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Abstract 

We propose a generative model for text and other collections of dis­
crete data that generalizes or improves on several previous models 
including naive Bayes/unigram, mixture of unigrams [6], and Hof­
mann's aspect model , also known as probabilistic latent semantic 
indexing (pLSI) [3]. In the context of text modeling, our model 
posits that each document is generated as a mixture of topics, 
where the continuous-valued mixture proportions are distributed 
as a latent Dirichlet random variable. Inference and learning are 
carried out efficiently via variational algorithms. We present em­
pirical results on applications of this model to problems in text 
modeling, collaborative filtering, and text classification. 

1 Introduction 

Recent years have seen the development and successful application of several latent 
factor models for discrete data. One notable example, Hofmann's pLSI/aspect 
model [3], has received the attention of many researchers, and applications have 
emerged in text modeling [3], collaborative filtering [7], and link analysis [1]. In 
the context of text modeling, pLSI is a "bag-of-words" model in that it ignores the 
ordering of the words in a document . It performs dimensionality reduction, relating 
each document to a position in low-dimensional "topic" space. In this sense, it is 
analogous to PCA, except that it is explicitly designed for and works on discrete 
data. 

A sometimes poorly-understood subtlety of pLSI is that, even though it is typically 
described as a generative model , its documents have no generative probabilistic 
semantics and are treated simply as a set of labels for the specific documents seen 
in the training set. Thus there is no natural way to pose questions such as "what is 
the probability of this previously unseen document?". Moreover, since each training 
document is treated as a separate entity, the pLSI model has a large number of 
parameters and heuristic "tempering" methods are needed to prevent overfitting. 

In this paper we describe a new model for collections of discrete data that provides 
full generative probabilistic semantics for documents. Documents are modeled via a 
hidden Dirichlet random variable that specifies a probability distribution on a latent, 
low-dimensional topic space. The distribution over words of an unseen document is 
a continuous mixture over document space and a discrete mixture over all possible 
topics. 



2 Generative models for text 

2.1 Latent Dirichlet Allocation (LDA) model 

To simplify our discussion, we will use text modeling as a running example through­
out this section, though it should be clear that the model is broadly applicable to 
general collections of discrete data. 

In LDA, we assume that there are k underlying latent topics according to which 
documents are generated, and that each topic is represented as a multinomial distri­
bution over the IVI words in the vocabulary. A document is generated by sampling 
a mixture of these topics and then sampling words from that mixture. 

More precisely, a document of N words w = (W1,'" ,W N) is generated by the 
following process. First, B is sampled from a Dirichlet(a1,'" ,ak) distribution. 
This means that B lies in the (k - I)-dimensional simplex: Bi 2': 0, 2:i Bi = 1. 
Then, for each of the N words, a topic Zn E {I , ... , k} is sampled from a Mult(B) 
distribution p(zn = ilB) = Bi . Finally, each word Wn is sampled, conditioned on 
the znth topic, from the multinomial distribution p(wlzn). Intuitively, Bi can be 
thought of as the degree to which topic i is referred to in the document . Written 
out in full, the probability of a document is therefore the following mixture: 

p(w) = Ie (11 z~/(wnlzn; ,8)P(Zn IB») p(B; a)dB, (1) 

where p(B; a) is Dirichlet , p(znIB) is a multinomial parameterized by B, and 
p( Wn IZn;,8) is a multinomial over the words. This model is parameterized by the k­
dimensional Dirichlet parameters a = (a1,' .. ,ak) and a k x IVI matrix,8, which are 
parameters controlling the k multinomial distributions over words. The graphical 
model representation of LDA is shown in Figure 1. 

As Figure 1 makes clear, this model is not a simple Dirichlet-multinomial clustering 
model. In such a model the innermost plate would contain only W n ; the topic 
node would be sampled only once for each document; and the Dirichlet would be 
sampled only once for the whole collection. In LDA, the Dirichlet is sampled for 
each document, and the multinomial topic node is sampled repeatedly within the 
document. The Dirichlet is thus a component in the probability model rather than 
a prior distribution over the model parameters. 

We see from Eq. (1) that there is a second interpretation of LDA. Having sampled 
B, words are drawn iid from the multinomial/unigram model given by p(wIB) = 

2::=1 p(wlz)p(z IB). Thus, LDA is a mixture model where the unigram models 
p(wIB) are the mixture components, and p(B; a) gives the mixture weights. Note 
that unlike a traditional mixture of unigrams model, this distribution has an infinite 
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Figure 1: Graphical model representation of LDA. The boxes are plates representing 
replicates. The outer plate represents documents, while the inner plate represents 
the repeated choice of topics and words within a document. 



Figure 2: An example distribution on unigram models p(wIB) under LDA for three 
words and four topics. The triangle embedded in the x-y plane is the 2-D simplex 
over all possible multinomial distributions over three words. (E.g. , each of the 
vertices of the triangle corresponds to a deterministic distribution that assigns one 
of the words probability 1; the midpoint of an edge gives two of the words 0.5 
probability each; and the centroid of the triangle is the uniform distribution over 
all 3 words). The four points marked with an x are the locations of the multinomial 
distributions p(wlz) for each of the four topics , and the surface shown on top of the 
simplex is an example of a resulting density over multinomial distributions given 
by LDA. 

number of continuously-varying mixture components indexed by B. The example 
in Figure 2 illustrates this interpretation of LDA as defining a random distribution 
over unigram models p(wIB). 

2.2 Related models 

The mixture of unigrams model [6] posits that every document is generated by a 
single randomly chosen topic: 

(2) 

This model allows for different documents to come from different topics, but fails to 
capture the possibility that a document may express multiple topics. LDA captures 
this possibility, and does so with an increase in the parameter count of only one 
parameter: rather than having k - 1 free parameters for the multinomial p(z) over 
the k topics, we have k free parameters for the Dirichlet. 

A second related model is Hofmann's probabilistic latent semantic indexing 
(pLSI) [3], which posits that a document label d and a word ware conditionally 
independent given the hidden topic z : 

p(d, w) = L~=l p(wlz)p(zld)p(d). (3) 

This model does capture the possibility that a document may contain multiple topics 
since p(zld) serve as the mixture weights of the topics. However, a subtlety of pLSI­
and the crucial difference between it and LDA-is that d is a dummy index into 
the list of documents in the training set. Thus, d is a multinomial random variable 
with as many possible values as there are training documents, and the model learns 



the topic mixtures p(zld) only for those documents on which it is trained. For this 
reason, pLSI is not a fully generative model and there is no clean way to use it 
to assign probability to a previously unseen document. Furthermore, the number 
of parameters in pLSI is on the order of klVl + klDI, where IDI is the number of 
documents in the training set. Linear growth in the number of parameters with the 
size of the training set suggests that overfitting is likely to be a problem and indeed, 
in practice, a "tempering" heuristic is used to smooth the parameters of the model. 

3 Inference and learning 

Let us begin our description of inference and learning problems for LDA by exam­
ining the contribution to the likelihood made by a single document. To simplify 
our notation, let w~ = 1 iff Wn is the jth word in the vocabulary and z~ = 1 
iff Zn is the ith topic. Let j3ij denote p(wj = Ilzi = 1), and W = (WI, ... ,WN), 
Z = (ZI, ... ,ZN). Expanding Eq. (1), we have: 

(4) 

This is a hypergeometric function that is infeasible to compute exactly [4]. 

Large text collections require fast inference and learning algorithms and thus we 
have utilized a variational approach [5] to approximate the likelihood in Eq. (4). 
We use the following variational approximation to the log likelihood: 

logp(w; a, 13) log r :Ep(wlz; j3)p(zIB)p(B; a) q~:, z:" ~~ dB le z q ,Z", 

> Eq[logp(wlz;j3) +logp(zIB) +logp(B;a) -logq(B,z; , ,¢)], 

where we choose a fully factorized variational distribution q(B, z;" ¢) 
q(B; ,) fIn q(Zn; ¢n) parameterized by , and ¢n, so that q(B; ,) is Dirichlet({), and 
q(zn; ¢n) is MUlt(¢n). Under this distribution, the terms in the variational lower 
bound are computable and differentiable, and we can maximize the bound with 
respect to, and ¢ to obtain the best approximation to p(w;a,j3). 

Note that the third and fourth terms in the variational bound are not straight­
forward to compute since they involve the entropy of a Dirichlet distribution, a 
(k - I)-dimensional integral over B which is expensive to compute numerically. In 
the full version of this paper, we present a sequence of reductions on these terms 
which use the log r function and its derivatives. This allows us to compute the 
integral using well-known numerical routines. 

Variational inference is coordinate ascent in the bound on the probability of a single 
document. In particular, we alternate between the following two equations until the 
objective converges: 

(5) 

,i ai + 2:~=1 ¢ni (6) 

where \]i is the first derivative of the log r function. Note that the resulting vari­
ational parameters can also be used and interpreted as an approximation of the 
parameters of the true posterior. 

In the current paper we focus on maximum likelihood methods for parameter es­
timation. Given a collection of documents V = {WI' ... ' WM}, we utilize the EM 



algorithm with a variational E step, maximizing a lower bound on the log likelihood: 

M 

logp(V) 2:: l:= Eqm [logp(B, z, w)]- Eqm [logqm(B, z)]. (7) 
m=l 

The E step refits qm for each document by running the inference step described 
above. The M step optimizes Eq. (7) with respect to the model parameters a 
and (3. For the multinomial parameters (3ij we have the following M step update 
equation: 

M Iwml 
(3ij ex: l:= l:= ¢>mniwtnn· (8) 

m=l n=l 

The Dirichlet parameters ai are not independent of each other and we apply 
N ewton-Raphson to optimize them: 

The variational EM algorithm alternates between maximizing Eq. (7) with respect 
to qm and with respect to (a, (3) until convergence. 

4 Experiments and Examples 

We first tested LDA on two text corpora.1 The first was drawn from the TREC AP 
corpus, and consisted of 2500 news articles, with a vocabulary size of IVI = 37,871 
words. The second was the CRAN corpus, consisting of 1400 technical abstracts, 
with IVI = 7747 words. 

We begin with an example showing how LDA can capture multiple-topic phenomena 
in documents. By examining the (variational) posterior distribution on the topic 
mixture q(B; ')'), we can identify the topics which were most likely to have contributed 
to many words in a given document; specifically, these are the topics i with the 
largest ')'i. Examining the most likely words in the corresponding multinomials can 
then further tell us what these topics might be about. The following is an article 
from the TREC collection. 

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, 
Metropolitan Opera Co., New York Philharmonic and Juilliard School. 
"Our board felt that we had a real opportunity to make a mark on the future of the 
performing arts with these grants an act every bit as important as our traditional ar­
eas of support in health , medical research, education and the social services," Hearst 
Foundation President Randolph A. Hearst said Monday in announcing the grants. 
Lincoln Center's share will be $200,000 for its new building, which will house young 
artists and provide new public facilities. The Metropolitan Opera Co. and New York 
Philharmonic will receive $400,000 each. The Juilliard School, where music and the 
performing arts are taught, will get $250,000. 
The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Cor­
porate Fund, will make its usual annual $100,000 donation, too. 

Figure 3 shows the Dirichlet parameters of the corresponding variational distribu­
tion for those topics where ')'i > 1 (k = 100) , and also lists the top 15 words (in 

iTo enable repeated large scale comparison of various models on large corpora, we 
implemented our variational inference algorithm on a parallel computing cluster. The 
(bottleneck) E step is distributed across nodes so that the qm for different documents are 
calculated in parallel. 



Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 
SCHOOL MILLION SAID SAID SAID 
SAID YEAR AIDS NEW NEW 
STUDENTS SAID HEALTH PRESIDENT MUSIC 
BOARD SALES DISEASE CHIEF YEAR 
SCHOOLS BILLION VIRUS CHAIRMAN THEATER 
STUDENT TOTAL CHILDREN EXECUTIVE MUSICAL 
TEACHER SHARE BLOOD VICE BAND 
POLICE EARNINGS PATIENTS YEARS PLAY 
PROGRAM PROFIT TREATMENT COMPANY WON 
TEACHERS QUARTER STUDY YORK TWO 
MEMBERS ORDERS IMMUNE SCHOOL AVAILABLE 
YEAROLD LAST CANCER TWO AWARD 
GANG DEC PEOPLE TODAY OPERA 

I" DEPARTMENT REVENUE PERCENT COLUMBIA BEST 

Figure 3: The Dirichlet parameters where Ii > 1 (k = 100), and the top 15 words 
from the corresponding topics, for the document discussed in the text . 
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Figure 4: Perplexity results on the CRAN and AP corpora for LDA, pLSI, mixture 
of unigrams, and the unigram model. 

order) from these topics. This document is mostly a combination of words about 
school policy (topic 4) and music (topic 5). The less prominent topics reflect other 
words about education (topic 1) , finance (topic 2), and health (topic 3). 

4.1 Formal evaluation: Perplexity 

To compare the generalization performance of LDA with other models, we com­
puted the perplexity of a test set for the AP and CRAN corpora. The perplex­
ity, used by convention in language modeling, is monotonically decreasing in the 
likelihood of the test data, and can be thought of as the inverse of the per-word 
likelihood. More formally, for a test set of M documents, perplexity(Vtest ) = 
exp (-l:m logp(wm)/ l:m Iwml}. 

We compared LDA to both the mixture of unigrams and pLSI described in Sec­
t ion 2.2. We trained the pLSI model with and without tempering to reduce over­
fitting. When tempering, we used part of the test set as the hold-out data, thereby 
giving it a slight unfair advantage. As mentioned previously, pLSI does not readily 
generate or assign probabilities to previously unseen documents; in our experiments, 
we assigned probability to a new document d by marginalizing out the dummy train-
ing set indices2 : pew ) = l:d( rr : =1l:z p(wn lz)p(z ld))p(d) . 

2 A second natural method, marginalizing out d and z to form a unigram model using 
the resulting p(w)'s, did not perform well (its performance was similar to the standard 
unigram model). 
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Figure 5: Results for classification (left) and collaborative filtering (right) 

Figure 4 shows the perplexity for each model and both corpora for different values 
of k. The latent variable models generally do better than the simple unigram model. 
The pLSI model severely overfits when not tempered (the values beyond k = 10 
are off the graph) but manages to outperform mixture of unigrams when tempered. 
LDA consistently does better than the other models. To our knowledge, these are 
by far the best text perplexity results obtained by a bag-of-words model. 

4.2 Classification 

We also tested LDA on a text classification task. For each class c, we learn a separate 
model p(wlc) of the documents in that class. An unseen document is classified by 
picking argmaxcp(Clw) = argmaxcp(wlc)p(c). Note that using a simple unigram 
distribution for p(wlc) recovers the traditional naive Bayes classification model. 

Using the same (standard) subset of the WebKB dataset as used in [6], we obtained 
classification error rates illustrated in Figure 5 (left). In all cases, the difference 
between LDA and the other algorithms' performance is statistically significant (p < 
0.05). 

4.3 Collaborative filtering 

Our final experiment utilized the EachMovie collaborative filtering dataset. In this 
dataset a collection of users indicates their preferred movie choices. A user and 
the movies he chose are analogous to a document and the words in the document 
(respectively) . 

The collaborative filtering task is as follows. We train the model on a fully ob­
served set of users. Then, for each test user, we are shown all but one of the 
movies that she liked and are asked to predict what the held-out movie is. The 
different algorithms are evaluated according to the likelihood they assign to the 
held-out movie. More precisely define the predictive perplexity on M test users 
to be exp( - ~~=llogP(WmNd lwml' ... ,Wm(Nd-l))/M) . With 5000 training users, 
3500 testing users, and a vocabulary of 1600 movies, we find predictive perplexities 
illustrated in Figure 5 (right). 

5 Conclusions 

We have presented a generative probabilistic framework for modeling the topical 
structure of documents and other collections of discrete data. Topics are represented 



explicit ly via a multinomial variable Zn that is repeatedly selected, once for each 
word, in a given document. In this sense, the model generates an allocation of 
the words in a document to topics. When computing the probability of a new 
document, this unknown allocation induces a mixture distribution across the words 
in the vocabulary. There is a many-to-many relationship between topics and words 
as well as a many-to-many relationship between documents and topics. 

While Dirichlet distributions are often used as conjugate priors for multinomials in 
Bayesian modeling, it is preferable to instead think of the Dirichlet in our model as 
a component of the likelihood. The Dirichlet random variable e is a latent variable 
that gives generative probabilistic semantics to the notion of a "document" in the 
sense that it allows us to put a distribution on the space of possible documents. 
The words that are actually obtained are viewed as a continuous mixture over this 
space, as well as being a discrete mixture over topics.3 

The generative nature of LDA makes it easy to use as a module in more complex 
architectures and to extend it in various directions. We have already seen that 
collections of LDA can be used in a classification setting. If the classification variable 
is treated as a latent variable we obtain a mixture of LDA models, a useful model for 
situations in which documents cluster not only according to their topic overlap, but 
along other dimensions as well. Another extension arises from generalizing LDA to 
consider Dirichlet/multinomial mixtures of bigram or trigram models , rather than 
the simple unigram models that we have considered here. Finally, we can readily 
fuse LDA models which have different vocabularies (e.g., words and images); these 
models interact via a common abstract topic variable and can elegantly use both 
vocabularies in determining the topic mixture of a given document. 
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