Variational Methods for the Dirichlet Process

David M. Blei

BLEIQCS.BERKELEY.EDU

Computer Science Division, University of California, Berkeley, CA 94720

Michael I. Jordan

JORDANQCS.BERKELEY.EDU

Computer Science Division and Department of Statistics, University of California, Berkeley, CA 94720

Abstract

Variational inference methods, including
mean field methods and loopy belief propaga-
tion, have been widely used for approximate
probabilistic inference in graphical models.
While often less accurate than MCMC, vari-
ational methods provide a fast deterministic
approximation to marginal and conditional
probabilities. Such approximations can be
particularly useful in high dimensional prob-
lems where sampling methods are too slow to
be effective. A limitation of current methods,
however, is that they are restricted to para-
metric probabilistic models. MCMC does
not have such a limitation; indeed, MCMC
samplers have been developed for the Dirich-
let process (DP), a nonparametric distribu-
tion on distributions (Ferguson, 1973) that
is the cornerstone of Bayesian nonparamet-
ric statistics (Escobar & West, 1995; Neal,
2000). In this paper, we develop a mean-
field variational approach to approximate in-
ference for the Dirichlet process, where the
approximate posterior is based on the trun-
cated stick-breaking construction (Ishwaran
& James, 2001). We compare our approach
to DP samplers for Gaussian DP mixture
models.

1. Introduction

The goal of nonparametric statistics is to allow the
complexity of a statistical model to grow as a function
of the number of data points, in such a way that the
eventual model can be as complex as necessary. This
requires considering a large family of possible distri-
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butions for the data—a family which makes as few
assumptions as possible about the distribution actu-
ally underlying the data. In the Bayesian approach
to nonparametric statistics, it is necessary to place a
prior probability distribution on this family of proba-
bility distributions. A number of such priors have been
described in the literature in recent years; one impor-
tant example is the Dirichlet process (DP) (Ferguson,
1973).

A DP is thus a distribution on distributions. It is
a special distribution on distributions in that (with
probability one) the distributions drawn from a DP
are discrete. That is, a draw from a DP is a distri-
bution that places its probability mass on a countably
infinite subset of the underlying sample space. This
discreteness has a number of important consequences;
for example, it means that the DP framework can be
used to address problems associated with inferring the
structure of a model.

Consider in particular the problem of choosing the
number of mixture components in a mixture model.
This perennial issue can be addressed as a model se-
lection problem using Bayes factors or other meth-
ods (Kass & Raftery, 1995). The DP provides an al-
ternative approach via the Dirichlet process mixture
model.

In a DP mixture, the draw from the Dirichlet process is
treated as a latent variable. Thus we consider drawing
a distribution from the DP, drawing parameters from
this distribution (e.g., means and covariance matrices
in the case of Gaussian mixtures), and drawing data
conditional on those parameters. Now consider inte-
grating over the latent variable (integrating using the
Dirichlet process) and repeatedly drawing parameters
from the marginal. The resulting sequence of param-
eters turns out to have a simple characterization in
terms of a Pélya urn model (Blackwell & MacQueen,
1973). In particular, parameters take on identical val-
ues with positive probability, and the probability of



sampling a given value increases as more parameters
take on that value. Thus, the DP yields a clustering
effect. New clusters continue to emerge, and after N
parameters are drawn, there are on average log N dis-
tinct clusters of parameters.

The DP thus provides a nonparametric prior for the
parameters of a mixture model that allows the number
of mixture components to grow as the size of the train-
ing set grows. While classical model selection tech-
niques generally assume that a fixed number of com-
ponents underly the data, the DP approach makes no
such assumption. Moreover, the DP approach allows
test data points to induce still more components—
there is no assumption that test data must belong to
the clusters associated with the training data.

DP mixtures have been used extensively in statistics
as an alternative to model selection (Escobar & West,
1995) and have had particular application in fields
such as population genetics, where there is good rea-
son to accommodate the possibility that new compo-
nents may arise with new data (Ewens, 1972). Ma-
chine learning researchers have also become aware of
the opportunities offered by the DP, and various ex-
tensions of DP mixtures have been developed in recent
years to place DP-based priors on graphical models
such as hidden Markov models (Beal et al., 2002) and
topic models (Blei et al., 2004).

A drawback with the DP approach is its dependence
on Monte Carlo Markov chain (MCMC) methods for
posterior inference. While such methods are accurate,
they can be prohibitively slow, especially in the con-
text of large-scale, multivariate, and highly-correlated
data. One would like to be able to consider alternative
inference algorithms for the DP, in particular varia-
tional methods (e.g., mean field methods and loopy be-
lief propagation) which have provided fast determinis-
tic alternatives to MCMC for approximating otherwise
intractable posteriors in simpler settings. However,
even in their most mature form, the application of
variational methods has thus far been limited to finite-
dimensional (i.e., parametric) models (Wainwright &
Jordan, 2003).

In this paper, we develop a variational inference al-
gorithm for the DP mixture model. This is a new
direction for variational methods, departing from the
traditional parametric setting in which they are usu-
ally deployed

The paper is organized as follows. In Sections 2 and
3, we review the construction of DP mixture models
and MCMC algorithms for posterior inference. In Sec-
tion 4, we derive a variational approximation to that

posterior and describe the corresponding variational
inference algorithm. Finally, in Section 5 we compare
the two approaches on simulated and real data.

2. Dirichlet process mixture models

Let n be a continuous random variable, Gy be a non-
atomic probability distribution on 1, and a be a scalar.
Suppose G is a random probability distribution on 7.
The variable G is distributed according to a Dirichlet
process (DP) (Ferguson, 1973) with scaling parame-
ter a and baseline distribution Gy if, for all natural
numbers k and k-partitions of the space of #:

(G(n € B1),G(n € By),...,G(n € By)) ~
DiI‘(OéGQ(Bl), OéGo(BQ>, e ,()(G()(Bk,)).

Integrating out G, the joint distribution on the col-
lection of variables n;.x will exhibit a clustering ef-
fect; conditioned on n — 1 draws, the nth value will,
with some probability, be exactly equal to one of those
draws:

P M1in—1) o ap(n| Go) + X0 d(n,ms). (1)

Thus, the 7.y are randomly partitioned into vari-
ables taking on the same value, where the partition
structure is given by a Polya urn scheme (Blackwell &
MacQueen, 1973). Denote the k unique values which
M:n—1 take on by nj..; the next draw from the Dirich-
let process follows the urn distribution:

_ n;
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where n; are the number of instances of 1} in 11.,—1.

n;

with prob ——— @)
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The DP can be used as a nonparametric prior in a hi-
erarchical Bayesian model (Antoniak, 1974). Suppose
our data are generated as follows:

G ~ DP(O&,G())
M ~ G
Xp o~ p(' ‘nn)

Since the parameters are drawn from G, the data will
cluster according to those values drawn from the same
parameter value; this model is referred to as a Dirichlet
process mizture model.

The DP mixture is also referred to as an “infinite”
mixture model in that the data exhibit a finite num-
ber of components but new data can exhibit previously
unseen components (Neal, 2000). This view is high-
lighted in the stick-breaking construction of G (Ish-
waran & James, 2001). Consider two infinite collec-
tions of independent random variables, V; ~ Beta(1, «)



and n} ~ G for i = {1,2,...}. We can write G as:

0; =Vi[[,- (1- Vi)
G(n) =322, 0:0(n. ;).

(This construction’s name comes from imagining suc-
cessively breaking pieces off a unit-length stick with
size proportional to random draws from a Beta distri-
bution. The components of § are the proportions of
each of the infinite pieces of stick relative to its original
size.)

(3)

From the perspective of infinite mixture models, 6
comprise the infinite vector of mixing proportions and
MNi.00 are parameters for the infinite set of mixture com-
ponents. In the development of the subsequent algo-
rithms, it will also be useful to consider an auxiliary
variable Z, which denotes the mixture component as-
sociated with X,,.! We thus consider the following
augmented model:

1. Draw V; ~ Beta(1,a), i = {1,2,...}
2. Draw nf ~ Gy, i ={1,2,...}

3. For each data point n:

(a) Draw Z,, ~ Mult(6).
(b) Draw X,, ~p(-|ns, ).

Finally, we can truncate this construction at K by
setting Vi1 = 1 (Ishwaran & James, 2001). Note
from Eq. (3) that all ; for k¥ > K are zero. The
resulting distribution, the truncated Dirichlet process
(TDP), can be shown to closely approximate a true
Dirichlet process for K chosen large enough relative
to the number of data. Guidelines for choosing K as a
function of N are given in Ishwaran and James (2001).

2.1. Exponential family mixtures

In this paper, we will consider DP and TDP mix-
tures for which the data are drawn from an exponential
family distribution with natural parameter 7, and the
baseline distribution Gg is the conjugate prior with
hyperparameter A. In this setting, the DP mixture
model is illustrated as a graphical model in Figure 1.
The distributions on V; and Z,, are described above.
The conditional distribution of X,, given Z,, is:

k3
n

o lonn®) = 11 () expm o — atn))}) "

i=1

"We represent multinomial random vectors as indicator
vectors consisting of a single one and the remaining com-
ponents equal to zero.
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Figure 1. Graphical model representation of an exponen-
tial family DP mixture model.

where a(n;) is the log normalizer for whichever expo-
nential family distribution is being used and we as-
sume, for notational simplicity, that X is its own suffi-
cient statistic. The corresponding conjugate distribu-
tion on 7] given A is:

P [ A) = h(n") exp{A] 0" + Xa(=a(y")) — a(A)}.

Note that, in the standard conjugate exponential fam-
ily set-up, A has dimension dim(n*) + 1 and —a(n*)
is the last component of the sufficient statistic of
n* (Bernardo & Smith, 1994).

3. MCMC for DP mixtures

In both the DP and TDP mixture models, the poste-
rior distribution over their respective hidden variables
is intractable to compute. However, Markov chain
Monte Carlo (MCMC) methods have become increas-
ingly popular for approximating these posteriors (Es-
cobar & West, 1995; Neal, 2000; Ishwaran & James,
2001).

The idea behind MCMC is to construct a Markov
chain on the hidden variables for which the stationary
distribution is the posterior conditioned on the data.
One collects samples from a converged Markov chain
to construct an empirical estimate of the posterior, and
this estimate can then be used to approximate various
posterior expectations. In this work, we are interested
in the predictive distribution of the next data point
Tn+1 conditioned on the data x = x1.n.

One of the simplest MCMC algorithm is the Gibbs
sampler, in which the Markov chain is obtained by it-
eratively sampling each hidden random variable condi-
tioned on the data and the previously sampled values
of the other hidden random variables. Below, we re-
view the Gibbs sampling algorithms for the DP and
TDP mixture models.



3.1. Collapsed Gibbs sampling

Gibbs sampling is straightforward in the exponential
family DP mixture with a conjugate baseline distribu-
tion (Neal, 2000). We integrate out all random vari-
ables except Z,,, resulting in a collapsed Gibbs sampler.
The algorithm is to iteratively sample each Z,, from:

p(zF =1|%x,2_,, N, ) x
P(@n | X Zons 2y = L, A)p(zy = 1| 2-p,0),  (4)

where z_,, denotes all the previously sampled cluster
variables except for the nth one.

Let .
T = M+ . 2
k,1 1 Ez;ﬁn U (5)
Tke = A2+t Zi;én 2 -

The first term of Eq. (4) is:

p(xn ‘an;zfruzyli = 13)\) =
exp{a(n + Xn, 72+ 1) —a(n,m2)}, (6)

which is simply a ratio of normalizing constants. The
second term of Eq. (4) comes from the partition struc-
ture of the Dirichlet process. When k is a previously
seen component:

23

k_ _
a+N-1’

p(zn =1|2-n, ) (7)
where ny, are the number of instances of z,’j =1linz_,.

When £ is an unvisited component:

«

k
=1z p,a)= —— .

(8)

Once this chain has run for long enough, we will have
in hand samples from p(z|x,a,A) and can construct
an empirical approximation to this posterior. The ap-
proximate predictive distribution for xy,1 will be an
average of the predictive distributions for each of the
collected samples. For a particular sample, that dis-
tribution is:

p(rNi1|2Z, X, 0, N) =
K+1
Zp(z’;\/'—&-l = 1|Z)p(IN+1 |ZaX7Z}L\/+1 = 1)? (9)
i=1

where K are the number of components exhibited in
the sample z, and note that the next component zy 1
can take on K + 1 possible values.

3.2. Gibbs sampling for a TDP mixture

In the collapsed Gibbs sampler, the distribution of
each cluster variable Z,, depends on the previously

sampled values of every other cluster variable. Thus,
the Z,, variables must be updated one at a time, which
can slow down the algorithm compared with a block-
ing strategy. To this end, Ishwaran and James (2001)
developed the TDP mixture model, which is equivalent
to the model in Figure 1 except that there are only K
Beta variables V; and mixture component parameters
n;. We review its corresponding Gibbs sampler here.

Rather than integrating out G, the random distribu-
tion drawn from the DP, the TDP explicitly represents
its approximation via the truncated stick-breaking
construction. The Beta variables Vi.x determine the
mixing proportions using Eq. (3) truncated at K, and
the parameters 7], are associated with the K differ-
ent mixture components.

Given data x, the Gibbs sampler for the TDP mixture

model iterates between the following steps:

1. Conditioned on v, n*, and x, the variables Z are
sampled independently:

p(sz =1 ‘ Vﬂ’l*ax) - ekp(xn ‘77;)7
where 0y, is a function of V as given in Eq. (3).

2. Conditioned on z and x, the Vj variables are inde-
pendently sampled from Beta(vyg,1,7vk,2), where:

N
1 + Zn:l Zr]i

K N
o+ Zi:kJrl Zn:l Z,.-

3. Conditioned on z and x, the mixture component
parameters 7; are sampled from the appropriate
posterior distribution p(nj | 7%), where 74 is de-
fined in Eq. (5).

Ye,1 =

Ye,2 =

After a sufficient burn-in period, we can collect sam-
ples and construct an approximate predictive distribu-
tion of the next data point. Again, this distribution
will be an average of the predictive distributions for
each of the collected states. The state-specific distri-
bution is:

planii|z,a,N) = S5 B0 [y plani|7), (10)

where E [0; | 4] is the expectation of the product of in-
dependent Beta variables given in Eq. (3). Note that
this distribution only depends on z. The other vari-
ables are needed in the Gibbs sampling procedure, but
can be integrated out here.

4. Variational inference

Mean-field variational inference provides an alterna-
tive, deterministic method for approximating likeli-
hoods and posteriors in an intractable probabilistic



model (Jordan et al., 1999). Given a model with ob-
served variables x and hidden variables H, we can
lower bound the log likelihood using Jensen’s inequal-

ity:
logp(x) = log/p(x,h)dh
h

log /h a(h)p(xh)

q(h
> /h a(h) log p(x, h) /h 4(h) log q(h)
— Eflogp(x H)] - Eflogg(H)], (1)

for an arbitrary density g(h).

The idea behind variational methods is to restrict ¢(h)
to a parametric family such that optimizing the bound
in Eq. (11) is tractable. The solution to this optimiza-
tion problem provides a lower bound on the log prob-
ability of the observed variables. Furthermore, the op-
timal ¢ is the distribution closest in KL to the true
posterior within the chosen parametric family.

4.1. Variational inference for a DP mixture

We can apply the mean-field variational approach to
the stick-breaking construction of the DP mixture in
Figure 1. The hidden variables of the model are V,
n*, and Z; the variables n* and Z are coupled in the
likelihood, making it intractable to compute. Thus,
we will introduce a variational distribution ¢(v,n*,z)
in which all the hidden variables are independent. The
bound on the likelihood of the data given by Eq. (11)
is:

logp(x|a,A) > E [logp(V | )]

+E [logp(n* | V)]
+ YN Ellogp(Z, | V)] (12)
+ 3N Elogp(e, | Z,)]

—E [log q(z, Va TI* ]

To define ¢, we need to construct a distribution on
an infinite set of Vj, and n;; random variables. For this
approach be tractable, we truncate the variational dis-
tribution at some value K by setting ¢(Vx = 1) = 1.
As in the truncated Dirichlet process, the mixture pro-
portions 0y, for k > K will be zero, and we can ignore
n;, for k > K. Note that the blocked Gibbs sampler of
Section 3.2 estimates the posterior of a model which is
a truncated approximation to the DP. In contrast, we
are using a truncated process to approximate the pos-
terior of the full DP mixture model. The truncation
level K is a variational parameter, and is not a part
of the model specification. The factorized variational

distribution is thus:

Q(v’ n*’ Z’ K) =
T aCvs [ ) Ty a(nf | ) TNy azn | 6n),  (13)

where 7, are the Beta parameters for the distributions
on V;, 1; are natural parameters for the distributions
on n}, and ¢, are multinomial parameters for the dis-
tributions on Z,,.

In the model of Figure 1, all the V, ™, and Z variables
are governed by the same distributions. It is important
to emphasize that, under the variational approxima-
tion, there is a different distribution for each variable.
For example, each data point x, is associated with
a different distribution over its corresponding hidden
factor Z,.

The first, second, fourth, and fifth terms in Eq. (12)
correspond to standard computations in an exponen-
tial family distribution. We rewrite the third term
with indicator random variables:

K .
Ellogp(Z, | V)] = E [log (Ha - v;>”Zn>“mZ“)

i=1

This expectation simplifies to:

Eflogp(Zy | V)] =15 q(zn > )E [log(1 — V3)]

+q(zn = i)E[log Vi] ,
where:
q(zn =1) = ¢ny
q(zn > 1) = Z;;-H On,j
EflogVi] = W(vi1)— Y(vi1+7i2)
Eflog(1-V)] = ¥(vi2) — ¥(vi,1 +7i2)-

(Note that ¥ is the digamma function, which arises
from the derivative of the log normalization factor in
the beta distribution.)

Optimization of Eq. (12) is a coordinate ascent algo-
rithm in the variational parameters. The updates for
7, and 7y, follow the standard recipe for variational in-
ference with exponential family distributions in a con-
jugate setting (Ghahramani & Beal, 2001):

Yii = 14>, bni
K
Yiz = a2, i Oy
Ti1t = A+, PniTn
Tiz = Ao+, Oni

We have intentionally overloaded notation. The vari-
ational updates are similar to Gibbs updates in Sec-
tion 3.2, with the values of the random variables re-
placed by their means under the variational distribu-
tion.
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Figure 2. The approximate predictive distribution given by variational inference at different stages of the algorithm. The
data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.
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likelihood for the corresponding predictive distributions.

The update for the variational multinomial on Z,, is
®n,i x exp(E) where:

E=E[logVi|v]+E[n|n]" X,
—Ela(m) | 7] + Y52; E log(1 — V) 7] -

Iterating between these updates is a coordinate ascent
algorithm for optimizing Eq. (12) with respect to the
parameters in Eq. (13). We thus find ¢(v,n*,z) which
is closest, within the confines of its parameters, to the
true posterior. This yields an approximate predictive
distribution of the next data point given, as in the
TDP Gibbs sampler for a single sample, by Eq. (10).

5. Example and Results

We applied the variational algorithm of Section 4 and
the two Gibbs samplers of Section 3 to Gaussian-

—-400

Held-out log likelihood
-800

)

-1200

I I I I I I
5 10 20 30 40 50

Dimension

(Left) Convergence time per dimension across ten datasets for variational inference (Var), the TDP Gibbs
sampler (TDP), and the collapsed Gibbs sampler (CDP). Grey bars are standard error.

(Right) Average held-out log

Gaussian DP mixture models. The data are assumed
drawn from a multivariate Gaussian with fixed covari-
ance matrix; the mean of each data point is drawn
from a DP with a Gaussian baseline distribution (i.e.,
the conjugate prior).

In Figure 2, we illustrate the variational inference algo-
rithm on a toy problem. We have simulated 100 data
points from a two-dimensional Gaussian-Gaussian DP
mixture with diagonal covariance. We illustrate the
data and the predictive distribution given by the varia-
tional inference algorithm of Section 4 with variational
truncation level K equal to 20. In the initial setting,
the variational approximation places a largely flat dis-
tribution on the data. After one iteration, the algo-
rithm has found the various modes of the data and,
after convergence, it has further refined those modes.
Notice that even though we represent 20 mixture com-



ponents in the variational distribution, the fitted ap-
proximate posterior only uses five of them.

5.1. Simulated mixture models

To compare our algorithm to the Gibbs samplers of
Section 3, we performed the following simulation. We
generated 100 data points from a Gaussian-Gaussian
DP mixture model and 100 additional points as held-
out data. In the held-out data, each point is treated
as the 101st data point in the collection and only de-
pends on the first 100 points. The fixed covariance
of the data is given by a first-order autocorrelation
matrix such that the components are highly depen-
dent. The baseline distribution for the mean is a zero-
mean Gaussian with covariance appropriately scaled
for comparison across dimensions.

We run the three algorithms to convergence and mea-
sure the computation time.? For the Gibbs samplers,
we assess convergence to the stationary distribution
with the diagnostic given by Raftery and Lewis (1992),
and collect 25 additional samples to estimate the pre-
dictive distribution (the same diagnostic gives an ap-
propriate lag to collect uncorrelated samples). The
variational algorithm and TDP Gibbs sampling algo-
rithm are run with truncation level K equal to 20.

In Figure 3 (left), we illustrate the average convergence
time for the algorithms as a function of dimensional-
ity, averaging across ten datasets. We see that the
variational algorithm is much faster than the sampling
methods and exhibits significantly less variance in its
convergence time.

It is noteworthy that the collapsed Gibbs sampler usu-
ally converges faster than the TDP Gibbs sampler.
Though an iteration of collapsed Gibbs is much slower
than an iteration of TDP Gibbs, the TDP Gibbs sam-
pler requires a much longer burn-in and greater lag to
obtain uncorrelated samples. This is illustrated in the
autocorrelation plots in Figure 4.

In Figure 3 (right), we illustrate the average log likeli-
hood assigned to the held-out data by the approximate
predictive distributions given by each algorithm. First,
notice that the collapsed Gibbs sampler assigned the
same likelihood as the TDP Gibbs sampler—an indi-
cation of the quality of a TDP for approximating a DP.
More importantly, however, the predictive distribution
based on the variational posterior yields a similar held-
out likelihood as that based on samples. Though the
fitted variational parameters provide only an approx-
imation to the true posterior, the resulting predictive

2All timing computations were made on a Pentium III
1GHZ desktop machine.
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Figure 4. Autocorrelation plots on the size of the largest
component for the TDP Gibbs sampler (top) and col-
lapsed Gibbs sampler (bottom) in a simulated dataset of
50-dimensional Gaussian data.

Alg. Time (sec.) | Held-out like. | # Comp.
Var. 2,819 -3098.572 7
Trunc. 22,944 -3097.436 8
Coll. 92,635 -3097.352 5

Table 1. Variational inference, TDP Gibbs, and collapsed
Gibbs inference for the robot data of Section 5.2. Each
Markov chain is run to convergence and 25 uncorrelated
samples are collected.

distributions are very accurate in this setting.

5.2. Robot data

To assess the quality of our algorithm on a larger
dataset, we applied the Gaussian-Gaussian DP mix-
ture to the Pumadyn data from Ueda and Ghahramani
(2002). These data are in eight dimensions, which
come from realistic simulations of a robot arm. We
use 7000 points as training data and keep a held-out
set of 250 points. The covariance matrix is the sample
covariance, and the mean of the hyperparameter is the
sample mean.

Table 1 gives the results of approximate inference un-
der the three algorithms which we are considering. In
this case, both the collapsed Gibbs sampler and TDP
Gibbs sampler require the same lag (20 iterations) to
produce uncorrelated samples. Even though the TDP
Gibbs sampler requires more samples to converge, it
is faster than collapsed Gibbs in this case. Variational
inference is the fastest algorithm to converge, but at-
tains a held-out likelihood which is slightly lower than
the likelihoods attained by the Gibbs samplers.



6. Summary

Bayesian nonparametric models based on the Dirich-
let process are powerful tools for flexible data analysis
but have thus far been impractical for large collections
of multivariate and highly correlated data. We have
developed a fast mean-field variational inference al-
gorithm for the Dirichlet process mixture model and
demonstrated its applicability to the kinds of multi-
variate data in which Gibbs sampling algorithms are
slow to converge.

There are three natural next steps in the development
of this family of algorithms. First, we would like to
test this approach in the setting of hierarchical non-
parametric models such as those in Teh et al. (2004)
and Blei et al. (2004). Second, we currently fix the
variational truncation level to a value known to be
beyond the number of components which underlie the
data. Optimizing Eq. (12) with respect to this parame-
ter may yield an even faster algorithm for approximate
inference.

Finally, the mean-field variational method is only one
type of variational algorithm that can be used in this
problem. Other approaches, such as those described
in Wainwright and Jordan (2003), can also be explored
in this context.
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