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A CORRELATED TOPIC MODEL OF SCIENCE1
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Topic models, such as latent Dirichlet allocation (LDA), can be useful
tools for the statistical analysis of document collections and other discrete
data. The LDA model assumes that the words of each document arise from a
mixture of topics, each of which is a distribution over the vocabulary. A lim-
itation of LDA is the inability to model topic correlation even though, for
example, a document about genetics is more likely to also be about disease
than X-ray astronomy. This limitation stems from the use of the Dirichlet dis-
tribution to model the variability among the topic proportions. In this paper
we develop the correlated topic model (CTM), where the topic proportions
exhibit correlation via the logistic normal distribution [J. Roy. Statist. Soc.
Ser. B 44 (1982) 139–177]. We derive a fast variational inference algorithm
for approximate posterior inference in this model, which is complicated by
the fact that the logistic normal is not conjugate to the multinomial. We ap-
ply the CTM to the articles from Science published from 1990–1999, a data
set that comprises 57M words. The CTM gives a better fit of the data than
LDA, and we demonstrate its use as an exploratory tool of large document
collections.

1. Introduction. Large collections of documents are readily available on-
line and widely accessed by diverse communities. As a notable example, schol-
arly articles are increasingly published in electronic form, and historical archives
are being scanned and made accessible. The not-for-profit organization JSTOR
(www.jstor.org) is currently one of the leading providers of journals to the schol-
arly community. These archives are created by scanning old journals and running
an optical character recognizer over the pages. JSTOR provides the original scans
on-line, and uses their noisy version of the text to support keyword search. Since
the data are largely unstructured and comprise millions of articles spanning cen-
turies of scholarly work, automated analysis is essential. The development of new
tools for browsing, searching and allowing the productive use of such archives
is thus an important technological challenge, and provides new opportunities for
statistical modeling.
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The statistical analysis of documents has a tradition that goes back at least to
the analysis of the Federalist papers by Mosteller and Wallace [21]. But document
modeling takes on new dimensions with massive multi-author collections such as
the large archives that now are being made accessible by JSTOR, Google and other
enterprises. In this paper we consider topic models of such collections, by which
we mean latent variable models of documents that exploit the correlations among
the words and latent semantic themes. Topic models can extract surprisingly inter-
pretable and useful structure without any explicit “understanding” of the language
by computer. In this paper we present the correlated topic model (CTM), which
explicitly models the correlation between the latent topics in the collection, and
enables the construction of topic graphs and document browsers that allow a user
to navigate the collection in a topic-guided manner.

The main application of this model that we present is an analysis of the JS-
TOR archive for the journal Science. This journal was founded in 1880 by Thomas
Edison and continues as one of the most influential scientific journals today. The
variety of material in the journal, as well as the large number of articles ranging
over more than 100 years, demonstrates the need for automated methods, and the
potential for statistical topic models to provide an aid for navigating the collection.

The correlated topic model builds on the earlier latent Dirichlet allocation
(LDA) model of Blei, Ng and Jordan [8], which is an instance of a general family of
mixed membership models for decomposing data into multiple latent components.
LDA assumes that the words of each document arise from a mixture of topics,
where each topic is a multinomial over a fixed word vocabulary. The topics are
shared by all documents in the collection, but the topic proportions vary stochasti-
cally across documents, as they are randomly drawn from a Dirichlet distribution.
Recent work has used LDA as a building block in more sophisticated topic models,
such as author-document models [19, 24], abstract-reference models [12] syntax-
semantics models [16] and image-caption models [6]. The same kind of modeling
tools have also been used in a variety of nontext settings, such as image process-
ing [26, 13], recommendation systems [18], the modeling of user profiles [14] and
the modeling of network data [1]. Similar models were independently developed
for disability survey data [10, 11] and population genetics [22].

In the parlance of the information retrieval literature, LDA is a “bag of words”
model. This means that the words of the documents are assumed to be exchange-
able within them, and Blei, Ng and Jordan [8] motivate LDA from this assumption
with de Finetti’s exchangeability theorem. As a consequence, models like LDA
represent documents as vectors of word counts in a very high dimensional space,
ignoring the order in which the words appear. While it is important to retain the
exact sequence of words for reading comprehension, the linguistically simplistic
exchangeability assumption is essential to efficient algorithms for automatically
eliciting the broad semantic themes in a collection.

The starting point for our analysis here is a perceived limitation of topic models
such as LDA: they fail to directly model correlation between topics. In most text
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corpora, it is natural to expect that subsets of the underlying latent topics will be
highly correlated. In Science, for instance, an article about genetics may be likely
to also be about health and disease, but unlikely to also be about X-ray astronomy.
For the LDA model, this limitation stems from the independence assumptions im-
plicit in the Dirichlet distribution on the topic proportions. Under a Dirichlet, the
components of the proportions vector are nearly independent, which leads to the
strong and unrealistic modeling assumption that the presence of one topic is not
correlated with the presence of another. The CTM replaces the Dirichlet by the
more flexible logistic normal distribution, which incorporates a covariance struc-
ture among the components [4]. This gives a more realistic model of the latent
topic structure where the presence of one latent topic may be correlated with the
presence of another.

However, the ability to model correlation between topics sacrifices some of the
computational conveniences that LDA affords. Specifically, the conjugacy between
the multinomial and Dirichlet facilitates straightforward approximate posterior in-
ference in LDA. That conjugacy is lost when the Dirichlet is replaced with a logis-
tic normal. Standard simulation techniques such as Gibbs sampling are no longer
possible, and Metropolis–Hastings based MCMC sampling is prohibitive due to
the scale and high dimension of the data.

Thus, we develop a fast variational inference procedure for carrying out approx-
imate inference with the CTM model. Variational inference [17, 29] trades the un-
biased estimates of MCMC procedures for potentially biased but computationally
efficient algorithms whose numerical convergence is easy to assess. Variational
inference algorithms have been effective in LDA for analyzing large document
collections [8]. We extend their use to the CTM.

The rest of this paper is organized as follows. We first present the correlated
topic model and discuss its underlying modeling assumptions. Then, we present
an outline of the variational approach to inference (the technical details are col-
lected in the Appendix) and the variational expectation–maximization procedure
for parameter estimation. Finally, we analyze the performance of the model on the
JSTOR Science data. Quantitatively, we show that it gives a better fit than LDA, as
measured by the accuracy of the predictive distributions over held out documents.
Qualitatively, we present an analysis of all of Science from 1990–1999, including
examples of topically related articles found using the inferred latent structure, and
topic graphs that are constructed from a sparse estimate of the covariance structure
of the model. The paper concludes with a brief discussion of the results and future
work that it suggests.

2. The correlated topic model. The correlated topic model (CTM) is a hi-
erarchical model of document collections. The CTM models the words of each
document from a mixture model. The mixture components are shared by all doc-
uments in the collection; the mixture proportions are document-specific random
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variables. The CTM allows each document to exhibit multiple topics with differ-
ent proportions. It can thus capture the heterogeneity in grouped data that exhibit
multiple latent patterns.

We use the following terminology and notation to describe the data, latent vari-
ables and parameters in the CTM.

• Words and documents. The only observable random variables that we consider
are words that are organized into documents. Let wd,n denote the nth word in
the dth document, which is an element in a V -term vocabulary. Let wd denote
the vector of Nd words associated with document d .

• Topics. A topic β is a distribution over the vocabulary, a point on the V − 1
simplex. The model will contain K topics β1:K .

• Topic assignments. Each word is each assumed drawn from one of the K topics.
The topic assignment zd,n is associated with the nth word and dth document.

• Topic proportions. Finally, each document is associated with a set of topic pro-
portions θd , which is a point on the K − 1 simplex. Thus, θd is a distribution
over topic indices, and reflects the probabilities with which words are drawn
from each topic in the collection. We will typically consider a natural parame-
terization of this multinomial η = log(θi/θK).

Specifically, the correlated topic model assumes that an N -word document
arises from the following generative process. Given topics β1:K , a K-vector µ
and a K × K covariance matrix �:

1. Draw ηd |{µ,�} ∼ N (µ,�).
2. For n ∈ {1, . . . ,Nd}:
(a) Draw topic assignment Zd,n|ηd from Mult(f (ηd)).
(b) Draw word Wd,n|{zd,n,β1:K} from Mult(βzd,n

),

where f (η) maps a natural parameterization of the topic proportions to the mean
parameterization,

θ = f (η) = exp{η}∑
i exp{ηi} .(1)

(Note that η does not index a minimal exponential family. Adding any constant
to η will result in an identical mean parameter.) This process is illustrated as a
probabilistic graphical model in Figure 1. (A probabilistic graphical model is a
graph representation of a family of joint distributions with a graph. Nodes denote
random variables; edges denote possible dependencies between them.)

The CTM builds on the latent Dirichlet allocation (LDA) model [8]. Latent
Dirichlet allocation assumes a nearly identical generative process, but one where
the topic proportions are drawn from a Dirichlet. In LDA and its variants, the
Dirichlet is a computationally convenient distribution over topic proportions be-
cause it is conjugate to the topic assignments. But, the Dirichlet assumes near
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FIG. 1. Top: Probabilistic graphical model representation of the correlated topic model. The lo-
gistic normal distribution, used to model the latent topic proportions of a document, can represent
correlations between topics that are impossible to capture using a Dirichlet. Bottom: Example den-
sities of the logistic normal on the 2-simplex. From left: diagonal covariance and nonzero-mean,
negative correlation between topics 1 and 2, positive correlation between topics 1 and 2.

independence of the components of the proportions. In fact, one can simulate a
draw from a Dirichlet by drawing from K independent Gamma distributions and
normalizing the resulting vector. (Note that there is slight negative correlation due
to the constraint that the components sum to one.)

Rather than use a Dirichlet, the CTM draws a real valued random vector from a
multivariate Gaussian and then maps it to the simplex to obtain a multinomial para-
meter. This is the defining characteristic of the logistic Normal distribution [2–4].
The covariance of the Gaussian induces dependencies between the components of
the transformed random simplicial vector, allowing for a general pattern of vari-
ability between its components. The logistic normal was originally studied in the
context of analyzing observed compositional data, such as the proportions of min-
erals in geological samples. In the CTM, we use it to model the latent composition
of topics associated with each document.

The drawback of using the logistic normal is that it is not conjugate to the
multinomial, which complicates the corresponding approximate posterior infer-
ence procedure. The advantage, however, is that it provides a more expressive
document model. The strong independence assumption imposed by the Dirichlet
is not realistic when analyzing real document collections, where one finds strong
correlations between the latent topics. For example, a document about geology is
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more likely to also be about archeology than genetics. We aim to use the covari-
ance matrix of the logistic normal to capture such relationships.

In Section 4 we illustrate how the higher order structure given by the covari-
ance can be used as an exploratory tool for better understanding and navigating
a large corpus of documents. Moreover, modeling correlation can lead to better
predictive distributions. In some applications, such as automatic recommendation
systems, the goal is to predict unseen items conditioned on a set of observations.
A Dirichlet-based model will predict items based on the latent topics that the obser-
vations suggest, but the CTM will predict items associated with additional topics
that are correlated with the conditionally probable topics.

3. Computation with the correlated topic model. We address two com-
putational problems that arise when using the correlated topic model to analyze
data. First, given a collection of topics and distribution over topic proportions
{β1:K,µ,�}, we estimate the posterior distribution of the latent variables con-
ditioned on the words of a document p(η,z|w,β1:K,µ,�). This lets us embed
newly observed documents into the low dimensional latent thematic space that the
model represents. We use a fast variational inference algorithm to approximate this
posterior, which lets us quickly analyze large document collections under these
complicated modeling assumptions.

Second, given a collection of documents {w1, . . . ,wD}, we find maximum like-
lihood estimates of the topics and the underlying logistic normal distribution un-
der the modeling assumptions of the CTM. We use a variant of the expectation-
maximization algorithm, where the E-step is the per-document posterior inference
problem described above. Furthermore, we seek sparse solutions of the inverse
covariance matrix between topics, and we adapt �1-regularized covariance estima-
tion [20] for this purpose.

3.1. Posterior inference with variational methods. Given a document w and a
model {β1:K,µ,�}, the posterior distribution of the per-document latent variables
is

p(η,z|w,β1:K,µ,�)
(2)

= p(η|µ,�)
∏N

n=1 p(zn|η)p(wn|zn,β1:K)∫
p(η|µ,�)

∏N
n=1

∑K
zn=1 p(zn|η)p(wn|zn,β1:K)dη

,

which is intractable to compute due to the integral in the denominator, that is, the
marginal probability of the document that we are conditioning on. There are two
reasons for this intractability. First, the sum over the K values of zn occurs inside
the product over words, inducing a combinatorial number of terms. Second, even
if KN stays within the realm of computational tractability, the distribution of topic
proportions p(η|µ,�) is not conjugate to the distribution of topic assignments
p(zn|η). Thus, we cannot analytically compute the integrals of each term.
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The nonconjugacy further precludes using many of the Monte Carlo Markov
chain (MCMC) sampling techniques that have been developed for computing with
Dirichlet-based mixed membership models [10, 15]. These MCMC methods are
all based on Gibbs sampling, where the conjugacy between the latent variables
lets us compute coordinate-wise posteriors analytically. To employ MCMC in the
logistic normal setting considered here, we have to appeal to a tailored Metropolis–
Hastings solution. Such a technique will not enjoy the same convergence properties
and speed of the Gibbs samplers, which is particularly hindering for the goal of
analyzing collections that comprise millions of words.

Thus, to approximate this posterior, we appeal to variational methods as a deter-
ministic alternative to MCMC. The idea behind variational methods is to optimize
the free parameters of a distribution over the latent variables so that the distrib-
ution is close in Kullback–Leibler divergence to the true posterior [17, 29]. The
fitted variational distribution is then used as a substitute for the posterior, just
as the empirical distribution of samples is used in MCMC. Variational methods
have had widespread application in machine learning; their potential in applied
Bayesian statistics is beginning to be realized.

In models composed of conjugate-exponential family pairs and mixtures, the
variational inference algorithm can be automatically derived by computing expec-
tations of natural parameters in the variational distribution [5, 7, 31]. However, the
nonconjugate pair of variables in the CTM requires that we derive the variational
inference algorithm from first principles.

We begin by using Jensen’s inequality to bound the log probability of a docu-
ment,

logp(w1:N |µ,�,β)

≥ Eq[logp(η|µ,�)] +
N∑

n=1

Eq[logp(zn|η)](3)

+
N∑

n=1

Eq[logp(wn|zn,β)] + H(q),

where the expectation is taken with respect to q , a variational distribution of the
latent variables, and H(q) denotes the entropy of that distribution. As a variational
distribution, we use a fully factorized model, where all the variables are indepen-
dently governed by a different distribution,

q(η1:K, z1:N |λ1:K, ν2
1:K,φ1:N) =

K∏
i=1

q(ηi |λi, ν
2
i )

N∏
n=1

q(zn|φn).(4)

The variational distributions of the discrete topic assignments z1:N are specified
by the K-dimensional multinomial parameters φ1:N (these are mean parameters
of the multinomial). The variational distribution of the continuous variables η1:K



24 D. M. BLEI AND J. D. LAFFERTY

are K independent univariate Gaussians {λi, νi}. Since the variational parameters
are fit using a single observed document w1:N , there is no advantage in introducing
a nondiagonal variational covariance matrix.

The variational inference algorithm optimizes equation (3) with respect to the
variational parameters, thereby tightening the bound on the marginal probability of
the observations as much as the structure of variational distribution allows. This is
equivalent to finding the variational distribution that minimizes KL(q||p), where
p is the true posterior [17, 29]. Details of this optimization for the CTM are given
in the Appendix.

Note that variational methods do not come with the same theoretical guarantees
as MCMC, where the limiting distribution of the chain is exactly the posterior of
interest. However, variational methods provide fast algorithms and a clear conver-
gence criterion, whereas MCMC methods can be computationally inefficient and
determining when a Markov chain has converged is difficult [23].

3.2. Parameter estimation. Given a collection of documents, we carry out pa-
rameter estimation for the correlated topic model by attempting to maximize the
likelihood of a corpus of documents as a function of the topics β1:K and the mul-
tivariate Gaussian (µ,�).

As in many latent variable models, we cannot compute the marginal likelihood
of the data because of the latent structure that needs to be marginalized out. To ad-
dress this issue, we use variational expectation–maximization (EM). In the E-step
of traditional EM, one computes the posterior distribution of the latent variables
given the data and current model parameters. In variational EM, we use the varia-
tional approximation to the posterior described in the previous section. Note that
this is akin to Monte Carlo EM, where the E-step is approximated by a Monte
Carlo approximation to the posterior [30].

Specifically, the objective function of variational EM is the likelihood bound
given by summing equation (3) over the document collection {w1, . . . ,wD},

L(µ,�,β1:K;w1:D) ≥
D∑

d=1

Eqd
[logp(ηd,zd,wd |µ,�,β1:K)].

The variational EM algorithm is coordinate ascent in this objective function. In
the E-step, we maximize the bound with respect to the variational parameters by
performing variational inference for each document. In the M-step, we maximize
the bound with respect to the model parameters. This amounts to maximum likeli-
hood estimation of the topics and multivariate Gaussian using expected sufficient
statistics, where the expectation is taken with respect to the variational distribu-
tions computed in the E-step,

β̂i ∝ ∑
d

φd,ind,
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µ̂ = 1

D

∑
d

λd,

�̂ = 1

D

∑
d

Iν2
d + (λd − µ̂)(λd − µ̂)T ,

where nd is the vector of word counts for document d .
The E-step and M-step are repeated until the bound on the likelihood con-

verges. In the analysis reported below, we run variational inference until the rel-
ative change in the probability bound of equation (3) is less than 0.0001%, and
run variational EM until the relative change in the likelihood bound is less than
0.001%.

3.3. Topic graphs. As seen below, the ability of the CTM to model the corre-
lation between topics yields a better fit of a document collection than LDA. But
the covariance of the logistic normal model for topic proportions can also be used
to visualize the relationships among the topics. In particular, the covariance matrix
can be used to form a topic graph, where the nodes represent individual topics, and
neighboring nodes represent highly related topics. In such settings, it is useful to
have a mechanism to control the sparsity of the graph.

Recall that the graph encoding the independence relations in a Gaussian graph-
ical model is specified by the zero pattern in the inverse covariance matrix. More
precisely, if X ∼ N(µ,�) is a K-dimensional multivariate Gaussian, and S = �−1

denotes the inverse covariance matrix, then we form a graph G(�) = (V ,E) with
vertices V corresponding to the random variables X1, . . . ,XK and edges E satis-
fying (s, t) ∈ E if and only if Sst �= 0. If N (s) = {t : (s, t) ∈ E} denotes the set of
neighbors of s in the graph, then the independence relation Xs ⊥ Xu|XN (s) holds
for any node u /∈ N (s) that is not a neighbor of s.

Recent work of Meinshausen and Bühlmann [20] shows how the lasso [28] can
be adapted to give an asymptotically consistent estimator of the graph G(�). The
strategy is to regress each variable Xs onto all of the other variables, imposing an
�1 penalty on the parameters to encourage sparsity. The nonzero components then
serve as an estimate of the neighbors of s in the graph.

In more detail, let κs = (κs1, . . . , κsK) ∈ RK be the parameters of the lasso fit
obtained by regressing Xs onto (Xt)t �=s , with the parameter κss serving as the
unregularized intercept. The optimization problem is

κ̂s = arg min
κ

1
2‖Xs − X\sκs‖2

2 + ρn‖κ\s‖1,(5)

where X\s denotes the set of variables with Xs replaced by the vector of all 1’s,
and κ\s denotes the vector κs with component κss removed. The estimated set of
neighbors is then

N̂ (s) = {t : κ̂st �= 0}.(6)
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Meinshausen and Bühlmann [20] show that P(N̂ (s) = N (s)) → 1 as the sample
size n increases, for a suitable choice of the regularization parameter ρn satisfying
nρ2

n − log(K) → ∞. Moreover, the convergence is exponentially fast, and as a con-
sequence, if K = O(nd) grows only polynomially with sample size, the estimated
graph is the true graph with probability approaching one.

To adapt the Meinshausen–Bühlmann technique to the CTM, recall that we es-
timate the covariance matrix � using variational EM, where in the M-step we
maximize the variational lower bound with respect to approximation computed in
the E-step. For a given document d , the variational approximation to the posterior
of η is a normal with mean λd ∈ RK . We treat the standardized mean vectors {λd}
as data, and regress each component onto the others with an �1 penalty. Two simple
procedures can be used to then form the graph edge set, by taking the conjunction
or disjunction of the local neighborhood estimates:

(s, t) ∈ EAND in case t ∈ N̂ (s) and s ∈ N̂ (t),(7)

(s, t) ∈ EOR in case t ∈ N̂ (s) or s ∈ N̂ (t).(8)

Figure 2 shows an example of a topic graph constructed using this method,
with edges EAND formed by intersecting the neighborhood estimates. Varying the
regularization parameter ρn allows control over the sparsity of the graph; the graph
becomes increasingly sparse as ρn increases.

4. Analyzing Science. JSTOR is an on-line archive of scholarly journals that
scans bound volumes dating back to the 1600s and runs optical character recogni-
tion algorithms on the scans. Thus, JSTOR stores and indexes hundreds of millions
of pages of noisy text, all searchable through the Internet. This is an invaluable re-
source to scholars.

The JSTOR collection provides an opportunity for developing exploratory
analysis and useful descriptive statistics of large volumes of text data. As they are,
the articles are organized by journal, volume and number. But the users of JSTOR
would benefit from a topical organization of articles from different journals and
automatic recommendations of similar articles to those known to be of interest.

In some modern electronic scholarly archives, such as the ArXiv (http://www.
arxiv.org/), contributors provide meta-data with their manuscripts that describe and
categorize their work to aid in such a topical exploration of the collection. In many
text data sets, however, meta-data is unavailable. Moreover, there may be under-
lying topics and connections between articles that the authors or curators have not
determined. To these ends, we analyzed a large portion of JSTOR’s corpus of arti-
cles from Science with the CTM.

4.1. Qualitative analysis of Science. In this section we illustrate the possible
applications of the CTM to automatic corpus analysis and browsing. We estimated
a 100-topic model on the Science articles from 1990 to 1999 using the variational

http://www.arxiv.org/
http://www.arxiv.org/
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FIG. 2. A portion of the topic graph learned from 16,351 OCR articles from Science (1990–1999). Each topic node is labeled with its five most
probable phrases and has font proportional to its popularity in the corpus. (Phrases are found by permutation test.) The full model can be found in
http://www.cs.cmu.edu/~lemur/science/ and on STATLIB.

http://www.cs.cmu.edu/~lemur/science/
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EM algorithm of Section 3.2. (C code that implements this algorithm can be found
at the first author’s web-site and STATLIB.) The total vocabulary size in this col-
lection is 375,144 terms. We trim the 356,195 terms that occurred fewer than 70
times as well as 296 stop words, that is, words like “the,” “but” or “with,” which
do not convey meaning. This yields a corpus of 16,351 documents, 19,088 unique
terms and a total of 5.7M words.

Using the technique described in Section 3.3, we constructed a sparse graph
(ρ = 0.1) of the connections between the estimated latent topics. Part of this graph
is illustrated in Figure 2. (For space, we manually removed topics that occurred
very rarely and those that captured nontopical content such as front matter.) This
graph provides a snapshot of ten years of Science, and reveals different substruc-
tures of themes in the collection. A user interested in the brain can restrict attention
to articles that use the neuroscience topics; a user interested in genetics can restrict
attention to those articles in the cluster of genetics topics.

Further structure is revealed at the document level, where each document is as-
sociated with a latent vector of topic proportions. The posterior distribution of the
proportions can be used to associate documents with latent topics. For example, the
following are the top five articles associated with the topic whose most probable
vocabulary items are “laser, optical, light, electron, quantum”:

1. “Vacuum Squeezing of Solids: Macroscopic Quantum States Driven by
Light Pulses” (1997).

2. “Superradiant Rayleigh Scattering from a Bose–Einstein Condensate”
(1999).

3. “Physics and Device Applications of Optical Microcavities” (1992).
4. “Photon Number Squeezed States in Semiconductor Lasers” (1992).
5. “A Well-Collimated Quasi-Continuous Atom Laser” (1999).

Moreover, we can use the expected distance between per-document topic pro-
portions to identify other documents that have similar topical content. We use the
expected Hellinger distance, which is a symmetric distance between distributions.
Consider two documents i and j ,

E[d(θ i , θj )] = Eq

[∑
k

(√
θik −

√
θjk

)2
]

= 2 − 2
∑
k

Eq

[√
θik

]
Eq

[
θjk√
θjk

]
,

where all expectations are taken with respect to the variational posterior distri-
butions (see Section 3.1). One example of this application of the latent variable
analysis is illustrated in Figure 3.

The interested reader is invited to visit http://www.cs.cmu.edu/~lemur/science/
to interactively explore this model, including the topics, their connections, the ar-
ticles that exhibit them and the expected Hellinger similarity between articles.

http://www.cs.cmu.edu/~lemur/science/
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FIG. 3. Using the Hellinger distance to find similar articles to the query article “Earth’s Solid
Iron Core May Skew Its Magnetic Field.” Illustrated are the top three articles by Hellinger distance
to the query article and the expected posterior topic proportions for each article. Notice that each
document somehow combines geology and physics.

4.2. Quantitative comparison to latent Dirichlet allocation. We compared the
logistic normal to the Dirichlet by fitting a smaller collection of articles to CTM
and LDA models of varying numbers of topics. This collection contains the 1,452
documents from 1960; we used a vocabulary of 5,612 words after pruning common
function words and terms that occur once in the collection. Using ten-fold cross
validation, we computed the log probability of the held-out data given a model
estimated from the remaining data. A better model of the document collection will
assign higher probability to the held out data. To avoid comparing bounds, we used



30 D. M. BLEI AND J. D. LAFFERTY

FIG. 4. (Left) The 10-fold cross-validated held-out log probability of the 1960 Science corpus,
computed by importance sampling. The CTM supports more topics than LDA. See figure at right for
the standard error of the difference. (Right) The mean difference in held-out log probability. Numbers
greater than zero indicate a better fit by the CTM.

importance sampling to compute the log probability of a document where the fitted
variational distribution is the proposal.

Figure 4 illustrates the average held out log probability for each model and
the average difference between them. The CTM provides a better fit than LDA
and supports more topics; the likelihood for LDA peaks near 30 topics, while the
likelihood for the CTM peaks close to 90 topics. The means and standard errors of
the difference in log-likelihood of the models is shown at right; this indicates that
the CTM always gives a better fit.

Another quantitative evaluation of the relative strengths of LDA and the CTM
is how well the models predict the remaining words of a document after observing
a portion of it. Specifically, we observe P words from a document and are in-
terested in which model provides a better predictive distribution of the remaining
words p(w|w1:P ). To compare these distributions, we use perplexity, which can be
thought of as the effective number of equally likely words according to the model.
Mathematically, the perplexity of a word distribution is defined as the inverse of
the per-word geometric average of the probability of the observations,

Perp(	) =
(

D∏
d=1

Nd∏
i=P+1

p(wi |	,w1:P )

)−1/(
∑D

d=1(Nd−P))

,

where 	 denotes the model parameters of an LDA or CTM model. Note that lower
numbers denote more predictive power.

The plot in Figure 5 compares the predictive perplexity under LDA and the
CTM for different numbers of words randomly observed from the documents.
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FIG. 5. (Left) The 10-fold cross-validated predictive perplexity for partially observed held-out doc-
uments from the 1960 Science corpus (K = 50). Lower numbers indicate more predictive power from
the CTM. (Right) The mean difference in predictive perplexity. Numbers less than zero indicate better
prediction from the CTM.

When a small number of words have been observed, there is less uncertainty about
the remaining words under the CTM than under LDA—the perplexity is reduced
by nearly 200 words, or roughly 10%. The reason is that after seeing a few words
in one topic, the CTM uses topic correlation to infer that words in a related topic
may also be probable. In contrast, LDA cannot predict the remaining words as well
until a large portion of the document has been observed so that all of its topics are
represented.

5. Summary. We have developed a hierarchical topic model of documents
that replaces the Dirichlet distribution of per-document topic proportions with a
logistic normal. This allows the model to capture correlations between the occur-
rence of latent topics. The resulting correlated topic model gives better predictive
performance and uncovers interesting descriptive statistics for facilitating brows-
ing and search. Use of the logistic normal, while more complex, may have benefit
in the many applications of Dirichlet-based mixed membership models.

One issue that we did not thoroughly explore is model selection, that is, choos-
ing the number of topics for a collection. In other topic models, nonparamet-
ric Bayesian methods based on the Dirichlet process are a natural suite of tools
because they can accommodate new topics as more documents are observed.
(The nonparametric Bayesian version of LDA is exactly the hierarchical Dirich-
let process [27].) The logistic normal, however, does not immediately give way to
such extensions. Tackling the model selection issue in this setting is an important
area of future research.
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APPENDIX: DETAILS OF VARIATIONAL INFERENCE

Variational objective. Before deriving the optimization procedure, we put the
objective function equation (3) in terms of the variational parameters. The first
term is

Eq[logp(η|µ,�)]
(9)

= 1

2
log |�−1| − K

2
log 2π − 1

2
Eq[(η − µ)T �−1(η − µ)],

where

Eq[(η − µ)T �−1(η − µ)]
(10)

= Tr(diag(ν2)�−1) + (λ − µ)T �−1(λ − µ).

The nonconjugacy of the logistic normal to multinomial leads to difficulty in
computing the second term of equation (3), the expected log probability of a topic
assignment

Eq[logp(zn|η)] = Eq[ηT zn] − Eq

[
log

(
K∑

i=1

exp{ηi}
)]

.(11)

To preserve the lower bound on the log probability, we upper bound the negative
log normalizer with a Taylor expansion:

Eq

[
log

(
K∑

i=1

exp{ηi}
)]

≤ ζ−1

(
K∑

i=1

Eq[exp{ηi}]
)

− 1 + log(ζ ),(12)

where we have introduced a new variational parameter ζ . The expectation
Eq[exp{ηi}] is the mean of a log normal distribution with mean and variance ob-
tained from the variational parameters {λi, ν

2
i }: Eq[exp{ηi}] = exp{λi + ν2

i /2} for
i ∈ {1, . . . ,K}. This is a simpler approach than the more flexible, but more com-
putationally intensive, method taken in [25].

Using this additional bound, the second term of equation (3) is

Eq[logp(zn|η)] =
K∑

i=1

λiφn,i − ζ−1

(
K∑

i=1

exp{λi + ν2
i /2}

)
+ 1 − log ζ.(13)

The third term of equation (3) is

Eq[logp(wn|zn,β)] =
K∑

i=1

φn,i logβi,wn.(14)

The fourth term is the entropy of the variational distribution:

K∑
i=1

1
2(logν2

i + log 2π + 1) −
N∑

n=1

k∑
i=1

φn,i logφn,i .(15)



A CORRELATED TOPIC MODEL OF SCIENCE 33

Note that the additional variational parameter ζ is not needed to compute this
entropy.

Coordinate ascent optimization. Finally, we maximize the bound in equa-
tion (3) with respect to the variational parameters λ1:K , ν1:K , φ1:N and ζ . We
use a coordinate ascent algorithm, iteratively maximizing the bound with respect
to each parameter.

First, we maximize equation (3) with respect to ζ , using the second bound in
equation (12). The derivative with respect to ζ is

f ′(ζ ) = N

(
ζ−2

(
K∑

i=1

exp{λi + ν2
i /2}

)
− ζ−1

)
,(16)

which has a maximum at

ζ̂ =
K∑

i=1

exp{λi + ν2
i /2}.(17)

Second, we maximize with respect to φn. This yields a maximum at

φ̂n,i ∝ exp{λi}βi,wn, i ∈ {1, . . . ,K},(18)

which is an application of variational inference updates within the exponential
family [5, 7, 31].

Third, we maximize with respect to λi . Equation (3) is not amenable to analytic
maximization. We use the conjugate gradient algorithm with derivative

dL/dλ = −�−1(λ − µ) +
N∑

n=1

φn,1:K − (N/ζ ) exp{λ + ν2/2}.(19)

Finally, we maximize with respect to ν2
i . Again, there is no analytic solution. We

use Newton’s method for each coordinate with the constraint that νi > 0,

dL/dν2
i = −�−1

ii /2 − N/2ζ exp{λi + ν2
i /2} + 1/(2ν2

i ).(20)

Iterating between the optimizations of ν, λ, φ and ζ defines a coordinate ascent
algorithm on equation (3). (In practice, we optimize with respect to ζ in between
optimizations for ν, λ and φ.) Though each coordinate’s optimization is convex,
the variational objective is not convex with respect to the ensemble of variational
parameters. We are only guaranteed to find a local maximum, but note that this is
still a bound on the log probability of a document.
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