is used at each iteration.

Proposition D.4 (Recursion for Jt). Suppose p=N (µ∗,Σ∗), and let B→∞ in Algorithm 1.
Then with probability 1, the normalized covariance at the (t+1)th iteration of satisfies

λtJt+1

(
Jt +

1

1+λt
εtε

⊤
t

)
Jt+1 + Jt+1 = (1+λt)Jt (142)

Proof. Consider the quadratic matrix equation, from step 6 of Algorithm 1, that is satisfied
by the variational covariance after t+1 updates:

Σt+1UBΣt+1 +Σt+1 = VB. (143)
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We begin by computing the infinite batch limit of the matrices, UB and VB, that appear in this
equation. Starting from eq. (11) for VB , and using the limits for zB and CB from Lemma D.2, we
see that

lim
B→∞

VB = lim
B→∞

[
Σt + λtCB +

λt

1+λt
(µt − zB)(µt − zB)

⊤
]
, (144)

= (1+λt)Σt, (145)

= Σ
1
2
∗
[
(1+λt)Jt

]
Σ

1
2
∗ , (146)

where in the last line we have used eq. (118) to re-express the right side in terms of Jt. Likewise,
starting from eq. (10) for UB, and using the limits for gB and ΓB from Lemma D.2, we see that

lim
B→∞

UB = lim
B→∞

[
λtΓB +

λt

1+λt
ḡB ḡ⊤B

]
(147)

= λtΣ
−1
∗ ΣtΣ

−1
∗ +

λt

1+λt
Σ−1
∗ (µ−µt)(µ−µt)

⊤Σ−1
∗ (148)

= λtΣ
−1
∗ ΣtΣ

−1
∗ +

λt

1+λt
Σ−1
∗ (µ∗−µt)(µ∗−µt)

⊤Σ−1
∗ (149)

= λtΣ
− 1

2
∗

(
Jt +

1

1+λt
εtε

⊤
t

)
Σ
− 1

2
∗ , (150)

where again in the last line we have used eqs. (116) and (118) to re-express the right side in terms
of εt and Jt. Next we substitute these limits for UB and VB into the quadratic matrix equation in
eq. (143). It follows that

λtΣt+1Σ
− 1

2
∗

(
Jt +

1

1+λt
εtε

⊤
t

)
Σ
− 1

2
∗ Σt+1 +Σt+1 = Σ

1
2
∗
[
(1+λt)Jt

]
Σ

1
2
∗ . (151)

Finally, we obtain the recursion in eq. (142) by left and right multiplying eq. (151) by Σ
− 1

2
∗ and

again making the substitution Jt+1 = Σ
− 1

2
∗ Σt+1Σ

− 1
2

∗ from eq. (118).

The proof of convergence in future sections relies on various relaxations to derive the simple
error bounds in eqs. (121–122). Before proceeding, it is therefore worth noting the following
property of Algorithm 1 that is not apparent from these bounds.

Corollary D.5 (One-step convergence). Suppose p=N (µ∗,Σ∗), and consider the limit of
infinite batch size (B→∞) in Algorithm 1 followed by the additional limit of no regularization
(λ0→∞). In this combined limit, the algorithm converges with probability 1 in one step: i.e.,
limλ0→∞ limB→∞ ∥ε1∥ = limλ0→∞ limB→∞ ∥∆1∥ = 0.

Proof. Consider the recursion for J1 given by eq. (142) in the additional limit λ0 → ∞. In
this limit one can ignore the terms that are not of leading order in λ0, and the recursion simplifes
to J1J0J1=J0. This equation has only one positive-definite solution given by J1=I. Next consider
the recursion for ε1 given by eq. (134) in the additional limit λ0 → ∞. In this limit this recursion
simplifies to ε1 = (I−J1)ε0, showing that ε1=0. It follows that Σ1=Σ and µ1=µ, and future
updates have no effect.
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D.4. Sandwiching inequality. To complete the proof of convergence for Theorem 3.1, we
must show that ∥εt∥→ 0 and ∥Jt−I∥→ 0 as t→∞. We showed in Propositions D.3 and D.4
that εt and Jt satisfy simple recursions. However, it is not immediately obvious how to translate
these recursions for εt and Jt into recursions for ∥εt∥ and ∥Jt−I∥. To do so requires additional
machinery.

One crucial piece of machinery is the sandwiching inequality that we prove in this section. In
addition to the normalized covariance matrices {Jt}∞t=0, we introduce two sequences of auxiliary
matrices, {Ht}∞t=1 and {Kt}∞t=1 satisfying

0 ≺ Ht+1 ⪯ Jt+1 ⪯ Kt+1 (152)

for all t≥0; this is what we call the sandwiching inequality. These auxiliary matrices are defined
by the recursions

λtHt+1

(
Jt +

1

1+λt
∥εt∥2 I

)
Ht+1 +Ht+1 = (1+λt)Jt, (153)

λtKt+1JtKt+1 +Kt+1 = (1+λt)Jt. (154)

We invite the reader to scrutinize the differences between these recursions for Ht+1 and Kt+1 and
the one for Jt+1 eq. (142). Note that in eq. (154), defining Kt+1, we have dropped the term in
eq. (142) involving the outer-product εtε⊤t , while in eq. (153), defining Ht+1, we have replaced this
term by a scalar multiple of the identity matrix. As we show later, these auxiliary recursions are
easier to analyze because the matrices Ht+1 and Kt+1 (unlike Jt+1) share the same eigenvectors
as Jt. Later we will exploit this fact to bound their eigenvalues as well as the errors ∥Jt+1−I∥.

In this section we show that the recursions for Ht+1 and Kt+1 in eqs. (153–154) imply the
sandwiching inequality in eq. (152). As we shall see, the sandwiching inequality follows mainly
from the monotonicity property of these quadratic matrix equations proven in Lemma B.4.

Proposition D.6 (Sandwiching inequality). Let Σ0≻0 and λt>0 for all t≥0. Also, let
{εt}∞t=1, {Jt}∞t=1, {Ht}∞t=1, and {Kt}∞t=1 be defined, respectively, by the recursions in eqs. (134),
(142), and (153–154). Then for all t≥0 we have

0 ≺ Ht+1 ⪯ Jt+1 ⪯ Kt+1. (155)

Proof. We prove the orderings in the proposition from left to right. Since Σ0≻0, it follows
from eq. (118) that J0≻0, and Lemma B.2 ensures for the recursion in eq. (142) that Jt+1≻0 for
all t≥0. Likewise, since Jt ≻ 0 for all t ≥ 0, Lemma B.2 ensures for the recursion in eq. (153) that
Ht+1≻0 for all t≥0. This proves the first ordering in the proposition. To prove the remaining
orderings, we note that for all vectors εt,

λtJt ⪯ λt

(
Jt +

1

1+λt
εtε

⊤
t

)
⪯ λt

(
Jt +

1

1+λt
∥εt∥2I

)
. (156)

We now apply Lemma B.4 to the quadratic matrix equations that define the recursions for Ht+1,
Jt+1, and Kt+1. From the first ordering in eq. (156), and for the recursions for Jt+1 and Kt+1 in
eqs. (142) and (154), Lemma B.4 ensures that Jt+1⪯Kt+1. Likewise, from the second ordering in
eq. (156), and for the recursions for Jt+1 and Ht+1 in eqs. (142) and (153), Lemma B.4 ensures
that Ht+1⪯Jt+1.



32 CAI, MODI, PILLAUD-VIVIEN, MARGOSSIAN, GOWER, BLEI, AND SAUL

D.5. Eigenvalue bounds. The sandwiching inequality in the previous section provides a
powerful tool for analyzing the eigenvalues of the normalized covariance matrices {Jt}∞t=1. As
shown in the following lemma, much of this power lies in the fact that the matrices Jt, Ht+1,
and Kt+1 are jointly diagonalizable.

Lemma D.7 (Joint diagonalizability). Let λt> 0 for all t≥ 0, and let {εt}∞t=1, {Jt}∞t=1,
{Kt}∞t=1, and {Ht}∞t=1 be defined, respectively, by the recursions in eqs. (134), (142), and
(153–154). Then for all t≥0 we have the following:

(i) Ht+1 and Kt+1 share the same eigenvectors as Jt.
(ii) Each eigenvalue νJ of Jt determines a corresponding eigenvalue νH of Ht+1 and a corre-

sponding eigenvalue νK of Kt+1 via the positive roots of the quadratic equations

λt

(
νJ +

∥εt∥2

1+λt

)
ν2H + νH = (1+λt)νJ , (157)

λtνJν
2
K + νK = (1+λt)νJ . (158)

Proof. Write Jt = QΛJQ
⊤, where Q is the orthogonal matrix storing the eigenvectors of Jt

and ΛJ is the diagonal matrix storing its eigenvalues. Now define the matrices

ΛH = Q⊤Ht+1Q, (159)

ΛK = Q⊤Kt+1Q. (160)

We will prove that Jt, Ht+1, and Kt+1 share the same eigenvectors as Jt by showing that the
matrices ΛH and ΛK are also diagonal. We start by multiplying eqs. (153–154) on the left by Q⊤

and on the right by Q. In this way we find

λtΛH

(
ΛJ +

1

1+λt
∥εt∥2 I

)
ΛH + ΛH = (1+λt)ΛJ , (161)

λtΛKΛJΛK + ΛK = (1+λt)ΛJ . (162)

Since ΛJ is diagonal, we see from eqs. (161–162) that ΛH and ΛK also have purely diagonal
solutions; this proves the first claim of the lemma. We obtain the scalar equations in eqs. (157–158)
by focusing on the corresponding diagonal elements (i.e., eigenvalues) of the matrices ΛH , ΛJ ,
and ΛK in eqs. (161–162); this proves the second claim of the lemma.

To prove the convergence of Algorithm 1, we will also need upper and lower bounds on eigen-
values of the normalized covariance matrices. The next lemma provides these bounds.

Lemma D.8 (Bounds on eigenvalues of Jt+1). Let λt> 0 for all t≥ 0, and let {εt}∞t=1,
{Jt}∞t=1, {Kt}∞t=1, and {Ht}∞t=1 be defined, respectively, by the recursions in eqs. (134), (142),
and (153–154). Then for all t≥ 0, the largest and smallest eigenvalues of Jt+1 satisfy

νmax(Jt+1) ≤
√

1 + λt

λt
, (163)

νmin(Jt+1) ≥ min

(
νmin(Jt),

1 + λt

1 + λt + ∥εt∥2

)
. (164)
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Proof. We will prove these bounds using the sandwiching inequality. We start by proving
an upper bound on νmax(Kt+1). Recall from Lemma D.7 that each eigenvalue νK of Kt+1 is
determined by a corresponding eigenvalue νJ of Jt via the positive root of the quadratic equation
in eq. (158). Rewriting this equation, we see that

ν2K =
1+λt

λt
− νK

λtνJ
≤ 1+λt

λt
, (165)

showing that every eigenvalue of Kt+1 must be less than
√

1+λt
λt

. Now from the sandwiching
inequality, we know that Jt+1 ⪯ Kt+1, from which it follows that νmax(Jt+1) ≤ νmax(Kt+1).
Combining these observations, we have shown

νmax(Jt+1) ≤ νmax(Kt+1) ≤
√

1+λt

λt
, (166)

which proves the first claim of the lemma. Next we prove a lower bound on νmin(Ht+1). Again,
recall from Lemma D.7 that each eigenvalue νH of Ht+1 is determined by a corresponding
eigenvalue νJ of Jt via the positive root of the quadratic equation in eq. (157). We restate this
equation here for convenience:

λt

(
νJ +

∥εt∥2

1+λt

)
ν2H + νH = (1+λt)νJ

We now exploit two key properties of this equation, both of which are proven in Lemma D.13.
Specifically, Lemma D.13 states that if νH is computed from the positive root of this equation,
then νH is a monotonically increasing function of νJ , and it also satisfies the lower bound

νH ≥ min

(
νJ ,

1+λt

1+λt+∥εt∥2

)
. (167)

We can combine these properties to derive a lower bound on the smallest eigenvalue of Ht+1;
namely, it must be the case that

νmin(Ht+1) ≥ min

(
νmin(Jt),

1+λt

1+λt+∥εt∥2

)
. (168)

Now again from the sandwiching inequality, we know that Jt+1⪰Ht+1, from which it follows that
νmin(Jt+1) ≥ νmin(Ht+1). Combining this observation with eq. (168), we see that

νmin(Jt+1) ≥ νmin(Ht+1) ≥ min

(
νmin(Jt),

1+λt

1+λt+∥εt∥2

)
, (169)

which proves the second claim of the lemma.

D.6. Recursions for ∥εt∥ and ∥∆t∥. In this section, we analyze how the errors ∥εt∥
and ∥∆t∥ evolve from one iteration of Algorithm 1 to the next. These per-iteration results are
the cornerstone of the proof of convergence in the infinite batch limit.
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Proposition D.9 (Decay of ∥εt∥). Suppose that p = N (µ∗,Σ∗). Then for Algorithm 1 in
the limit of infinite batch size (B→∞), the normalized errors in eq. (116) of the variational
mean strictly decrease from one iteration to the next: i.e., ∥εt+1∥ < ∥εt∥. More precisely, they
satisfy

∥εt+1∥ ≤
(
1− λt

1+λt
νmin(Jt+1)

)
∥εt∥ , (170)

where the multiplier in parentheses on the right side is strictly less than one.

Proof. Recall from Proposition D.3 that the normalized errors in the variational mean satisfy
the recursion

εt+1 =

[
I − λt

1+λt
Jt

]
εt. (171)

Taking norms and applying the sub-multiplicative property of the spectral norm, we have

∥εt+1∥ ≤
∥∥∥∥I − λt

1+λt
Jt+1

∥∥∥∥ ∥εt∥ . (172)

Consider the matrix norm that appears on the right side of eq. (172). By Lemma D.8, and
specifically eq. (163) which gives the ordering Jt+1 ⪯

√
1+λt
λt

I, it follows that

I − λt

1+λt
Jt+1 ⪰

(
1−

√
λt

1+λt

)
I ≻ 0. (173)

Thus the spectral norm of this matrix is strictly greater than zero and determined by the minimum
eigenvalue of Jt+1. In particular, we have∥∥∥∥I − λt

1+λt
Jt

∥∥∥∥ = 1− λt

1+λt
νmin(Jt+1), (174)

and the proposition is proved by substituting eq. (174) into eq. (172).

Proposition D.10 (Decay of ∥∆t∥). Suppose that p = N (µ∗,Σ∗). Then for Algorithm 1 in
the limit of infinite batch size (B→∞), the normalized errors in eq. (117) of the variational
covariance satisfy

∥∆t+1∥ ≤ ∥εt∥2 +
1

1+λtνmin(Jt)
∥∆t∥ . (175)

Proof. We start by applying the triangle inequality and the sandwiching inequality:

∥∆t+1∥ = ∥Jt+1−I∥, (176)
≤ ∥Jt+1−Kt+1∥ + ∥Kt+1−I∥, (177)
≤ ∥Ht+1−Kt+1∥ + ∥Kt+1−I∥. (178)

Already from these inequalities we can see the main outlines of the result in eq. (175). Clearly, the
first term in eq. (178) must vanish when ∥εt∥=0 because the auxiliary matrices Ht+1 and Kt+1,
defined in eqs. (153–154), are equal when εt =0. Likewise, the second term in eq. (178) must
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vanish when ∥∆t∥=0, or equivalently when Jt=I, because in this case eq. (154) is also solved by
Kt+1=I.

First we consider the left term in eq. (178). Recall from Lemma D.7 that the matrices Ht+1

and Kt+1 share the same eigenvectors; thus the spectral norm ∥Ht+1−Kt+1∥ is equal to the largest
gap between their corresponding eigenvalues. Also recall from eqs. (157–158) of Lemma D.7 that
these corresponding eigenvalues νH and νK are determined by the positive roots of the quadratic
equations

λt

(
νJ +

∥εt∥2

1+λt

)
ν2H + νH = (1+λt)νJ , (179)

λtνJν
2
K + νK = (1+λt)νJ , (180)

where νJ is their (jointly) corresponding eigenvalue of Jt. Since these two equations agree when
∥εt∥2=0, it is clear that |νH−νK | → 0 as ∥εt∥ → 0. More precisely, as we show in Lemma D.14
of section D.8, it is the case that

|νH−νK | ≤ ∥εt∥2. (181)

(Specifically, this is property (v) of Lemma D.14.) It follows in turn from this property that

∥Ht+1−Kt+1∥ ≤ ∥εt∥2. (182)

We have thus bounded the left term in eq. (178) by a quantity that, via Proposition D.9, is
decaying geometrically to zero with the number of iterations of the algorithm.

Next we focus on the right term in eq. (178). The spectral norm ∥Kt+1−I∥ is equal to the
largest gap between any eigenvalue of Kt+1 and the value of 1 (i.e., the value of all eigenvalues of
I). Recall from eq. (158) of Lemma D.7 that each eigenvalue νJ of Jt determines a corresponding
eigenvalue νK of Kt+1 via the positive root of the quadratic equation

λtνJν
2
K + νK = (1+λt)νJ . (183)

This correspondence has an important contracting property that eigenvalues of Jt not equal
to one are mapped to eigenvalues of Kt+1 that are closer to one. In particular, as we show in
Lemma D.13 of section D.8, it is the case that

|νK−1| ≤ 1

1+λtνJ
|νJ−1|. (184)

(Specifically, this is property (vii) of Lemma D.13.) It follows in turn from this property that

∥Kt+1−I∥ ≤ 1

1+λtνmin(Jt)
∥Jt−I∥. (185)

Finally, the proposition is proved by substituting eq. (182) and eq. (185) into eq. (178).

The results of Proposition D.9 and Proposition D.10 could be used to further analyze the
convergence of Algorithm 1 when different levels of regularization λt are used at each iteration.
By specializing to a fixed level of regularization, however, we obtain the especially interpretable
results of eqs. (19–20) in the proof sketch of Theorem 3.1. To prove these results, we need one
further lemma.
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Lemma D.11 (Bound on νmin(Jt)). Suppose that p = N (µ∗,Σ∗) in Algorithm 1, and let

α>0 denote the minimum eigenvalue of the matrix Σ
− 1

2
∗ Σ0Σ

− 1
2

∗ . Then in the limit of infinite
batch size (B→∞), and for any fixed level of regularization λ>0, we have for all t ≥ 0 that

νmin(Jt) ≥ min

(
α,

1+λ

1+λ+ ∥ε0∥2

)
. (186)

Proof. We prove the result by induction. Note that νmin(J0)=νmin

(
Σ
− 1

2
∗ Σ0Σ

− 1
2

∗

)
=α, so that

eq. (186) holds for t=0. Now assume that the result holds for some iteration t>0. Then

νmin(Jt+1) ≥ min

(
νmin(Jt),

1+λ

1+λ+ ∥εt∥2

)
, (187)

≥ min

(
min

(
α,

1+λ

1+λ+ ∥ε0∥2

)
,

1+λ

1+λ+ ∥εt∥2

)
, (188)

= min

(
α,

1+λ

1+λ+ ∥ε0∥2

)
, (189)

where the first inequality is given by eq. (164) of Lemma D.8, the second inequality follows from the
inductive hypothesis, and the final equality holds because ∥εt∥<∥ε0∥ from Proposition D.9.

Note how the bound in eq. (186) depends on α and ∥ε0∥, both of which reflect the quality of
initialization. In particular, when α ≪ 1, the initial covariance is close to singular, and when ∥ε0∥
is large, the initial mean is a poor estimate. Both these qualities of initialization play a role in
the next result.

Corollary D.12 (Rates of decay for ∥εt∥ and ∥∆t∥). Suppose that p = N (µ∗,Σ∗) and let

α> 0 denote the minimum eigenvalue of the matrix Σ
− 1

2
∗ Σ0Σ

− 1
2

∗ . Also, for any fixed level of
regularization λ>0, define

β = min

(
α,

1+λ

1+λ+∥ε0∥2

)
, (190)

δ =
λβ

1+λ
, (191)

where β ∈ (0, 1] measures the quality of initialization and δ ∈ (0, 1) measures a rate of decay.
Then in the limit of infinite batch size (B→∞), the normalized errors in eqs. (116–117) satisfy

∥εt+1∥2 ≤ (1−δ)2∥εt∥2, (192)

∥∆t+1∥ ≤ (1−δ)∥∆t∥+ ∥εt∥2. (193)

Proof. The results follow from the previous ones in this section. In particular, from Proposi-
tion D.9 and the previous lemma, we see that

∥εt+1∥ ≤
(
1− λ

1+λ
νmin(Jt+1)

)
∥εt∥ ≤

(
1− λβ

1+λ

)
∥εt∥ = (1−δ)∥εt∥. (194)
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Likewise, from Proposition D.10 and the previous lemma, we see that

∥∆t+1∥ ≤ ∥εt∥2 +
1

1+λνmin(Jt)
∥∆t∥ , (195)

≤ ∥εt∥2 +
1

1+λβ
∥∆t∥ , (196)

= ∥εt∥2 +
(
1− λβ

1+λβ

)
∥∆t∥ , (197)

≤ ∥εt∥2 +
(
1− λβ

1+λ

)
∥∆t∥ , (198)

= ∥εt∥2 + (1− δ) ∥∆t∥ . (199)

D.7. Induction. From the previous corollary we can at last give a simple proof of Theorem 3.1.
It should also be clear that tighter bounds can be derived, and differing levels of regularization
accommodated, if we instead proceed from the more general bounds in Propositions D.9 and D.10.

Proof of Theorem 3.1. We start from eqs. (192–193) of Corollary D.12 and proceed by
induction. At iteration t=0, we see from these equations that

∥ε1∥ ≤ (1−δ)∥ε0∥, (200)

∥∆1∥ ≤ (1−δ)∥∆0∥+ ∥ε0∥2. (201)

The above agree with eqs. (17–18) at iteration t=0 and therefore establish the base case of the
induction. Next we assume the inductive hypothesis that eqs. (17–18) are true at some iteration
t−1. Then again, appealing to eqs. (192–193) of Corollary D.12, we see that

∥εt∥ ≤ (1−δ)∥εt−1∥, (202)

≤ (1−δ)(1−δ)t−1∥ε0∥, (203)
= (1−δ)t∥ε0∥, (204)

∥∆t∥ ≤ (1−δ)∥∆t−1∥+ ∥εt−1∥2, (205)

≤ (1−δ)
[
(1−δ)t−1∥∆0∥+ (t−1)(1−δ)t−2∥ε0∥2

]
+ (1−δ)2(t−1)∥ε0∥2, (206)

= (1−δ)t∥∆0∥+
[
(t−1)(1−δ)t−1 + (1−δ)2t−2

]
∥ε0∥2, (207)

≤ (1−δ)t∥∆0∥+
[
(t−1)(1−δ)t−1 + (1−δ)t−1

]
∥ε0∥2, (208)

= (1−δ)t∥∆0∥+ t(1−δ)t−1∥ε0∥2. (209)

This proves the theorem.

D.8. Supporting lemmas. In this section we collect a number of lemmas whose results
are needed throughout this appendix but whose proofs digress from the main flow of the argument.
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Fig 5: Plot of the function f in eq. (211), as well as its fixed point and upper and lower bounds
from Lemma D.13, with λ=4 and ε2=1.

Lemma D.13. Let λ>0 and ε2 ≥ 0, and let f : R+ → R+ be the function defined implicitly
as follows: if ν>0 and ξ=f(ν), then ξ is equal to the positive root of the quadratic equation

λ

(
ν +

ε2

1+λ

)
ξ2 + ξ − (1+λ)ν = 0. (210)

Then f has the following properties:

(i) f is monotonically increasing on (0,∞).

(ii) f(ν)<
√

1+λ
λ for all ν>0.

(iii) f has a unique fixed point ν∗ = f(ν∗).
(iv) f(ν)≥ν∗ for all ν≥ν∗.
(v) f(ν)>ν for all ν ∈ (0, ν∗).
(vi) f(ν)≥min

(
ν, 1+λ

1+λ+ε2

)
for all ν>0.

(vii) If ε2=0, then |ν−1| ≥ (1+λν)|f(ν)−1| for all ν>0.

Before proving the lemma, we note that it is straightforward to solve the quadratic equation in
eq. (210). Doing so, we find

f(ν) =
−1 +

√
1 + 4λ(1 + λ)ν2 + 4λε2ν

2λ
(
ν + ε2

1+λ

) . (211)

In most aspects, this explicit form for f is less useful than the implicit one given in the statement
of the lemma. However, eq. (211) is useful for visualizing properties (i)-(vi), and Fig. 5 shows a
plot of f(ν) with λ=4 and ε2=1. We now prove the lemma.

Proof. Let ν>0. To prove property (i) that f is monotonically increasing, it suffices to show
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f ′(ν)>0. Differentiating eq. (210) with respect to ν, we find that

λξ2 + 2λ

(
ν +

ε2

1+λ

)
ξf ′(ν) + f ′(ν)− (1+λ) = 0, (212)

where ξ=f(ν). To proceed, we re-arrange terms to isolate f ′(ν) on the left side and use eq. (210)
to remove quadratic powers of ξ. In this way, we find:[

1 + 2λ

(
ν +

ε2

1+λ

)
ξ

]
f ′(ν) = 1 + λ− λξ2, (213)

= 1 + λ− (1 + λ)ν − ξ

ν + ε2

1+λ

, (214)

=
ξ + ε2

ν + ε2

1+λ

. (215)

Note that the term in brackets on the left side is strictly positive, as is the term on the right side.
It follows that f ′(ν)>0, thus proving property (i). Moreover, since f is monotonically increasing,
it follows from eq. (211) that

f(ν) < lim
ω→∞

f(ω) =

√
1 + λ

λ
, (216)

thus proving property (ii). To prove property (iii), we solve for fixed points of f . Let ν∗>0 denote
a fixed point satisfying ν∗=f(ν∗). Then upon setting ν=ν∗ in eq. (210), we must find that ξ=ν∗

is a solution of the resulting equation, or

λ

(
ν∗ +

ε2

1+λ

)
ν∗2 + ν∗ − (1+λ)ν∗ = 0. (217)

Eq. (217) has one root at zero, one negative root, and one positive root, but only the last of these
can be a fixed point of f , which is defined over R+. This fixed point corresponds to the positive
root of the quadratic equation: (

ν∗ +
ε2

1+λ

)
ν∗ = 1. (218)

This proves property (iii). Property (iv) follows easily from properties (i) and (iii): if ν≥ν∗, then
f(ν)≥ f(ν∗) = ν∗, where the inequality holds because f is monotonically increasing and the
equality holds because ν∗ is a fixed point of f . To prove property (v), suppose that ν ∈ (0, ν∗).
Then from eq. (218), it follows that (

ν +
ε2

1+λ

)
ν < 1. (219)

Now let ξ=f(ν). Then from eq. (210) and eq. (219), it follows that

0 = ν · 0 (220)

= ν

[
λ

(
ν +

ε2

1+λ

)
ξ2 + ξ − (1+λ)ν

]
, (221)

= λν

(
ν +

ε2

1+λ

)
ξ2 + νξ − (1+λ)ν2, (222)

< λξ2 + νξ − (1+λ)ν2, (223)

= (ξ − ν)(ξ + (1+λ)ν). (224)
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Since the right factor in eq. (224) is positive, the inequality as a whole can only be satisfied if
ξ>ν, or equivalently if f(ν)> ν, thus proving property (v). To prove property (vi), we observe
from eq. (218) that ν∗≤1, and from this upper bound on ν∗, we re-use eq. (218) to derive the
lower bound

ν∗ =
1

ν∗ + ε2

1+λ

≥ 1

1 + ε2

1+λ

=
1+λ

1+λ+ε2
. (225)

With this lower bound, we show next that property (vi) follows from properties (iv) and (v). In
particular, if ν ∈ (0, ν∗), then from property (v) we have f(ν)>ν; on the other hand, if ν≥ν∗,
then from property (iv) and the lower bound in eq. (225), we have f(ν)≥ν∗≥ 1+λ

1+λ+ε2
. But either

ν ∈ (0, ν∗) or ν≥ν∗, and hence for all ν>0 we have

f(ν) ≥ min

(
ν,

1+λ

1+λ+ε2

)
, (226)

which is exactly property (vi). Fig. (5) plots the lower and upper bounds on f from properties
(ii) and (vi), as well as the fixed point ν∗=f(ν∗). Property (vii) considers the special case when
ε2=0. In this case, we can also rewrite eq. (210) as

ν − 1 = λνξ2 + ξ − λν − 1 = (1 + λν + λνξ)(ξ − 1), (227)

and taking the absolute values of both sides, we find that

|ν − 1| = (1 + λν + λνξ)|ξ − 1| ≥ (1 + λν)|ξ − 1| (228)

for all ν > 0, thus proving property (vii). The meaning of this property becomes more evident
upon examining the function’s fixed point: note from eq. (218) that ν∗=1 when ε2=0. Thus
property (vii) can alternatively be written as

|f(ν)− ν∗| ≤ 1

1 + λν
|ν − ν∗|, (229)

showing that the function converges to its fixed point when it is applied in an iterative fashion.

Lemma D.14. Let λ, ν > 0, and let g : [0,∞)→R+ be the function defined implicitly as
follows: if ξ=g(ε2), then ξ is equal to the positive root of the quadratic equation

λ

(
ν +

ε2

1+λ

)
ξ2 + ξ − (1+λ)ν = 0. (230)

Then g has the following properties:

(i) g is monotonically decreasing on [0,∞).

(ii) g(0) <
√

1+λ
λ .

(iii) g′(0) > −1.
(iv) g is convex on [0,∞).
(v) |g(ε2)−g(0)| ≤ ε2.

Before proving the lemma, we note that it is straightforward to solve the quadratic equation in
eq. (230). Doing so, we find

g(ε2) =
−1 +

√
1 + 4λ(1 + λ)ν2 + 4λε2ν

2λ
(
ν + ε2

1+λ

) . (231)
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Fig 6: Plot of the function g in Lemma D.14 and eq. (231) for several different values of λ and ν.

This explicit formula for g is not needed for the proof of the lemma. However, eq. (231) is useful
for visualizing properties (i)-(ii), and Fig. 6 shows several plots of g(ε2) for different values of λ
and ν. We now prove the lemma.

Proof. To prove property (i) that g is monotonically increasing, it suffices to show g′(ε2)<0.
Differentiating eq. (230) with respect to ε2, we find that

λ

1+λ
ξ2 + 2λ

(
ν +

ε2

1+λ

)
ξg′(ε2) + g′(ε2) = 0 (232)

where ξ=g(ε2), and solving for g′(ε), we find that

g′(ε2) = − λξ2

(1+λ)(1+2λνξ) + 2λε2ξ
< 0, (233)

which proves property (i). To prove property (ii), let ξ0=g(0) denote the positive root of eq. (230)
when ε2=0. Then this root satisfies

ξ20 =
1+λ

λ
− ξ0

λν
<

1+λ

λ
, (234)

from which the result follows. Moreover, it follows from eqs. (233–234) that

g′(0) = − λξ20
(1+λ)(1 + 2λνξ0)

> − λξ20
1+λ

> − λ

1+λ

1+λ

λ
= −1, (235)

thus proving property (iii). To prove property (iv) that g is convex, it suffices to show g′′(ε2) > 0.
Differentiating eq. (232) with respect to ε2, we find that

4λξ

1+λ
g′(ε2) + 2λ

(
ν +

ε2

1+λ

)(
ξg′′(ε2) + g′(ε2)2

)
+ g′′(ε2) = 0. (236)



42 CAI, MODI, PILLAUD-VIVIEN, MARGOSSIAN, GOWER, BLEI, AND SAUL

Algorithm 2 Implementation of ADVI
1: Input: Iterations T , batch size B, unnormalized target p̃, learning rate λt > 0, initial variational

mean µ0 ∈ RD, initial variational covariance Σ0 ∈ SD++

2: for t = 0, . . . , T − 1 do
3: Sample z1, . . . , zB ∼ qt = N (µt,Σt)
4: Compute stochastic estimate of the (negative) ELBO

L(t)
ELBO(z1:B) = −

B∑
b=1

log(p̃(zb)− log qt(zb))

5: Update variational parameters wt := (µt,Σt) with gradient

wt+1 = wt − λt∇wL(t)
ELBO(z1:B) # Our implementation uses the ADAM update.

6: end for
7: Output: variational parameters µT ,ΣT

To proceed, we re-arrange terms to isolate g′′(ε2) on the left side and use eq. (232) to re-express
the term on the right. In this way, we find:[

1 + 2λ

(
ν +

ε2

1+λ

)
ξ

]
g′′(ε2) = − 4λξ

1+λ
g′(ε2)− 2λ

(
ν +

ε2

1+λ

)
g′(ε2)2, (237)

= −g′(ε2)

ξ

[
4λξ2

1+λ
+ 2λ

(
ν +

ε2

1+λ

)
ξg′(ε2)

]
, (238)

= −g′(ε2)

ξ

[
4λξ2

1+λ
− λξ2

1+λ
− g′(ε2)

]
, (239)

= −g′(ε2)

ξ

[
3λξ2

1+λ
− g′(ε2)

]
. (240)

Note that the term in brackets on the left side is strictly positive, and because g is monotonically
decreasing, with g′(ε2) < 0, so is the term on the right. It follows that g′′(ε2) > 0, thus proving
property (iv). Finally, to prove property (v), we combine the results that g is monotonically
decreasing, that its derivative at zero is greater than -1, and that it is convex:

|g(ε2)− g(0)| = g(0)− g(ε2) ≤ g(0)− (g(0) + g′(0)ε2) = −g′(0)ε2 ≤ ε2. (241)

APPENDIX E: ADDITIONAL EXPERIMENTS AND DETAILS

E.1. Implementation of baselines. In Algorithm 2, we describe the version of ADVI
implemented in the experiments. In particular, we use ADAM as the optimizer for updating
the variational parameters. In Algorithm 3, we also describe the implementation of the GSM
algorithm (Modi et al., 2023).

E.2. Gaussian target. For all experiments, the algorithms were initialized with a random
initial mean µ0 and Σ0 = I. In Figure 8, we report the results for the reverse KL divergence. We
observe largely the same conclusions as with the forward KL divergence presented in Section 5.



BATCH AND MATCH BLACK-BOX VARIATIONAL INFERENCE 43

Algorithm 3 Implementation of GSM
1: Input: Iterations T , batch size B, unnormalized target p̃, initial variational mean µ0 ∈ RD, initial

variational covariance Σ0 ∈ SD++

2: for t = 0, . . . , T − 1 do
3: Sample z1, . . . , zB ∼ qt = N (µt,Σt)
4: for b = 1, . . . , B do
5: Compute the score of the sample sb = ∇z log(p̃(zb))
6: Calculate intermediate quantities

εb = Σtsb − µt + zb, and solve ρ(1+ρ) = s⊤b Σtsb +
[
(µt− zb)

⊤sb
]2

for ρ > 0

7: Estimate the update for mean and covariance

δµb =
1

1+ρ

[
I − (µt−zb)s

⊤
b

1+ρ+(µt−zb)⊤sb

]
εb

δΣb = (µt − zb)(µt − zb)
⊤ − (µ̃b − zb)(µ̃b − zb)

⊤, where µ̃b = µt + δµb

8: end for
9: Update variational mean and covariance

µt+1 = µt +
1
B

B∑
b=1

δµb, Σt+1 = Σt +
1
B

B∑
b=1

δΣb

10: end for
11: Output: variational parameters µT ,ΣT

In addition, we evaluated BaM with a number of different schedules for the learning rates:
λt = B,BD, B

t+1 ,
BD
t+1 . We show one such example for D = 16 in Figure 7, where each figure

represents a particular choice of λt, and where each line is the mean over 10 runs. For the constant
learning rate, the lines for B = 20, 40 are on top of each other. Here we observe that the constant
learning rates perform the best for Gaussian targets.

E.3. Non-Gaussian target. Here we again consider the sinh-arcsinh distribution with D = 10,
where we vary the skew and tails. All algorithms were initialized with a random initial mean µ0

and Σ0 = I. In Figure 9, we present several alternative plots showing the forward and reverse KL
divergence when varying the learning rate. We investigate the performance for different schedules
corresponding to λt = BD, BD√

t+1
, BD
(t+1) , and we varied the batch size B = 2, 5, 10, 20, 40. Unlike

for Gaussian targets, we found that constant λt did not perform as well as those with a varying
schedule. In particular, we found that λt =

BD
t+1 typically converges faster than the other schedule.

E.4. Posteriordb models. In Bayesian posterior inference applications, it is common to
measure the relative mean error and the relative standard deviation error (Welandawe et al.,
2022):

relative mean error =
∥∥∥∥µ− µ̂

σ

∥∥∥∥
2

, relative SD error =
∥∥∥∥σ − σ̂

σ

∥∥∥∥
2

, (242)

where µ̂, σ̂ are computed from the variational distribution, and µ, σ are the posterior mean and
standard deviation. We estimated the posterior mean and standard deviation using the reference
samples included in posteriordb.

In the evaluation, all algorithms were initialized with a random initial mean µ0 and Σ0 = I.
The results for the relative mean error are presented in Section 5. In Figure 10, we present the
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Fig 7: Gaussian target, D = 16
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Fig 8: Gaussian targets of increasing dimension. Solid curves indicate the mean over 10 runs
(transparent curves). Both ADVI and GSM use batch size of 2. The batch size for BaM is given
in the legend.

results for the relative SD error. Here we typically observe the same trends as for the mean, except
in the hierarchical example, where BaM learns the mean quickly but converges to a larger relative
SD error. However, the low error of GSM suggests that more robust tuning of the learning rate
may lead to better performance with BaM.

E.5. Deep learning model. We provide additional details for the experiment conducted
in Section 5.3. We first pre-train the neural network Ω(·, θ̂) (the “decoder”) using variational
expectation-maximization. That is, θ̂ maximizes the marginal likelihood p({xn}Nn=1 | θ), where
{xn}Nn=1 denotes the training set. The marginalization step is performed using an approximation

q(zn|xn) ≈ p(zn|xn, θ),

obtained with amortized variational inference. In details, we optimize the ELBO over the family
of factorized Gaussians and learn an inference neural network (the “encoder”) that maps xn to
the parameters of q(zn |xn). This procedure is standard for training a VAE (Kingma and Welling,
2014; Rezende et al., 2014; Tomczak, 2022). For the decoder and the encoder, we use a convolution
network with 5 layers. The optimization is performed over 100 epochs, after which the ELBO
converges (Figure 11).

For the estimation of the posterior on a new observation, we draw an image x′ from the test
set. All VI algorithms are initialized at a standard Gaussian. For ADVI and BaM, we conduct
a pilot experiment of 100 iterations and select the learning rate that achieves the lowest MSE
for each batch size (B = 10, 100, 300). For ADVI, we consistently find the best learning rate to
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(a) Forward KL: varying λt and skew
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(b) Forward KL: varying λt and tails
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(c) Reverse KL: varying λt and skew
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(d) Reverse KL: varying λt and tails

Fig 9: Non-Gaussian target, D = 10. Panels (a) and (b) show the forward KL, and panels (c) and
(d) show the reverse KL.
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Fig 10: Posterior inference in Bayesian models. The curves denote the mean over 5 runs, and
shaded regions denote their standard error. Solid curves (B = 32) correspond to larger batch
sizes than the dashed curves (B = 8).
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Fig 11: ELBO for variational autoencoder over 100 epochs

be ℓ = 0.02 (after searching ℓ = 0.001, 0.01, 0.02, 0.05). For BaM, we find that different learning
rates work better for different batch sizes:

• B = 10, λ = 0.1 selected from λ = 0.01, 0.1, 0.2, 10.
• B = 100, λ = 50 selected from λ = 2, 20, 50, 100, 200.
• B = 300, λ = 7500 selected from λ = 1000, 5000, 7500, 10000.

For B = 300, all candidate learning rates achieve the minimal MSE (since BaM converges in less
than 100 iterations), and so we pick the one that yields the fastest convergence.
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