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Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions
and insights. In this article, we ask why scientists should care about data science. To answer, we discuss
data science from three perspectives: statistical, computational, and human. Although each of the three is
a critical component of data science, we argue that the effective combination of all three components is

the essence of what data science is about.

data science | statistics | machine learning

The term “data science” has attracted a lot of attention.
Much of this attention is in business (1), in government
(2), and in the academic areas of statistics (3, 4) and
computer science (5, 6). Here, we discuss data science
from the perspective of scientific research. What is data
science? Why might scientists care about it?

Our perspective is that data science is the child of
statistics and computer science. While it has inherited
some of their methods and thinking, it also seeks to
blend them, refocus them, and develop them to
address the context and needs of modern scientific
data analysis. This perspective is not new. Over
50 years ago, Tukey (7) defined “data analysis” as a
broad endeavor, much broader than traditional math-
ematical statistics. In a sense, today's data science,
although set against a modern backdrop, is cast from
Tukey's original mold.

In modern research, scientists from diverse disci-
plines are confronting abundant datasets and are
confident that there is value in the data for advancing
their scientific goals. We give three examples at
genomic, social, and galactic scales. First, modern
sequencing technology has enabled high-resolution
genetic sequencing at massive scale, and geneticists
have connected the genetic data to large databases of
individuals’ behaviors and diseases. These data can
potentially aid researchers in studying the human ge-
nome, helping them understand how it evolves, and
how it governs observed traits. Second, social scien-
tists now have the opportunity to study large archives
of digitized texts, often with rich information about
human behavior and interactions. These data could

help them more effectively navigate and understand
the contours of society, finding relevant sources to
their work and identifying hard to spot patterns of
language that suggest new interpretations and theo-
ries. Third, modern telescopes create digital sky sur-
veys that have transformed observational astronomy,
generating hundreds of terabytes of raw image data
about billions of sky objects. A catalog of these ob-
jects, if available, would give astronomers an unprec-
edented window into the structure of the cosmos.

These examples paint a picture of what might be
possible in the modern sciences. However, an issue
that pervades many, if not all, scientific disciplines is
that scientists cannot yet fully take advantage of their
new data. Connecting genes and traits at large scale
is a problem that is beyond the limits of classical
genome analysis, both computationally and statisti-
cally. Building tools for navigating large collections of
documents, especially ones that reflect the priorities
of social scientists, is a problem that is not solved by
classical methods of document analysis. Using digital
sky surveys to understand the complex nature of the
universe requires computational tools and statistical
assumptions beyond those used for the manually
curated studies of earlier eras.

Broadly speaking, there is a tension emerging—
the existing methods from statistics and computing
are not set up to solve the types of problems that face
modern scientists. Some issues are computational,
such as working with massive datasets and complex
metadata. Some issues are statistical, such as the
rich interactions of many related variables and the

*Department of Computer Science, Columbia University, New York, NY 10027; ®Department of Statistics, Columbia University, New York, NY
10027; “Data Science Institute, Columbia University, New York, NY 10027; “Department of Computer Science, University of California, Irvine,
CA 92697, and °Department of Statistics, University of California, Irvine, CA 92697

Author contributions: D.M.B. and P.S. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.

"To whom correspondence should be addressed. Email: david.blei@columbia.edu.

www.pnas.org/cgi/doi/10.1073/pnas.1702076114

PNAS | August 15, 2017 | vol. 114 | no. 33 | 8689-8692



http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1702076114&domain=pdf
mailto:david.blei@columbia.edu
www.pnas.org/cgi/doi/10.1073/pnas.1702076114

L T

/

1\

=y

theoretical and practical difficulties around high-dimensional sta-
tistics. Finally, some issues are fuzzier and philosophical, such as
necessarily misspecified models of the world, difficulties in iden-
tifying causality from empirical data, and challenges to meeting
disciplinary goals around data exploration and understanding.

We believe that this tension has been the catalyst for the new
moniker data science. Data science focuses on exploiting the
modern deluge of data for prediction, exploration, understanding,
and intervention. It emphasizes the value and necessity of approx-
imation and simplification. It values effective communication of the
results of a data analysis and of the understanding about the
world that we glean from it. It prioritizes an understanding of
the optimization algorithms and transparently managing the
inevitable tradeoff between accuracy and speed. It promotes
domain-specific analyses, where data scientists and domain
experts work together to balance appropriate assumptions with
computationally efficient methods.

Below, we explore these ideas from statistical, computational,
and human perspectives, identifying which views and attitudes we
can draw from to develop data science for science. Statistical
thinking is an essential component. Statistics provides the
foundational techniques for analyzing and reasoning about data.
Computational methods are also key, particularly when scientists
face large and complex data and have constraints on computa-
tional resources, such as time and memory. Finally, there is the
human angle, the reality that data science cannot be fully
automated. Applying modern statistical and computational tools
to modern scientific questions requires significant human judg-
ment and deep disciplinary knowledge.

Statistical Perspective

Discussions about data science often focus on the large-scale as-
pects of data and computation. These issues are important, but this
focus misses that the foundational goals of data science rely on
statistical thinking. Since its inception, statistics has served science
to guide data collection and analysis. While many aspects of the
relationship between science and data have changed—the domains
where we use data analysis, the scale of the data, and the nature of
the scientific questions—the basic principles are the same.

Broadly, statistics is about developing methods for making
sense of data. As the field has evolved, these methods have
largely been cast in the languages of mathematics and probabil-
ity. Statistics uses a variety of functional and distributional as-
sumptions to model relationships between variables and entities
in the real world, and it uses observed data to draw inferences and
make predictions about such relationships.

All datasets involve uncertainty. There may be uncertainty
about how they were collected, how they were measured, or the
process that created them. Statistical modeling helps quantify and
reason about uncertainties in a systematic way. It provides tools
and theory that guide the inferences and predictions for specific
problems and real data. Statistics relates to data science through
multiple statistical subfields. Here, we discuss three: complex and
structured data, high dimensionality, and causality.

Modern datasets are complex. For example, consider a research
problem involving climate data. There may be different types of
dependencies in the data: dependencies over time, dependencies
across multiple spatial scales, and dependencies among different
variables, such as rainfall, pressure, and temperature. Statistics
provides a rich language for parsimoniously modeling such de-
pendencies. This language helps encode knowledge of the world
into formal probability distributions, share statistical strength across
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related components of a problem, and capture sequential and
spatial regularities among the variables. Many of these benefits are
found in Bayesian statistics (8), a framework that helps articulate
assumptions about data in a formal model and then prescribes the
corresponding methods for analyzing data to make inferences
about the world. Bayesian methods and related techniques for
expressive probability modeling (9, 10) have the potential to pro-
vide the necessary tools for blending scientific domain knowledge
with statistical inference from data.

A related subfield of statistics concerns high-dimensional data,
where we measure thousands or even millions of variables per
data point. As scientific measurement has become increasingly
sophisticated, statistical inference from high-dimensional data has
become more important to many scientific disciplines. To handle
such data, statisticians and computer scientists have developed
powerful methods involving robustness, regularization, and sta-
bility (11). Furthermore, high-dimensional data often arise in
pattern recognition problems, where we make a prediction about
an unknown variable based on a large set of related variables or
parameters. Machine learning techniques (12), such as deep
learning (13), have been particularly effective in this context. They
provide flexible ways that the target variable can depend on the
predictors, and they can now scale up to very large datasets.

The implicit promise of rich datasets is that they can help
deepen our understanding of how the world works, and using
data to attain such understanding is the lofty goal of causal in-
ference. Statistical thinking about causality stretches back to the
late 1800s, with the development of influential ideas around the
difference between correlation and causation and how to design
meaningful experiments. Today, causality has grown into a rich
field (14-16), with significant contributions from computer sci-
ence, the social sciences, and statistics. Developing new methods
in causal inference—how to scale up to large datasets, how to
develop inferences from observational data, how to develop in-
ferences from interacting data (as in a social network), and how to
design experiments in the computer age—is a ripe avenue for
statistical contributions to data science.

Computational Perspective

Statistical thinking provides methods to answer scientific ques-
tions with data. Computational thinking focuses on the algorith-
mic implementation of those methods, and it provides a way to
understand and compare their computational footprints. Com-
putational thinking is particularly important in modern data anal-
ysis, where we frequently face a tradeoff between statistical
accuracy and computational resources, such as time and memory.

One well-known example of computational thinking revolves
around optimization (17). Many data science methods involve
maximizing a function of the data. (A primary example of this is
when we try to maximize the likelihood of the data with respect to
parameters of a probability model.) The most common way to
maximize a function is to climb it, iteratively computing the di-
rection to travel and moving its free parameters along that di-
rection. In the context of optimization, computational thinking
involves understanding how to best compute the direction, when
approximate directions suffice, how far to walk at each iteration,
and how much accuracy we sacrifice when we stop climbing early
to save computation.

Another example of computational thinking is sampling
methods. Sampling methods help compute approximate solu-
tions of data analysis problems where the exact solutions are
too complex for direct mathematical analysis. For example, the
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bootstrap (18) is a way to calculate confidence intervals in very
complex situations. It repeatedly samples from the data to ap-
proximate the types of quantities that would be impossible (or
nearly impossible) to analytically derive. The bootstrap, in its
simplicity, has had a major impact on the practice of statistics in
modern science. Another widely used application of sampling is in
Bayesian data analysis, where one of the most prevalent compu-
tational methods is Markov chain Monte Carlo (MCMC) (19, 20).
MCMC algorithms sample the parameters of a statistical model
to produce approximate posterior distributions, distributions of
hidden quantities conditioned on the data. Like the bootstrap,
MCMC transforms difficult mathematical calculations into
sampling-based procedures. Since the 1990s, this transformation
has opened the door to otherwise unimaginable models, meth-
ods, and applications for Bayesian statistics.

A final example of computational thinking is in scaling data
analysis with distributed computing (21, 22). We can now dis-
tribute large datasets across multiple processors (for speed) and
multiple storage devices (for memory), and there is a variety of
software to support distributed computation. Advances in dis-
tributed computing build on 1970s research in large-scale scien-
tific computing as well as more recent innovations developed in
the technology industry. The same ideas that allowed technology
companies to scale their methods to the growing Internet can
allow scientists to scale to their growing datasets.

These examples are just a few of the ways that computational
thinking plays a role in data science. More broadly, computational
thinking helps guide how we account for resources when analyz-
ing data. While statistical thinking offers a suite of methods for
understanding data, computational thinking provides the crucial
considerations of how to balance statistical accuracy with limited
computational resources (23).

Human Perspective

We described statistical thinking and computational thinking, two
essential components of data science that provide general tools
for analyzing data. The art of data science is to understand how to
apply these tools in the context of a specific dataset and for an-
swering specific scientific questions.

Data science blends statistical and computational thinking, but
it shifts their focus and reprioritizes the traditional goals of each. It
connects statistical models and computational methods to solve
discipline-specific problems (24, 25). In particular, it puts a human
face on the data analysis process: understanding a problem do-
main, deciding which data to acquire and how to process it, ex-
ploring and visualizing the data, selecting appropriate statistical
models and computational methods, and communicating the re-
sults of the analyses. These skills are not usually taught in the
traditional statistics or computer science classroom but instead,
are gained through experience and collaboration with others.

This perspective of data science is holistic and concrete.
For each scientific problem, the data scientist develops an

understanding of its context: how the data were collected, exist-
ing theories and domain knowledge, and the overarching goals of
the discipline. Crucially, the data scientist solves the problem it-
eratively and collaboratively with the domain expert. (We note
they do not need to be two different people; the data scientist
and domain expert could simply be two "hats” for the same
person.) Together, they develop computational and statistical
tools to explore data, questions, and methods in the service of the
goals of the discipline.

As an example, consider a computational neuroscientist. New
imaging technology lets her image mice neurons while they act in
a maze with other mice. Ample funding and equipment let her run
hundreds of mice, resulting in terabytes of video data and brain
imaging data. With a data scientist, she might develop methods
that test existing theories of mouse behavior, produce hypotheses
about how behavior is controlled by the brain, and algorithmically
handle the high resolution and complexity of the video and brain
data. Furthermore, the data scientist helps develop methods that
address limitations of the new technology, especially how differ-
ent runs of the experiment might exhibit different (irrelevant)
conditions that confound the results of the analysis. The successful
project results in both new neuroscience results and in the de-
velopment of new data science methods.

The human perspective reveals how aspects of the data analysis
process, such as metadata, data provenance, data analysis work-
flows, and scientific reproducibility, are critical to modern scientific
research. We need good software tools and infrastructure that can
record, replicate, and facilitate how researchers interact with their
data (26, 27). More broadly, the practice of data science is not justa
single step of analyzing a dataset. Rather, it cycles between data
preprocessing, exploration, selection, transformation, analysis, in-
terpretation, and communication. One of the main priorities for
data science is to develop the tools and methods that facilitate
this cycle.

Summary

We presented a holistic view of data science, a view that has
implications for practice, research, and education. It suggests the
potential in integrating research that crosses the statistical, com-
putational, and human boundaries. Furthermore, it puts into focus
that, to solve real world problems, a data scientist will need to
undertake tasks that are beyond their traditional training. Data
science is more than the combination of statistics and computer
science—it requires training in how to weave statistical and
computational techniques into a larger framework, problem by
problem, and to address discipline-specific questions. Holistic
data science requires that we understand the context of data,
appreciate the responsibilities involved in using private and public
data, and clearly communicate what a dataset can and cannot tell
us about the world.
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