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Abstract. Dirichlet process (DP) mixture models are the cornerstone of non-
parametric Bayesian statistics, and the development of Monte-Carlo Markov chain
(MCMC) sampling methods for DP mixtures has enabled the application of non-
parametric Bayesian methods to a variety of practical data analysis problems.
However, MCMC sampling can be prohibitively slow, and it is important to ex-
plore alternatives. One class of alternatives is provided by variational methods, a
class of deterministic algorithms that convert inference problems into optimization
problems (Opper and Saad 2001; Wainwright and Jordan 2003). Thus far, varia-
tional methods have mainly been explored in the parametric setting, in particular
within the formalism of the exponential family (Attias 2000; Ghahramani and Beal
2001; Blei et al. 2003). In this paper, we present a variational inference algorithm
for DP mixtures. We present experiments that compare the algorithm to Gibbs
sampling algorithms for DP mixtures of Gaussians and present an application to
a large-scale image analysis problem.
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1 Introduction

The methodology of Monte Carlo Markov chain (MCMC) sampling has energized Bayesian
statistics for more than a decade, providing a systematic approach to the computation
of likelihoods and posterior distributions, and permitting the deployment of Bayesian
methods in a rapidly growing number of applied problems. However, while an unques-
tioned success story, MCMC is not an unqualified success story—MCMC methods can
be slow to converge and their convergence can be difficult to diagnose. While further
research on sampling is needed, it is also important to explore alternatives, particularly
in the context of large-scale problems.

One such class of alternatives is provided by variational inference methods (Ghahra-
mani and Beal 2001; Jordan et al. 1999; Opper and Saad 2001; Wainwright and Jordan
2003; Wiegerinck 2000). Like MCMC, variational inference methods have their roots in
statistical physics, and, in contradistinction to MCMC methods, they are deterministic.
The basic idea of variational inference is to formulate the computation of a marginal
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2 Variational inference for Dirichlet process mixtures

or conditional probability in terms of an optimization problem. This (generally in-
tractable) problem is then “relaxed,” yielding a simplified optimization problem that
depends on a number of free parameters, known as variational parameters. Solving
for the variational parameters gives an approximation to the marginal or conditional
probabilities of interest.

Variational inference methods have been developed principally in the context of the
exponential family, where the convexity properties of the natural parameter space and
the cumulant function yield an elegant general variational formalism (Wainwright and
Jordan 2003). For example, variational methods have been developed for parametric hi-
erarchical Bayesian models based on general exponential family specifications (Ghahra-
mani and Beal 2001). MCMC methods have seen much wider application. In particular,
the development of MCMC algorithms for nonparametric models such as the Dirichlet
process has led to increased interest in nonparametric Bayesian methods. In the current
paper, we aim to close this gap by developing variational methods for Dirichlet process
mixtures.

The Dirichlet process (DP), introduced in Ferguson (1973), is a measure on measures.
The DP is parameterized by a base distribution G0 and a positive scaling parameter
α.1 Suppose we draw a random measure G from a Dirichlet process, and independently
draw N random variables ηn from G:

G | {G0, α} ∼ DP(G0, α)

ηn ∼ G, n ∈ {1, . . . , N}.

Marginalizing out the random measure G, the joint distribution of {η1, . . . , ηN} follows
a Pólya urn scheme (Blackwell and MacQueen 1973). Positive probability is assigned to
configurations in which different ηn take on identical values; moreover, the underlying
random measure G is discrete with probability one. This is seen most directly in the
stick-breaking representation of the DP, in which G is represented explicitly as an infinite
sum of atomic measures (Sethuraman 1994).

The Dirichlet process mixture model (Antoniak 1974) adds a level to the hierarchy
by treating ηn as the parameter of the distribution of the nth observation. Given the
discreteness of G, the DP mixture has an interpretation as a mixture model with an
unbounded number of mixture components.

Given a sample {x1, . . . , xN} from a DP mixture, our goal is to compute the predic-
tive density:

p(x |x1, . . . , xN , α,G0) =

∫

p(x | η)p(η |x1, . . . , xN , α,G0)dη, (1)

As in many hierarchical Bayesian models, the posterior distribution p(η |x1, . . . , xN , G0, α)
is complicated and is not available in a closed form. MCMC provides one class of ap-
proximations for this posterior and the predictive density (MacEachern 1994; Escobar
and West 1995; Neal 2000).

1Ferguson (1973) parameterizes the Dirichlet process by a single base measure, which is αG0 in our
notation.
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In this paper, we present a variational inference algorithm for DP mixtures based
on the stick-breaking representation of the underlying DP. The algorithm involves two
probability distributions—the posterior distribution p and a variational distribution q.
The latter is endowed with free variational parameters, and the algorithmic problem
is to adjust these parameters so that q approximates p. We also use a stick-breaking
representation for q, but in this case we truncate the representation to yield a finite-
dimensional representation. While in principle we could also truncate p, turning the
model into a finite-dimensional model, it is important to emphasize at the outset that
this is not our approach—we truncate only the variational distribution.

The paper is organized as follows. In Section 2 we provide basic background on
DP mixture models, focusing on the case of exponential family mixtures. In Section 3
we present a variational inference algorithms for DP mixtures. Section 4 overviews
MCMC algorithms for the DP mixture, discussing algorithms based both on the Pólya
urn representation and the stick-breaking representation. Section 5 presents the results
of experimental comparisons, Section 6 presents an analysis of natural image data, and
Section 7 presents our conclusions.

2 Dirichlet process mixture models

Let η be a continuous random variable, let G0 be a non-atomic probability distribution
for η, and let α be a positive, real-valued scalar. A random measure G is distributed
according to a Dirichlet process (DP) (Ferguson 1973), with scaling parameter α and
base distribution G0, if for all natural numbers k and k-partitions {B1, . . . , Bk}:

(G(B1), G(B2), . . . , G(Bk)) ∼ Dir(αG0(B1), αG0(B2), . . . , αG0(Bk)). (2)

Integrating out G, the joint distribution of the collection of variables {η1, . . . , ηn} ex-
hibits a clustering effect; conditioning on n − 1 draws, the nth value is, with positive
probability, exactly equal to one of those draws:

p(· | η1, . . . , ηn−1) ∝ αG0(·) +
n−1
∑

i=1

δηi
(·). (3)

Thus, the variables {η1, . . . , ηn−1} are randomly partitioned according to which variables
are equal to the same value, with the distribution of the partition obtained from a Pólya
urn scheme (Blackwell and MacQueen 1973). Let {η∗

1 , . . . , η∗
|c|} denote the distinct

values of {η1, . . . , ηn−1}, let c = {c1, . . . , cn−1} be assignment variables such that ηi =
η∗

ci
, and let |c| denote the number of cells in the partition. The distribution of ηn follows

the urn distribution:

ηn =

{

η∗
i with prob.

|{j : cj=i}|
n−1+α

η, η ∼ G0 with prob. α
n−1+α

,
(4)

where |{j : cj = i}| is the number of times the value η∗
i occurs in {η1, . . . , ηn−1}.
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In the Dirichlet process mixture model, the DP is used as a nonparametric prior in
a hierarchical Bayesian specification (Antoniak 1974):

G | {α,G0} ∼ DP(α,G0)

ηn |G ∼ G

Xn | ηn ∼ p(xn | ηn).

Data generated from this model can be partitioned according to the distinct values of
the parameter. Taking this view, the DP mixture has a natural interpretation as a
flexible mixture model in which the number of components (i.e., the number of cells in
the partition) is random and grows as new data are observed.

The definition of the DP via its finite dimensional distributions in Equation (2)
reposes on the Kolmogorov consistency theorem (Ferguson 1973). Sethuraman (1994)
provides a more explicit characterization of the DP in terms of a stick-breaking construc-

tion. Consider two infinite collections of independent random variables, Vi ∼ Beta(1, α)
and η∗

i ∼ G0, for i = {1, 2, . . .}. The stick-breaking representation of G is as follows:

πi(v) = vi

i−1
∏

j=1

(1 − vj) (5)

G =

∞
∑

i=1

πi(v)δη∗

i
. (6)

This representation of the DP makes clear that G is discrete (with probability one);
the support of G consists of a countably infinite set of atoms, drawn iid from G0. The
mixing proportions πi(v) are given by successively breaking a unit length “stick” into
an infinite number of pieces. The size of each successive piece, proportional to the rest
of the stick, is given by an independent draw from a Beta(1, α) distribution.

In the DP mixture, the vector π(v) comprises the infinite vector of mixing pro-
portions and {η∗

1 , η∗
2 , . . .} are the atoms representing the mixture components. Let Zn

be an assignment variable of the mixture component with which the data point xn is
associated. The data can be described as arising from the following process:

1. Draw Vi |α ∼ Beta(1, α), i = {1, 2, . . .}

2. Draw η∗
i |G0 ∼ G0, i = {1, 2, . . .}

3. For the nth data point:

(a) Draw Zn | {v1, v2, . . .} ∼ Mult(π(v)).

(b) Draw Xn | zn ∼ p(xn | η∗
zn

).

In this paper, we restrict ourselves to DP mixtures for which the observable data
are drawn from an exponential family distribution, and where the base distribution for
the DP is the corresponding conjugate prior.
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Figure 1: Graphical model representation of an exponential family DP mixture. Nodes
denote random variables, edges denote possible dependence, and plates denote replica-
tion.

The stick-breaking construction for the DP mixture is depicted as a graphical model
in Figure 1. The conditional distributions of Vk and Zn are as described above. The
distribution of Xn conditional on Zn and {η∗

1 , η∗
2 , . . .} is:

p(xn | zn, η∗
1 , η∗

2 , . . .) =

∞
∏

i=1

(

h(xn) exp{η∗
i

T xn − a(η∗
i )}
)1[zn=i]

,

where a(η∗
i ) is the appropriate cumulant function and we assume for simplicity that x

is the sufficient statistic for the natural parameter η.

The vector of sufficient statistics of the corresponding conjugate family is (η∗T ,−a(η∗))T .
The base distribution is:

p(η∗ |λ) = h(η∗) exp{λT
1 η∗ + λ2(−a(η∗)) − a(λ)}, (7)

where we decompose the hyperparameter λ such that λ1 contains the first dim(η∗)
components and λ2 is a scalar.

3 Variational inference for DP mixtures

There is no direct way to compute the posterior distribution under a DP mixture prior.
Approximate inference methods are required for DP mixtures and Markov chain Monte
Carlo (MCMC) sampling methods have become the methodology of choice (MacEachern
1994; Escobar and West 1995; MacEachern 1998; Neal 2000; Ishwaran and James 2001).

Variational inference provides an alternative, deterministic methodology for ap-
proximating likelihoods and posteriors (Wainwright and Jordan 2003). Consider a
model with hyperparameters θ, latent variables W = {W1, . . . ,WM}, and observations
x = {x1, . . . , xN}. The posterior distribution of the latent variables is:

p(w |x, θ) = exp{log p(x,w | θ) − log p(x | θ)}. (8)
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Working directly with this posterior is typically precluded by the need to compute
the normalizing constant. The log marginal probability of the observations is:

log p(x | θ) = log

∫

p(w,x | θ)dw, (9)

which may be difficult to compute given that the latent variables become dependent
when conditioning on observed data.

MCMC algorithms circumvent this computation by constructing an approximate
posterior based on samples from a Markov chain whose stationary distribution is the
posterior of interest. Gibbs sampling is the simplest MCMC algorithm; one iteratively
samples each latent variable conditioned on the previously sampled values of the other
latent variables:

p(wi |w−i,x, θ) = exp{log p(w,x | θ) − log p(w−i,x | θ)}. (10)

The normalizing constants for these conditional distributions are assumed to be available
analytically for settings in which Gibbs sampling is appropriate.

Variational inference is based on reformulating the problem of computing the poste-
rior distribution as an optimization problem, perturbing (or, “relaxing”) that problem,
and finding solutions to the perturbed problem (Wainwright and Jordan 2003). In this
paper, we work with a particular class of variational methods known as mean-field meth-
ods. These are based on optimizing Kullback-Leibler (KL) divergence with respect to
a so-called variational distribution. In particular, let qν(w) be a family of distributions
indexed by a variational parameter ν. We aim to minimize the KL divergence between
qν(w) and p(w |x, θ):

D(qν(w)||p(w |x, θ)) = Eq [log qν(W)] − Eq [log p(W,x | θ)] + log p(x | θ), (11)

where here and elsewhere in the paper we omit the variational parameters ν when using
q as a subscript of an expectation. Notice that the problematic marginal probability
does not depend on the variational parameters; it can be ignored in the optimization.

The minimization in Equation (11) can be cast alternatively as the maximization of
a lower bound on the log marginal likelihood:

log p(x | θ) ≥ Eq [log p(W,x | θ)] − Eq [log qν(W)] . (12)

The gap in this bound is the divergence between qν(w) and the true posterior.

For the mean-field framework to yield a computationally effective inference method,
it is necessary to choose a family of distributions qν(w) such that we can tractably
optimize Equation (11). In constructing that family, one typically breaks some of de-
pendencies between latent variables which make the true posterior difficult to compute.
In the next sections, we consider fully-factorized variational distributions which break
all of the dependencies.
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3.1 Mean field variational inference in exponential families

For each latent variable, let us assume that the conditional distribution p(wi |w−i,x, θ)
is a member of the exponential family2:

p(wi |w−i,x, θ) = h(wi) exp{gi(w−i,x, θ)T wi − a(gi(w−i,x, θ))}, (13)

where gi(w−i,x, θ) is the natural parameter for wi when conditioning on the remaining
latent variables and the observations.

In this setting it is natural to consider the following family of distributions as mean-
field variational approximations (Ghahramani and Beal 2001):

qν(w) =

M
∏

i=1

exp{νT
i wi − a(wi)}, (14)

where ν = {ν1, ν2, . . . , νM} are variational parameters. Indeed, it turns out that the
variational algorithm that we obtain using this fully-factorized family is reminiscent
of Gibbs sampling. In particular, as we show in Appendix 7, the optimization of KL
divergence with respect to a single variational parameter νi is achieved by computing
the following expectation:

νi = Eq [gi(W−i,x, θ)] . (15)

Repeatedly updating each parameter in turn by computing this expectation amounts
to performing coordinate ascent in the KL divergence.

Notice the interesting relationship of this algorithm to the Gibbs sampler. In Gibbs
sampling, we iteratively draw the latent variables wi from the distribution p(wi |w−i,x, θ).
In mean-field variational inference, we iteratively update the variational parameter νi

by setting it equal to the expected value of gi(w−i,x, θ). This expectation is computed
under the variational distribution.

3.2 DP mixtures

In this section we develop a mean-field variational algorithm for the DP mixture. Our
algorithm is based on the stick-breaking representation of the DP mixture (see Figure 1).
In this representation the latent variables are the stick lengths, the atoms, and the cluster
assignments: W = {V,η∗,Z}. The hyperparameters are the scaling parameter and the
parameter of the conjugate base distribution: θ = {α, λ}.

Following the general recipe in Equation (12), we write the variational bound on the

2Examples of models in which p(wi |w−i,x, θ) is an exponential family distribution include hidden
Markov models, mixture models, state space models, and hierarchical Bayesian models with conjugate
and mixture of conjugate priors.
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log marginal probability of the data:

log p(x |α, λ) ≥ Eq [log p(V |α)] + Eq [log p(η∗ |λ)]

+
N
∑

n=1

(Eq [log p(Zn |V)] + Eq [log p(xn |Zn)])

− Eq [log q(V,η∗,Z)] .

(16)

To exploit this bound, we must find a family of variational distributions that approxi-
mates the distribution of the infinite-dimensional random measure G, where the random
measure is expressed in terms of the infinite sets V = {V1, V2, . . .} and η

∗ = {η∗
1 , η∗

2 , . . .}.
We do this by considering truncated stick-breaking representations. Thus, we fix a value
T and let q(vT = 1) = 1; this implies that the mixture proportions πt(v) are equal to
zero for t > T (see Equation 5).

Truncated stick-breaking representations have been considered previously by Ish-
waran and James (2001) in the context of sampling-based inference for an approxima-
tion to the DP mixture model. Note that our use of truncation is rather different. In
our case, the model is a full Dirichlet process and is not truncated; only the variational
distribution is truncated. The truncation level T is a variational parameter which can
be freely set; it is not a part of the prior model specification (see Section 5).

We thus propose the following factorized family of variational distributions for mean-
field variational inference:

q(v,η∗, z) =

T−1
∏

t=1

qγt
(vt)

T
∏

t=1

qτt
(η∗

t )

N
∏

n=1

qφn
(zn) (17)

where qγt
(vt) are beta distributions, qτt

(η∗
t ) are exponential family distributions with

natural parameters τt, and qφn
(zn) are multinomial distributions. In the notation of

Section 3.1, the free variational parameters are:

ν = {γ1, . . . , γT−1, τ1, . . . , τT , φ1, . . . , φN}.

It is important to note that there is a different variational parameter for each latent
variable under the variational distribution. For example, the choice of the mixture com-
ponent zn for the nth data point is governed by a multinomial distribution indexed by
a variational parameter φn. This reflects the conditional nature of variational inference.

Coordinate ascent algorithm

In this section we present an explicit coordinate ascent algorithm for optimizing the
bound in Equation (16) with respect to the variational parameters.

All of the terms in the bound involve standard computations in the exponential
family, except for the third term. We rewrite the third term using indicator random
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variables:

Eq [log p(Zn |V)] = Eq

[

log
(

∏∞
i=1(1 − Vi)

1[Zn>i]V
1[Zn=i]
i

)]

=
∑∞

i=1 q(zn > i)Eq [log(1 − Vi)] + q(zn = i)Eq [log Vi] .

Recall that Eq [log(1 − VT )] = 0 and q(zn > T ) = 0. Consequently, we can truncate this
summation at t = T :

Eq [log p(Zn |V)] =

T
∑

i=1

q(zn > i)Eq [log(1 − Vi)] + q(zn = i)Eq [log Vi] ,

where

q(zn = i) = φn,i

q(zn > i) =
∑T

j=i+1 φn,j

Eq [log Vi] = Ψ(γi,1) − Ψ(γi,1 + γi,2)

Eq [log(1 − Vi)] = Ψ(γi,2) − Ψ(γi,1 + γi,2).

The digamma function, denoted by Ψ, arises from the derivative of the log normalization
factor in the beta distribution.

We now use the general expression in Equation (15) to derive a mean-field coordinate
ascent algorithm. This yields:

γt,1 = 1 +
∑

n φn,t (18)

γt,2 = α +
∑

n

∑T

j=t+1 φn,j (19)

τt,1 = λ1 +
∑

n φn,txn (20)

τt,2 = λ2 +
∑

n φn,t. (21)

φn,t ∝ exp(St), (22)

for t ∈ {1, . . . , T} and n ∈ {1, . . . , N}, where:

St = Eq [log Vt] +
∑t−1

i=1 Eq [log(1 − Vi)] + Eq [η∗
t ]

T
Xn − Eq [a(η∗

t )] .

Iterating these updates optimizes Equation (16) with respect to the variational param-
eters defined in Equation (17).

Practical applications of variational methods must address initialization of the vari-
ational distribution. While the algorithm yields a bound for any starting values of the
variational parameters, poor choices of initialization can lead to local maxima that yield
poor bounds. We initialize the variational distribution by incrementally updating the
parameters according to a random permutation of the data points. (This can be viewed
as a variational version of sequential importance sampling). We run the algorithm mul-
tiple times and choose the final parameter settings that give the best bound on the
marginal likelihood.
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To compute the predictive distribution, we use the variational posterior in a manner
analogous to the way that the empirical approximation is used by an MCMC sampling
algorithm. The predictive distribution is:

p(xN+1 |x, α, λ) =

∫

(

∞
∑

t=1

πt(v)p(xN+1 | η
∗
t )

)

dP (v,η∗ |x, λ, α).

Under the factorized variational approximation to the posterior, the distribution of
the atoms and the stick lengths are decoupled and the infinite sum is truncated. Conse-
quently, we can approximate the predictive distribution with a product of expectations
which are straightforward to compute under the variational approximation:

p(xN+1 |x, α, λ) ≈
T
∑

t=1

Eq [πt(V)] Eq [p(xN+1 | η
∗
t )] , (23)

where q depends implicitly on x, α, and λ.

Finally, we remark on two possible extensions. First, when G0 is not conjugate, a
simple coordinate ascent update for τi may not be available, particularly when p(η∗

i | z,x, λ)
is not in the exponential family. However, such an update is available for the special
case of G0 being a mixture of conjugate distributions. Second, it is often important in
applications to integrate over a diffuse prior on the scaling parameter α. As we show
in Appendix 7, it is straightforward to extend the variational algorithm to include a
gamma prior on α.

4 Gibbs sampling

For comparison to variational inference, we review the collapsed Gibbs sampler and
blocked Gibbs sampler for DP mixtures.

4.1 Collapsed Gibbs sampling

The collapsed Gibbs sampler for a DP mixture with conjugate base distribution (MacEach-
ern 1994) integrates out the random measure G and distinct parameter values {η∗

1 , . . . , η∗
|c|}.

The Markov chain is thus defined only on the latent partition c = {c1, . . . , cN}. (Recall
that |c| denotes the number of cells in the partition.)

The algorithm iteratively samples each assignment variable Cn, for n ∈ {1, . . . , N},
conditional on the other cells in the partition, c−n. The assignment Cn can be one of
|c−n| + 1 values: either the nth data point is in a cell with other data points, or in a
cell by itself.

Exchangeability implies that Cn has the following multinomial distribution:

p(cn = k |x, c−n, λ, α) ∝ p(xn |x−n, c−n, cn = k, λ)p(cn = k | c−n, α). (24)
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The first term is a ratio of normalizing constants of the posterior distribution of the kth
parameter, one including and one excluding the nth data point:

p(xn |x−n, c−n, cn = k, λ) =

exp
{

a(λ1 +
∑

m 6=n 1 [cm = k]xm + xn, λ2 +
∑

m 6=n 1 [cm = k] + 1)
}

exp
{

a(λ1 +
∑

m 6=n 1 [cm = k]xm, λ2 +
∑

m 6=n 1 [cm = k])
} .

(25)

The second term is given by the Pólya urn scheme:

p(cn = k | c−n) ∝

{

|{j : c−n,j = k}| if k is an existing cell in the partition
α if k is a new cell in the partition,

(26)

where |{j : c−n,j = k}| denotes the number of data points in the kth cell of the partition
c−n.

Once this chain has reached its stationary distribution, we collect B samples {c1, . . . , cB}
to approximate the posterior. The approximate predictive distribution is an average of
the predictive distributions across the Monte Carlo samples:

p(xN+1 |x1, . . . , xN , α, λ) =
1

B

B
∑

b=1

p(xN+1 | cb,x, α, λ).

For a given sample, that distribution is:

p(xN+1 | cb,x, α, λ) =

|cb|+1
∑

k=1

p(cN+1 = k | cb, α)p(xN+1 | cb,x, cN+1 = k, λ).

When G0 is not conjugate, the distribution in Equation (25) does not have a simple
closed form. Effective algorithms for handling this case are given in Neal (2000).

4.2 Blocked Gibbs sampling

In the collapsed Gibbs sampler, the assignment variable Cn is drawn from a distribution
that depends on the most recently sampled values of the other assignment variables.
Consequently, these variables must be updated one at a time which can potentially slow
down the algorithm when compared to a blocking strategy. To this end, Ishwaran and
James (2001) developed a blocked Gibbs sampling algorithm based on the stick-breaking
representation of Figure 1.

The main issue to face in developing a blocked Gibbs sampler for the stick-breaking
DP mixture is that one needs to sample the infinite collection of stick lengths V before
sampling the finite collection of cluster assignments Z. Ishwaran and James (2001) face
this issue by defining a truncated Dirichlet process (TDP) in which VK−1 is set equal to
one for some fixed value K. This yields πi(V) = 0 for i ≥ K, and converts the infinite
sum in Equation (5) into a finite sum. Ishwaran and James (2001) justify substituting a
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TDP mixture model for a full DP mixture model by showing that the truncated process
closely approximates a true Dirichlet process when the truncation level is chosen large
relative to the number of data points.

In the TDP mixture, the state of the Markov chain consists of the beta variables
V = {V1, . . . , VK−1}, the mixture component parameters η

∗ = {η∗
1 , . . . , η∗

K}, and the
indicator variables Z = {Z1, . . . , ZN}. The blocked Gibbs sampler iterates between the
following three steps:

1. For n ∈ {1, . . . , N}, independently sample Zn from:

p(zn = k |v,η∗,x) = πk(v)p(xn | η∗
k),

2. For k ∈ {1, . . . ,K}, independently sample Vk from Beta(γk,1, γk,2), where:

γk,1 = 1 +
∑N

n=1 1 [zn = k]

γk,2 = α +
∑K

i=k+1

∑N

n=1 1 [zn = i] .

This step follows from the conjugacy between the multinomial distribution and
the truncated stick-breaking construction, which is a generalized Dirichlet distri-
bution (Connor and Mosimann 1969).

3. For k ∈ {1, . . . ,K}, independently sample η∗
k from p(η∗

k | τk). This distribution is
in the same family as the base distribution, with parameters:

τk,1 = λ1 +
∑

i6=n 1 [zi = k]xi

τk,2 = λ2 +
∑

i6=n 1 [zi = k] .
(27)

After the chain has reached its stationary distribution, we collect B samples and
construct an approximate predictive distribution. Again, this distribution is an aver-
age of the predictive distributions for each of the collected samples. The predictive
distribution for a particular sample is:

p(xN+1 | z,x, α, λ) =
K
∑

k=1

E [πi(V) | γ1, . . . , γk] p(xN+1 | τk), (28)

where E [πi | γ1, . . . , γk] is the expectation of the product of independent beta variables
given in Equation (5). This distribution only depends on z; the other variables are
needed in the Gibbs sampling procedure, but can be integrated out here. Note that this
approximation has a form similar to the approximate predictive distribution under the
variational distribution in Equation (23). In the variational case, however, the averaging
is done parametrically via the variational distribution rather than by a Monte Carlo
integral.

The TDP sampler readily handles non-conjugacy of G0, provided that there is a
method of sampling η∗

i from its posterior.
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Figure 2: The approximate predictive distribution given by variational inference at
different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.

5 Empirical comparison

Qualitatively, variational methods offer several potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (16) that can be used to assess convergence. In contrast, assessing convergence
of a Gibbs sampler—namely, determining when the Markov chain has reached its sta-
tionary distribution—is an active field of research. Theoretical bounds on the mixing
time are of little practical use, and there is no consensus on how to choose among the
several empirical methods developed for this purpose (Robert and Casella 2004).

But there are several potential disadvantages of variational methods as well. First,
the optimization procedure can fall prey to local maxima in the variational parameter
space. Local maxima can be mitigated with restarts, or removed via the incorporation
of additional variational parameters, but these strategies may slow the overall conver-
gence of the procedure. Second, any given fixed variational representation yields only
an approximation to the posterior. There are methods for considering hierarchies of
variational representations that approach the posterior in the limit, but these methods
may again incur serious computational costs. Lacking a theory by which these issues can
be evaluated in the general setting of DP mixtures, we turn to experimental evaluation.

We studied the performance of the variational algorithm of Section 3 and the Gibbs
samplers of Section 4 in the setting of DP mixtures of Gaussians with fixed inverse
covariance matrix Λ (i.e., the DP mixes over the mean of the Gaussian). The natural
conjugate base distribution for the DP is Gaussian, with covariance given by Λ/λ2 (see
Equation 7).

Figure 2 provides an illustrative example of variational inference on a small problem
involving 100 data points sampled from a two-dimensional DP mixture of Gaussians
with diagonal covariance. Each panel in the figure plots the data and presents the
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Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

predictive distribution given by the variational inference algorithm at a given iteration
(see Equation (23)). The truncation level was set to 20. As seen in the first panel, the
initialization of the variational parameters yields a largely flat distribution. After one
iteration, the algorithm has found the modes of the predictive distribution and, after
convergence, it has further refined those modes. Even though 20 mixture components
are represented in the variational distribution, the fitted approximate posterior only
uses five of them.

To compare the variational inference algorithm to the Gibbs sampling algorithms, we
conducted a systematic set of simulation experiments in which the dimensionality of the
data was varied from 5 to 50. The covariance matrix was given by the autocorrelation
matrix for a first-order autoregressive process, chosen so that the components are highly
dependent (ρ = 0.9). The base distribution was a zero-mean Gaussian with covariance
appropriately scaled for comparison across dimensions. The scaling parameter α was
set equal to one.

In each case, we generated 100 data points from a DP mixture of Gaussians model
of the chosen dimensionality and generated 100 additional points as held-out data. In
testing on the held-out data, we treated each point as the 101st data point in the
collection and computed its conditional probability using each algorithm’s approximate
predictive distribution.
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Dim Mean held out log probability (Std err)
Variational Collapsed Gibbs Truncated Gibbs

5 -147.96 (4.12) -148.08 (3.93) -147.93 (3.88)
10 -266.59 (7.69) -266.29 (7.64) -265.89 (7.66)
20 -494.12 (7.31) -492.32 (7.54) -491.96 (7.59)
30 -721.55 (8.18) -720.05 (7.92) -720.02 (7.96)
40 -943.39 (10.65) -941.04 (10.15) -940.71 (10.23)
50 -1151.01 (15.23) -1148.51 (14.78) -1147.48 (14.55)

Table 1: Average held-out log probability for the predictive distributions given by vari-
ational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.
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Figure 4: (Left) The optimal bound on the log probability as a function of the truncation
level. There are five clusters in the simulated 20-dimensional DP mixture of Gaussians
data set which was used. (Right) Held-out probability as a function of iteration of
variational inference for the same simulated data set. The relative change in the log
probability bound of the observations is labeled at selected iterations.
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Figure 5: Autocorrelation plots on the size of the largest component for the truncated
DP Gibbs sampler (left) and collapsed Gibbs sampler (right) in an example dataset of
50-dimensional Gaussian data.

The TDP approximation was truncated at K = 20 components. For the variational
algorithm, the truncation level was also T = 20 components. Note that in the latter
case, the truncation level is simply another variational parameter. While we held T fixed
in our simulations, it is also possible to optimize T with respect to the KL divergence.
Indeed, Figure 4 (left) shows how the optimal KL divergence changes as a function of
the truncation level for one of the simulated data sets.

We ran all algorithms to convergence and measured the computation time.3 For the
collapsed Gibbs sampler, we assessed convergence to the stationary distribution with
the diagnostic given by Raftery and Lewis (1992), and collected 25 additional samples to
estimate the predictive distribution (the same diagnostic provides an appropriate lag at
which to collect uncorrelated samples). We assessed convergence of the blocked Gibbs
sampler using the same statistic as for the collapsed Gibbs sampler and used the same
number of samples to form the approximate predictive distribution.4

Finally, for variational inference, we measured convergence using the relative change
in the log marginal probability bound (Equation 16), stopping the algorithm when it
was less than 1e−10.

There is a certain inevitable arbitrariness in these choices; in general it is difficult
to envisage measures of computation time that allow stochastic MCMC algorithms and
deterministic variational algorithms to be compared in a standardized way. Nonetheless,
we have made what we consider to be reasonable, pragmatic choices. In particular, our
choice of stopping time for the variational algorithm is quite conservative, as illustrated
in Figure 4 (right).

Figure 3 illustrates the average convergence time across ten datasets per dimension.
With the caveats in mind regarding convergence time measurement, it appears that the
variational algorithm is quite competitive with the MCMC algorithms. The variational

3All timing computations were made on a Pentium III 1GHZ desktop machine.
4Typically, hundreds or thousands of samples are used in MCMC algorithms to form the approxi-

mate posterior. However, we found that such approximations did not offer any additional predictive
performance in the simulated data. To be fair to MCMC in the timing comparisons, we used a small
number of samples to estimate the predictive distributions.
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Figure 6: Four sample clusters from a DP mixture analysis of 5000 images from the
Associated Press. The left-most column is the posterior mean of each cluster followed
by the top ten images associated with it. These clusters capture patterns in the data,
such as basketball shots, outdoor scenes on gray days, faces, and pictures with blue
backgrounds.

algorithm was faster and exhibited significantly less variance in its convergence time.
Moreover, there is little evidence of an increase in convergence time across dimensionality
for the variational algorithm over the range tested.

Note that the collapsed Gibbs sampler converged faster than the TDP Gibbs sampler.
Though an iteration of collapsed Gibbs is slower than an iteration of TDP Gibbs, the
TDP Gibbs sampler required a longer burn-in and greater lag to obtain uncorrelated
samples. This is illustrated in the autocorrelation plots of Figure 5. Comparing the two
MCMC algorithms, we found no advantage to the truncated approximation.

Table 1 illustrates the average log likelihood assigned to the held-out data by the
approximate predictive distributions. First, notice that the collapsed DP Gibbs sam-
pler assigned the same likelihood as the posterior from the TDP Gibbs sampler—an
indication of the quality of a TDP for approximating a DP. More importantly, however,
the predictive distribution based on the variational posterior assigned a similar score as
those based on samples from the true posterior. Though it is based on an approximation
to the posterior, the resulting predictive distributions are very accurate for this class of
DP mixtures.

6 Image analysis

Finite Gaussian mixture models are widely used in computer vision to model natural im-
ages for the purposes of automatic clustering, retrieval, and classification (Barnard et al.
2003; Jeon et al. 2003). These applications are often large-scale data analysis problems,
involving thousands of data points (images) in hundreds of dimensions (pixels). The ap-
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Figure 7: (Left) The expected number of images allocated to each component in the
variational posterior. The posterior uses 79 components to describe the data. (Right)
The prior for the scaling parameter α and the approximate posterior given by its vari-
ational distribution.

propriate number of mixture components to use in these problems is generally unknown,
and DP mixtures provide an attractive alternative to current methods. However, a de-
ployment of DP mixtures in such problems crucially requires inferential methods that
are computationally efficient. To demonstrate the applicability of our variational ap-
proach to DP mixtures in the setting of large datasets, we analyzed a collection of 5000
images from the Associated Press under the assumptions of a DP mixture of Gaussians
model.

Each image was reduced to a 192-dimensional real-valued vector given by an 8×8 grid
of average red, green, and blue values. We fit a DP mixture model in which the mixture
components are Gaussian with mean µ and covariance matrix σ2I. The base distribution
G0 was a product measure—Gamma(4,2) for 1/σ2 and N (0, 5σ2) for µ. Furthermore, we
placed a Gamma(1,1) prior on the DP scaling parameter α, as described in Appendix 7.
We used a truncation level of 150 for the variational distribution.

The variational algorithm required approximately four hours to converge. The re-
sulting approximate posterior used 79 mixture components to describe the collection.
For a rough comparison to Gibbs sampling, an iteration of collapsed Gibbs takes 15
minutes with this data set. In the same four hours, one could perform only 16 itera-
tions. This is not enough for a chain to converge to its stationary distribution, let alone
provide a sufficient number of uncorrelated samples to construct an empirical estimate
of the posterior.

Figure 7 (Left) illustrates the expected number of images allocated to each compo-
nent under the variational approximation to the posterior. Figure 6 illustrates the ten
pictures with highest approximate posterior probability associated with each of four of
the components. These clusters appear to capture basketball shots, outdoor scenes on
gray days, faces, and blue backgrounds.

Figure 7 (Right) illustrates the prior for the scaling parameter α as well as the
approximate posterior given by the fitted variational distribution. We see that the
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approximate posterior is peaked and rather different from the prior, indicating that the
data have provided information regarding α.

7 Conclusions

We have developed a mean-field variational inference algorithm for the Dirichlet pro-
cess mixture model and demonstrated its applicability to the kinds of multivariate data
for which Gibbs sampling algorithms can exhibit slow convergence. Variational infer-
ence was faster than Gibbs sampling in our simulations, and its convergence time was
independent of dimensionality for the range which we tested.

Both variational and MCMC methods have strengths and weaknesses, and it is un-
likely that one methodology will dominate the other in general. While MCMC sampling
provides theoretical guarantees of accuracy, variational inference provides a fast, deter-
ministic approximation to otherwise unattainable posteriors. Moreover, both MCMC
and variational methods are computational paradigms, providing a wide variety of spe-
cific algorithmic approaches which trade off speed, accuracy and ease of implementation
in different ways. We have investigated the deployment of the simplest form of varia-
tional method for DP mixtures—a mean-field variational algorithm—but it worth noting
that other variational approaches, such as those described in Wainwright and Jordan
(2003), are also worthy of consideration in the nonparametric context.

A Variational inference in exponential families

In this appendix, we derive the coordinate ascent algorithm for variational inference
described in Section 3.2. Recall that we are considering a latent variable model with
hyperparameters θ, observed variables x = {x1, . . . , xN}, and latent variables W =
{W1, . . . ,WM}. The posterior can be written as:

p(w |x, θ) = exp{log p(w,x | θ) − log p(x | θ)}. (29)

The variational bound on the log marginal probability is:

log p(x | θ) ≥ Eq [log p(x,W | θ)] − Eq [log q(W)] . (30)

This bound holds for any distribution q(w).

For the optimization of this bound to be computationally tractable, we restrict our-
selves to fully-factorized variational distributions of the form qν(w) =

∏M

i=1 qνi
(wi),

where ν = {ν1, ν2, . . . , νM} are variational parameters and each distribution is in the
exponential family (Ghahramani and Beal 2001). We derive a coordinate ascent algo-
rithm in which we iteratively maximize the bound with respect to each νi, holding the
other variational parameters fixed.
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Let us rewrite the bound in Equation (30) using the chain rule:

log p(x | θ) ≥ log p(x | θ)+
M
∑

m=1

Eq [log p(Wm |x,W1, . . . ,Wm−1, θ)]−
M
∑

m=1

Eq [log qνm
(Wm)] .

(31)
To optimize with respect to νi, reorder w such that wi is last in the list. The portion
of Equation (31) depending on νi is:

`i = Eq [log p(Wi |W−i,x, θ)] − Eq [log qνi
(Wi)] . (32)

Given that the variational distribution qνi
(wi) is in the exponential family, we have:

qνi
(wi) = h(wi) exp{νT

i wi − a(νi)},

and Equation (32) simplifies as follows:

`i = Eq

[

log p(Wi |W−i,x, θ) − log h(Wi) − νT
i Wi + a(νi)

]

= Eq [log p(Wi |W−i,x, θ)] − Eq [log h(Wi)] − νT
i a′(νi) + a(νi),

because Eq [Wi] = a′(νi).

The derivative with respect to νi is:

∂

∂νi

`i =
∂

∂νi

(Eq [log p(Wi |W−i,x, θ)] − Eq [log h(Wi)]) − νT
i a′′(νi). (33)

The optimal νi satisfies:

νi = [a′′(νi)]
−1

(

∂

∂νi

Eq [log p(Wi |W−i,x, θ)] −
∂

∂νi

Eq [log h(Wi)]

)

. (34)

The result in Equation (34) is general. In many applications of mean field methods,
including those in the current paper, a further simplification is achieved. In particu-
lar, suppose that the conditional distribution p(wi |w−i,x, θ) is an exponential family
distribution. We have:

p(wi |w−i,x, θ) = h(wi) exp{gi(w−i,x, θ)T wi − a(gi(w−i,x, θ))},

where gi(w−i,x, θ) denotes the natural parameter for wi when conditioning on the
remaining latent variables and the observations. This yields simplified expressions for
the expected log probability of Wi and its first derivative:

Eq [log p(Wi |W−i,x, θ)] = Eq [log h(Wi)] + Eq [gi(W−i,x, θ)]
T

a′(νi) − Eq [a(gi(W−i,x, θ))]

∂

∂νi

Eq [log p(Wi |W−i,x, θ)] =
∂

∂νi

Eq [log h(Wi)] + Eq [gi(W−i,x, θ)]
T

a′′(νi).

Using the first derivative in Equation (34), the maximum is attained at:

νi = Eq [gi(W−i,x, θ)] . (35)
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We define a coordinate ascent algorithm based on Equation (35) by iteratively updating
νi for i ∈ {1, . . . ,M}. Such an algorithm finds a local maximum of Equation (30) by
Proposition 2.7.1 of Bertsekas (1999), under the condition that the right-hand side of
Equation (32) is strictly convex.

Relaxing the two assumptions complicates the algorithm, but the basic idea re-
mains the same. If p(wi |w−i,x, θ) is not in the exponential family, then there may
not be an analytic expression for the update in Equation (34). If q(w) is not a fully
factorized distribution, then the second term of the bound in Equation (32) becomes
Eq [log q(wi |w−i)] and the subsequent simplifications may not be applicable.

Further perspectives on algorithms of this kind can be found in Xing et al. (2003),
Ghahramani and Beal (2001), and Wiegerinck (2000). For a more general treatment of
variational methods for statistical inference, see Wainwright and Jordan (2003).

B Placing a prior on the scaling parameter

The scaling parameter α can have a significant effect on the growth of the number of
components grows with the data, and it is generally important to consider extended
models which integrate over α. For the urn-based samplers, Escobar and West (1995)
place a Gamma(s1, s2) prior on α and implement the corresponding Gibbs updates with
auxiliary variable methods.

In the stick-breaking representation, the gamma distribution is convenient because
it is conjugate to the stick lengths. Writing the gamma distribution in its canonical
form we have:

p(α | s1, s2) = (1/α) exp{−s2α + s1 log α − a(s1, s2)},

where s1 is the shape parameter and s2 is the inverse scale parameter. This distribution
is conjugate to Beta(1, α). The log normalizer is:

a(s1, s2) = log Γ(s1) − s1 log s2,

and the posterior parameters conditional on data {v1, . . . , vK} are:

ŝ2 = s2 −
∑K

i=1 log(1 − vi)

ŝ1 = s1 + K.

We extend the variational inference algorithm to include posterior updates for the
scaling parameter α. The variational distribution is Gamma(w1, w2). The variational
parameters are updated as follows:

w1 = s1 + T − 1

w2 = s2 −
T−1
∑

i=1

Eq [log(1 − Vi)]),

and we replace α with its expectation Eq [α] = w1/w2 in the updates for γt,2 in Equa-
tion (19).
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