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Abstract
Background: The statistical modeling of biomedical corpora could yield integrated, coarse-to-fine
views of biological phenomena that complement discoveries made from analysis of molecular
sequence and profiling data. Here, the potential of such modeling is demonstrated by examining the
5,225 free-text items in the Caenorhabditis Genetic Center (CGC) Bibliography using techniques
from statistical information retrieval. Items in the CGC biomedical text corpus were modeled using
the Latent Dirichlet Allocation (LDA) model. LDA is a hierarchical Bayesian model which
represents a document as a random mixture over latent topics; each topic is characterized by a
distribution over words.

Results: An LDA model estimated from CGC items had better predictive performance than two
standard models (unigram and mixture of unigrams) trained using the same data. To illustrate the
practical utility of LDA models of biomedical corpora, a trained CGC LDA model was used for a
retrospective study of nematode genes known to be associated with life span modification. Corpus-
, document-, and word-level LDA parameters were combined with terms from the Gene Ontology
to enhance the explanatory value of the CGC LDA model, and to suggest additional candidates for
age-related genes. A novel, pairwise document similarity measure based on the posterior
distribution on the topic simplex was formulated and used to search the CGC database for
"homologs" of a "query" document discussing the life span-modifying clk-2 gene. Inspection of these
document homologs enabled and facilitated the production of hypotheses about the function and
role of clk-2.

Conclusion: Like other graphical models for genetic, genomic and other types of biological data,
LDA provides a method for extracting unanticipated insights and generating predictions amenable
to subsequent experimental validation.

Background
In the design, analysis and interpretation of experiments,

biomedical and clinical researchers encounter the prob-
lem of evaluating and summarizing prior knowledge on

Published: 08 May 2006

BMC Bioinformatics 2006, 7:250 doi:10.1186/1471-2105-7-250

Received: 19 July 2005
Accepted: 08 May 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/250

© 2006 Blei et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 19
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/250
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681860
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7:250 http://www.biomedcentral.com/1471-2105/7/250
the subject under investigation. Traditional solutions
include examining articles in scientific journals, primarily
via PubMed access to MEDLINE, and interrogating WWW-
based sources such as Entrez Gene [1] and Online Mende-
lian Inheritance in Man (OMIM) [2]. Consider a scenario
in which a researcher seeks enhanced knowledge about a
protein implicated in aging. Typically, the steps involved
in addressing this problem include interrogating struc-
tured data resources: searching protein sequence data-
bases to identify homologs in other species, querying
warehouses of genomic information to determine key
non-coding regions and polymorphisms, examining col-
lections of high-throughput molecular profiling data sets
to ascertain genes with similar patterns of expression,
probing ontologies such as the Gene Ontology (GO) [3]
to uncover other genes with similar patterns of annota-
tion, and so on. The entire procedure is accompanied by
examination of the literature to determine, for example,
classes of proteins mentioned in the same article as the
putative gerontogene.

Advanced techniques and sophisticated tools for interact-
ing with structured data are well known, widely available
and include BLAST [4] for sequence databases, Ensembl
[5] and the UCSC Browser [6] for genomes, GEO [7] for
transcript profiles, and tools available from the GO that
allow navigation of terms in the ontology. This is less true
for the scientific literature. Given the time-consuming yet
critical importance of synthesizing information in text
corpora such as MEDLINE, the problem of making data
interpretation a more systematic and automated endeavor
is emerging as an important topic of research (see, for
example, [8-10]). The development of strategies capable
of providing a user the ability to assimilate and act upon
information present in resources of structured and
unstructured data remains an important goal.

The primary aim of biomedical text mining is the system-
atic analysis of document collections such as MEDLINE
abstracts and full-text journal articles with the goal of gen-
erating useful and unanticipated scientific discoveries (for
recent reviews of current methods and illustrative applica-
tions, see [11-13]). Examples of tasks addressed by text
mining methods include identifying literature relevant to
specific molecules, finding associations between genes
and diseases, determining putative functions for proteins,
and predicting regulatory networks.

A common approach to text mining is to treat the prob-
lem as one of natural language processing (NLP) [14].
NLP methods concentrate on the linguistic structure of
documents and make explicit use of syntactic, relational,
and ontological knowledge. In biology, such approaches
[15] have been employed for information extraction: the
task of ascertaining facts, relations, and entities in unstruc-

tured written language such as protein-protein interac-
tions, protein subcellular location, and gene names. Tools
based on these ideas include Textpresso [16] and Tele-
makus [17]. Elsewhere, NLP has been used in conjunction
with LocusLink and GO to compare OMIM to MEDLINE
[18].

Recently, nouns extracted from MEDLINE abstracts tagged
with parts of speech were combined with knowledge from
other sources, Principal Component Analysis, and means
linkage clustering to find associations between genes and
phenotypes [19]. In general, NLP can be effective in cir-
cumscribed domains where linguistic knowledge is avail-
able and the terminology evolves slowly, is consistent,
largely unambiguous, and relatively simple. However, the
paucity and incomplete nature of such information for
biomedical corpora suggests that the full potential of text
mining in biology remains unrealized.

An alternative to NLP is to frame the problem from the
perspective of information retrieval (IR) [20]. Statistical IR
methods explore large quantities of information and
often involve capabilities for clustering, classifying, cate-
gorizing, summarizing, and detecting novel, similar and
relevant objects. The most successful testaments to the
real-world utility of IR techniques are Internet search
engines. Thus, statistical IR models of biological docu-
ment collections could reveal rich, complex, and previ-
ously unappreciated relationships. Such results would
complement insights derived from analysis of molecular
profiling, protein-protein interaction, gene knock-out,
and similar types of data. With systematic deployment of
IR tools, the interrogation of biomedical corpora could
become as routine and indispensable a part of research as
analyzing genomic and genetic data is today. The analogy
is more than superficial and extends to the direct use of IR
techniques such as singular value decomposition in bioin-
formatics (see for example [21]). Thus, the common
mathematical foundations for algorithms that underpin
IR and genome analysis make it possible to envision inte-
grated procedures that combine primary biological data
with biological corpora.

This work describes an application of statistical IR meth-
odology to the analysis of a biomedical text corpus, the
Caenorhabditis Genetic Center (CGC) Bibliography (Fig-
ure 1). The specific model at the heart of this study is the
Latent Dirichlet Allocation (LDA) model [22], a hierarchi-
cal Bayesian model employed previously to analyze text
corpora and to annotate images [23]. Recently, LDA has
been used to extract and analyze the topics present in a
document corpus consisting of articles published in the
journal Proceedings of the National Academy of Sciences [24].
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In general, IR methods assume that the order of words in
a document can be neglected and view documents as
"bags of words." The loss of information incurred by
ignoring word order is offset by the ability to devise effi-
cient computational algorithms that are viable for large
corpora. Although there is no theoretical justification for
casting a document in this manner, the practical benefits
and utility of doing so are considerable. The LDA model
considered here is a model for a corpus viewed as a collec-
tion of bags of words. It assumes that each word of each
document is generated by one of several "topics"; each
topic is associated with a different conditional distribu-
tion over a fixed vocabulary. The same set of topics is used
to generate the entire set of documents in a collection but
each document reflects these topics with different relative
proportions. Thus, LDA is a mixture of mixtures model,
i.e., the mixture components are shared across all docu-
ments but each document exhibits different mixture pro-
portions. As a generative probabilistic model, the LDA can
handle unseen or novel data, i.e., a document that was not
one of the bag of words used to estimate the model.

The fundamental entities in LDA, random variables repre-
senting topics and words, are grouped together in such a
way to form a corpus, i.e., a group of groups of words. The

hierarchical nature of the model stems from the fact that
documents are modeled as probability distributions
across topics, and topics are modeled as probability distri-
butions across words. A notable virtue of LDA is that a
given topic can occur with high probability in multiple
documents, and that a given word can occur with high
probability in multiple topics. Topics are treated as latent
variables, namely entities that are not present explicitly in
the data (a set of sequences of words), but are presumed
to be present implicitly and are to be inferred by statistical
analysis.

To analyze the CGC Bibliography, each item in the corpus
was recast as a bag of words and the resultant data set of
documents was used to estimate the parameters of three
different statistical IR models. The predictive performance
of the LDA model was better than that of two simpler bag
of words models, a unigram model and a mixture of uni-
grams model, trained on the same data set. The potential
of LDA in assisting biological studies was illustrated by
considering the phenomenon of nematode aging. In order
to illuminate the hidden factors permeating a corpus and
captured by the topics discovered by a trained CGC LDA
model, LDA topics were labeled via an automated process
that assigned words from the CGC vocabulary (corpus-

One of the 5,225 free-text items in the CGC Bibliography in its original formFigure 1
One of the 5,225 free-text items in the CGC Bibliography in its original form.

Key: 4951
Medline: 11696330
Authors: Lim CS;Mian IS;Dernburg AF;Campisi J
Title: C. elegans clk-2, a gene that limits life span, encodes a

telomere length regulator similar to yeast telomere binding
protein Tel2p.

Citation: Current Biology 11: 1706-1710 2001
Type: ARTICLE

Genes: clk-2
Abstract: An important quest in modern biology is to identify genes

involved in aging. Model organisms such as the nematode
Caenorhabditis elegans are particularly useful in this
regard. The C. elegans genome has been sequenced [1], and
single gene mutations that extend adult life span have been
identified [2]. Among these longevity-controlling loci are
four apparently unrelated genes that belong to the clk
family [3-5]. In mammals, telomere length and structure can
influence cellular, and possibly organismal, aging [6].
Here, we show that clk-2 encodes a regulator of telomere
length in C. elegans.
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based labels) and GO terms (ontology-based labels) to
each topic. Examination of these labels indicated that the
CGC topics captured meaningful and plausible facets of
nematode biology. To investigate aging, topics whose cor-
pus-based labels included many CGC words correspond-
ing to the names of genes known to influence life span
were identified. For the two topics with the greatest
number of such CGC-based topic labels, novel candidates
for age-related genes were equated with other CGC-based
topic labels that corresponded to gene names (guilt-by-
association). Finally, an LDA-based measure of pairwise
document similarity was devised and used to address the
problem of searching a database of documents to deter-
mine topic-space homologs of a query document. Inspec-
tion of the "document homologs" of the CGC item shown
in Figure 1 resulted in enhanced understanding of the
biology of the clk-2 gene.

This work highlights the potential and utility of LDA in
organizing and exploiting one type of widely available
information resource, a collection of documents in the
form of free or unstructured text. However, researchers are
faced with a plethora of resources including images and
structured data such as molecular sequences, transcript
profiles, disease information, and so on. Thus, there is a
compelling need for techniques and systems able to con-
dense, integrate and present large amounts of disparate
data to a user. This paper concludes with a discussion of
how the family of probabilistic graphical models, of
which LDA is a specific example, provides a framework for
integrating heterogeneous data and thus meets this chal-
lenge.

Results
LDA outperforms mixture of unigrams, unigram and 
random models
In order to compare different models of text, a data set of
C. elegans related documents was created. In particular,
each CGC Bibliography free-text item was transformed
into a bag of words yielding a corpus of M = 5, 225 docu-
ments and a V = 28, 971 word vocabulary.

The generalization performance of three statistical models
was assessed: an LDA model (Figure 2), a mixture of uni-
grams model (right, Figure 3), and a "baseline" unigram
model (left, Figure 3). A model was trained using 90% of
the 5,225 documents in the CGC corpus and tested on the
remaining 10%. LDA and mixture of unigrams models
with K = 5, 10, 20, 50, and 100 latent topics were esti-
mated; a single unigram model was estimated because
such models harbor no notion of topic. The perplexity
(inverse of the per-word likelihood) of the held-out test
set of J = 525 documents (Equation 6) was computed for
each trained model. Figure 4 shows the generalization
performance of each model as a function of the number

of latent topics. LDA has consistently smaller perplexity
scores than the two extant models indicating better per-
formance on unseen documents. Since the perplexity of
50- and 100-topic LDA's is low and similar, a latent space
with 50 topics appears to provide a parsimonious descrip-
tion of the CGC corpus.

The ability of three specific models to retrieve a set of 842
aging-related documents in the collection of 5,225 CGC
documents was assessed: a 50-topic LDA model estimated
using all documents in the corpus, a 50-topic mixture of
unigrams model estimated using all documents, and a
model which ordered all documents randomly. For each
model, an average precision/recall (PR) curve was con-
structed by computing the ranking of other documents
given each aging-related document as a query, and the
average F1 measure was computed. Figure 5 shows aver-
age PR curves for the three models. The average F1 meas-
ure (standard error) for the LDA model, the mixture of
unigrams model and a random model is 0.30(2.86e – 06),
0.22(7.85e – 06), and 0.29(3.02e – 05) respectively.
Although the F1 values for the LDA and random models
are similar, the smaller standard error of the LDA model
indicates its superiority to the random model. In addition,
the average PR curves indicate that the LDA places more of
the age-related documents higher up its rankings than the
random model. Thus, of the three models investigated,
LDA is best able to retrieve the set of related documents.
Overfitting by the mixture of unigrams model results in a
performance worse than the random model.

All subsequent discussion of an LDA model and/or a mix-
ture of unigrams model pertain to a K = 50 topic model
estimated using all M = 5, 225 CGC documents in the cor-
pus.

LDA latent topics embody concepts associated with 
nematode biology
A systematic strategy for clarifying the nature of the hid-
den factors permeating a corpus was devised and applied
to a CGC LDA. Topic annotation (topic labeling) is
defined as an automated process that creates a verbose
(compact) description of an LDA topic. The method
designed to annotate and label topics exploited the cor-
pus-level parameter β (Figure 2). The K × V topic-word
matrix β collates the multinomial distributions over the V
words in the vocabulary that characterize the K topics. For
a given LDA model of a particular corpus, the kth row
specifies the topic-specific word distribution for topic k
and an element, βkv, denotes the likelihood of the vth
word given the kth topic. For each of the K = 50 topics in
the CGC LDA model, the V = 28, 971 βkv values were
ordered and used to generate a word rank versus topic-
specific word probability plot. In every case, the 500 top-
ranked words accounted for most of the probability mass.
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Thus, these 500 high probability CGC words were desig-
nated topic annotation words (the same word from the V-
wordvocabulary could annotate multiple topics).

Two different approaches were used to create labels for
each topic. Corpus-based topic labels are topic annotation
words that are unique to a topic and represent descriptors

Graphical model representation of a mixture of unigrams model with K latent topics (right) and a unigram model (left)Figure 3
Graphical model representation of a mixture of unigrams model with K latent topics (right) and a unigram model (left). The 
corpus depicted contains M documents and each is a sequence of N words. Open circles represent latent variables (z)or 
parameters (β, θ). Each shaded circle is an observed word variable (w). Boxes (plates) represent replicates. The subscripts m, n 
abd k on a parameter (β, θ) or variable (z, w) donate the mth document, nth word and kth topic respectively.A mixture of uni-
grams generates all the words in a given document from exactly one topic, z. This differs from the LDA model where a single 
document can express multiple topics (Figure 2). Note that the naive Bayes model used to cluster transcript profiling data [41-
43] has the same topology as the mixture of unigrams but the observed variables are continuous-valued expression measure-
ments rather than discrete words.
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Graphical model representation of the LDA model (left) and the variational distribution used to approximate the posterior in LDA (right) [22]Figure 2
Graphical model representation of the LDA model (left) and the variational distribution used to approximate the posterior in 
LDA (right) [22]. LDA defines a distribution on a collection of documents in much the same manner that a profile hidden 
Markov model yields a distribution on a set of (biological) sequences [31]. The corpus depicted contains M documents and 
each is a sequence of N words. Open circles are parameters (α, β, γ, φ) or latent variables (θ, z). The shaded circle is the 
observed word variable (w) and boxes (plates) represent replicates. The Dirichlet parameter, α, and topic-word matrix, β, are 
corpus-level parameters sampled once in the process of generating a corpus. The topic proportions, θ, is a document-level var-
iable sampled from αonce per document. The topic, z, is a word-level variable sampled from θ once for each word in a docu-
ment. Formally, a K-topic LDA specifies a two-level probabilistic process that generates a document as follows, (i) a K-
dimensional vector, θ, is chosen from the distribution p(θ|α), and (ii) words are sampled repeatedly from the document-spe-
cific mixture distribution, p(w|θ). Exact inference and parameter estimation involve calculating the posterior distribution on a 
document p(θ, z|w, α, β). This is intractable because the latent variables are coupled via the edge between θ and z. The poste-
rior can be approximated by computing the variational Dirichlet parameter γ and the variational multinomial parameter φ for 
each word in the document. The subscripts m, n, and k on a parameter (β, γ, φ) or variable (θ, z, w) donate the m th document, 
nth word and kth topic respectively. Note that the Dirichlet variable α is a distinct component of the probability model and not 
merely an expression of uncertainty about a parameter. This differs from profile hidden Markov models where a mixture of 
Dirichlet distributions is used as a prior for amino acid/nucleotide probability distributions.
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applicable to only one topic. CGC-based topic labels were
equated with topic annotation words that were not
assigned to any of the other 49 topics, i.e., the 50 sets of
CGC-based topic labels formed disjoint subsets of words
from the CGC vocabulary. Ontology-based topic labels
are the outcome of filtering topic annotation words using
an external knowledge source and represent descriptors
applicable to one or more topic. The ontology exploited
here was the GO. The relationship between GO controlled
vocabulary terms can be depicted as a directed acyclic
graph (DAG). Each node corresponds to a term from one
of three aspects, for example, "exodeoxyribonuclease,"
"mitochondrial derivative" and "ethylene mediated sign-
aling pathway" are exemplars of GO terms from the
"Molecular Function," "Cellular Component" and "Bio-
logical Function" aspects respectively. The structure of the
DAG underpinning the GO vocabulary defines semantic
relationships amongst terms so that, for example, the

node for the GO term "intracellular" is a parent of the
node for the more specific GO term "nucleus." Recall that
the topic annotation words for topic k are the 500 words
from the CGC vocabulary that best characterize the topic.
These 500 words were mapped to nodes in the GO DAG.
A node where a topic annotation word coincided with a
GO term was designated an explicit node. GO-based topic
labels were equated with the GO terms for both explicit
nodes and the children and grandchildren of explicit
nodes.

Examination of the automatically generated CGC- and
GO-based labels suggests that LDA topics capture mean-
ingful and coherent facets of the molecular, cellular, and
behavioral biology of C. elegans. Figure 6 shows results for
four selected CGC topics (the results for all 50 topics are
available in Additional file 1). The hidden factors perme-
ating the CGC corpus include one pertaining to sexual

The perplexity of LDA, mixture of unigrams, and unigram models estimated and evaluated on the CGC corpusFigure 4
The perplexity of LDA, mixture of unigrams, and unigram models estimated and evaluated on the CGC corpus. The score of 
test documents is shown against the number of latent topics (the perplexity of the unigram is constant because this statistical 
model has no notion of latent topics).
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reproduction (Topic 6), chromosome structure and func-
tion (Topic 14), cell death (Topic 20) and locomotion
(Topic 27).

Ontology-based topic labels derived from structured
knowledge for domains other than molecular and cellular
biology are needed to clarify the nature of some CGC hid-
den factors. Figure 7 shows topics that have CGG- but no
GO-based labels. Inspection of the CGC-based labels for
Topics 3, 29, 38, and 41 suggest the presence of hidden
factors that are concerned with scientific protocols and
procedures that are independent of any biological ques-
tion, and that allude to evolution.

Interrogation of LDA topics provides insights into genes 
influencing life span
A guilt-by-association approach was devised to identify
genes that may be involved in a phenomenon of interest
and the procedure illustrated using genes implicated in
modifying life span. A "gene word" is a word in the
28,971 word CGC vocabulary that corresponds to the

name of a C. elegans gene. CGC-based topic labels are the
≤ 500 words in the vocabulary that best characterize a
topic. If a number of the topic labels are gene words and
most of the genes are known to be associated with a spe-
cific phenomenon, then the other gene words can be
equated with genes likely to be involved in the same phe-
nomenon. One factor influencing the biological insights
that can be derived from this approach is the human cura-
tion component of the process used to create the CGC
Bibliography, i.e., the individual who defined the set of
genes in the Genes record believed to be discussed in the
Abstract record. In addition to limitations in the data used
to estimate a statistical model of text, the LDA remains a
model based on the simple bag of words representation of
a document. While this LDA-based approach is not an
automated method for formulating sophisticated and
detailed hypotheses, it does highlight how a model that
ignores syntax and semantics can organize information in
a manner that provides a user the ability to exploit their
background knowledge and enhance understanding of
the subject in hand.

Table 1 lists the names of genes known to extend or
shorten life span and designated aging-related gene
words. Inspection of the two CGC LDA topics with the
greatest number of CGC-based labels that are aging-
related gene words suggests that akt-1, akt-2 and ges-1 may
be associated with aging. Figure 8 shows these two topics,
Topic 9 and Topic 12. In decreasing topic-specific word
probability and with genes listed in Table 1 in bold, the
Topic 9 CGC-based labels that are gene words are age-1,
clk-1, mev-1, daf-18, fer-15, clk-2, gro-1, daf-23, akt-1,
akt-2, clk-3, pdk-1, rad-8, sod-3, old-1, ctl-1, tkr-1, daf-
28, sod-2, sir-2, daf-9, cln-3, ins-1, age-2, and spe-10. The
genes depicted in a normal font have properties similar to
known life span modifying genes such as dauer (daf) phe-
notypes (Table 1). For example, the Wormbase [25] anno-
tations for akt-1 and akt-2 include "protein serine/
threonine kinase" and "inhibition of both akt-1 and akt-2
leads to dauer-constitutive phenotype."

The mechanisms of action of putative gerontogenes sug-
gested by different topics may not be identical. For Topic
12, the CGC-based labels that are gene words are ges-1,
osm-3, osm-5, che-2, osm-1, lov-1, pkd-2, daf-19, che-
11, unc-116, che-13, che-10, osm-10, che-1, che-14, pho-
1, dyf-1, che-12, and pkd-1. ges-1 is a gut-specific carbox-
ylesterase, a molecular function not ascribed by Worm-
base to life span modifying genes. Since many topic labels
are associated with the osm phenotype, osmoregulation
may be a feature that differentiates Topic 12 aging-related
genes from those of Topic 9.

Precision/recall (PR) curves for three models of text (LDA, mixture of unigrams, random) and the task of retrieving a set of aging-related documents (842 CGC items that refer to one or more of the genes listed in Table 1)Figure 5
Precision/recall (PR) curves for three models of text (LDA, 
mixture of unigrams, random) and the task of retrieving a set 
of aging-related documents (842 CGC items that refer to 
one or more of the genes listed in Table 1). Precision is the 
fraction of documents in a list that are relevant (related to 
aging) whereas recall is the fraction of relevant documents in 
the list. For a desired level of recall, for example 70%, there 
is a corresponding precision. The graph shows average preci-
sion against average recall. Although each point is a mean of 
842 pairs of precision and recall values, the standard error is 
negligible and so not depicted.
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Results for four illustrative latent topics specified by a 50-topic CGC LDA model estimated from a corpus with 5,225 docu-ments and a vocabulary of 28,971 wordsFigure 6
Results for four illustrative latent topics specified by a 50-topic CGC LDA model estimated from a corpus with 5,225 docu-
ments and a vocabulary of 28,971 words. Each panel shows results for a particular topic. The y-axis of the graph is topic-spe-
cific word probability (βkv)and words are arranged along the x-axis according to this likelihood. Only the 500 topic annotation 
words are plotted since the remaining words in the vocabulary have negligible probabilities. The words displayed explicitly are 
unigrams in the CGC vocabulary, including the names of C. elegans genes, and GO terms. The position of a word along the x-
axis represents its rank; the staggering of words along the y-axis is not significant and is designed only to improve legibility. The 
graph legend lists two types of automatically-generated topic labels. CGC-based topic labels are a subset of the 50 × 500 topic 
annotation words that are unique to a topic and are words from the CGC vocabulary; these labels are ordered according to 
decreasing βkv values. GO-based topic labels are the parents and grandparents GO terms of GO terms that are also topic 
annotation words. Only GO terms that occur four or more times are given and are listed in decreasing frequency (MF: molec-
ular function; CC: cellular component, BP: biological process). A CGC-based label is unique to a topic whereas a GO-based 
label can be applied to one or more topic.
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GO-based labels: MF: exodeoxyribonuclease; CC: ; BP: ethylene mediated
signaling pathway, osmosensory signaling pathway via two-component system,
two-component signal transduction system ’phosphorelay’, negative regula-
tion of transcription by pheromones, positive regulation of transcription by
pheromones, regulation of transcription from pol i promoter mitotic, ethy-
lene mediated signaling pathway ’induced systemic resistance’, ethylene me-
diated signaling pathway ’jasmonic acid/ethylene dependent systemic resis-
tance’, mapkkk cascade ’osmolarity sensing’, negative regulation of transcrip-
tion from pol i promoter mitotic, positive regulation of transcription from
pol i promoter mitotic, thermoregulation, fat body metabolism ’sensu in-
secta’, fever, homoiothermy, negative regulation of transcription from pol ii
promoter by pheromones, positive regulation of transcription from pol ii pro-
moter by pheromones, abscission, aging, development of primary sexual char-
acteristics, development of secondary sexual characteristics CGC-based la-
bels: sex, tra1, dosage, her1, xx, compensation, sexual, xo, xol1, tra3, sdc1,
fem, males, sdc2, dpy21, sdc3, dpy26, dpy27, sexe, mab3, dpy28, dpy30,
hermaphrodites, fox1, sexspecific, dbl1, feminizing, fog, sexdetermination,
copulatory, masculinization, sma, mel11, sexually, sdc, feminization, dimor-
phism, malespecific, hierarchy, masculinizing, mog5, transform, mog6, mog4,
lf, dpy22, sex1, pp2c, mog2, sexes, mag1, mel, global, numerator, mog3,
mndp8, stdp2, mndp10, dpy23, equalize, dsx, cet1, cpeb, coordinately, dimor-
phic, diploid, feminize, bmp, triploid, sexlinked, compensate, mix1, mndp9,
mndp25, females, mndp27, bursa
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GO-based labels: MF: ; CC: mitochondrial derivative, axonemal microtubule,
centriole, telomerase holoenzyme complex, dynein; BP: adult feeding behavior,
female meiosis i spindle assembly, female meiosis ii spindle assembly, meiotic
spindle assembly, adult behavior CGC-based labels: air, mei1, cytokinesi,
prophase, metaphase, kinetochore, furrow, anaphase, cytokinesis, centromere,
aurora, crossover, chromatid, rec1, msh5, mel26, microtubules, mei2, zen, mi-
tosis, him14, hcp, cyk, cohesion, air2, him6, cyk1, rad51, centrosomal, szt1,
aster, him3, zyg, mei, holocentric, zyg11, midzone, chk2, mnt12, spo11, air1,
synapsi, interphase, segregate, rec, mre11, breakage, zen4, mix, tau, pronu-
clear, chiasmata, hin1, depleted, crosslink, homozygote, promoting, poles, re-
combine, inversion, pronuclei, hif1, katanin, gammatubulin, dispensable, mi-
crotubuleassociated
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GO-based labels: MF: ; CC: ; BP: cell death, abscission, aging CGC-based
labels: death, ced, ced3, programmed, ced4, ced9, apoptosi, ced1, apoptotic,
bcl2, ced5, caspase, ced2, ced10, engulfment, ced6, ced7, nuc1, corpse, ces2,
ces1, apoptosis, pcd, celldeath, ced8, ice, dying, phagocytosi, suicide, ced12,
cebnip3, fhit, bh3, transglutaminase, engulfing, protect, p35, proapoptotic,
dock180, cetwist, caspases, dad1, p53, e1b, csp, bcl, necrotic, telomerase, un-
dergoing, interleukin1, killer, corpses, oligomerization, nit, converting, patho-
logical, deaths, protective, flice, injury, necrosi, counterpart, cep1, apaf1,
prodomain, lta, mac, damageinduced, lin24, homeostasi, tunel
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GO-based labels: MF: ; CC: myosin ii, unconventional myosin, striated muscle
thin filament; BP: regulation of locomotion, locomotion, negative regulation
of locomotion, positive regulation of locomotion, microgametogenesis, abscis-
sion, aging CGC-based labels: myosin, thick, paramyosin, mhc, rod, unc45,
filaments, sup3, unc87, e675, tropomyosin, let56, act3, unc82, myo1, heavy-
chain, unc89, sdf2, e190, peb, act2, subfilament, musculature, chains, diam-
eter, tmy1, lev11, assembled, mhca, let653, sdf9, lie, assemblage, nonunc54,
filagenin, finestructure, um, globular, delete, lin40, tubule, organized, sdf8,
myofibrillar, positioned, let52, sdf19, rigid, antimyosin, sdf7, waterston, hcdf1,
backbone, structures, tubular, multifilament, myosins, crossbridge, c183, re-
activity, sdf10, immunological, edf1
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Exhibition of multiple latent topics by an LDA document 
reflects the complexity of issues discussed in documents
By virtue of its superior generalization performance and
retrieval ability, an LDA model of the CGC corpus is a bet-
ter statistical model of text than a mixture of unigrams
model. A distinct advantage of LDA is that although both
models are generative, an LDA document is the manifes-
tation of many topics whereas a mixture of unigrams doc-
ument is the product of only one topic. The subject matter
of (biological) documents is rarely limited to a single area
so the benefit of a CGC LDA is that words in a single doc-
ument could come from, for example, a combination of
Topic 6 (sexual reproduction) and Topic 14 (chromo-
some structure and function). The mixing of LDA topics in
a CGC item was investigated by examining the document-
specific, word-level parameter φ (Figure 2). The varia-
tional posterior topic probability φn(zn= k) indicates the
extent to which the nth word is associated with the kth
topic. A value that is both large and significant is an indi-
cator of the topic most likely to have generated the word.

The CGC item shown in Figure 1 is primarily a mixture of
two topics. Figure 9 shows the topics most likely to have
produced words in the document discussing the life span
modifying clk-2 gene (Table 1). Of the assigned words, 34
have posterior probabilities peaked on the aging-related
Topic 9 (Figure 8) and 23 on the general purpose Topic 38
(Figure 7). Three words are allocated to Topic 7, two to
Topic 19, two to Topic 13, and one to Topic 34.

Utility of LDA in formulating hypotheses: insights into clk-
2 function

Searching a document database to identify homologs of a
query document yields insights that can complement
those obtained from sequence-, structure- and function-
based analysis of genes and proteins. Prior studies of clk-2
revealed that it encodes a sequence homolog of Tel2, a
protein required for normal telomere length regulation in
yeast (reviewed in [26]). To enhance knowledge of how
clk-2 might influence life span, homologs of a document
discussing clk-2 (Figure 1) were identified by computing
the topic-space pairwise similarity score between this
query q and every CGC document t (Equations 2 and 3).
Although a given gene may appear in the Genes record of
many CGC items, the results described below are based
on analysis of document homologs of the single CGC
item shown in Figure 1. Figure 10 shows the three most

related items, CGC documents with the three largest (q,
t) values. Figure 11 shows the three topics most associated
with them. The third best homolog is relatively unin-
formative: the text indicates a general review of aging
mutants and Topic 7 labels are general words pertaining
to life span.

LDA-based analysis leads to the hypothesis that clk-2 may
have a role in coordinating signals between the outside
and inside of cells. Since the top two topic-space docu-
ment homologs discuss nuclear receptors, clk-2 may have
a direct or indirect involvement in receptor biology. Top-
ics 44 and 45 include the GO-derived labels "host cell
plasma membrane," "regulation of fgf receptor signaling
pathway" and "regulation of beta 2 integrin biosynthesis."
Circumstantial evidence supports a possible role for clk-2
in signal transduction and tissue biology. FGF-2 regulates
telomerase activity in human endothelial cells [27].
Integrins are cell surface receptors important in communi-
cation between the extracellular environment and the
nucleus [28]. The suggestion that clk-2 may influence tel-
omere length via a mechanism not involving direct phys-
ical association with telomeres is plausible since a recent
genome-wide screen for Saccharomyces cerevisiae deletion
mutants that affect telomere length identified genes with
very diverse functions (overrepresented categories
included DNA and RNA metabolism, chromatin modifi-
cation, and vacuolar traffic) [29]. Recent experimental
results support a connection between vacuolar protein-
sorting genes and telomere length homeostasis [30].

Discussion
This study demonstrates how a specific statistical IR
model, an LDA model, can be employed to infer the hid-
den factors permeating a biomedical text corpus and
exploited to synthesize and organize information about
complex biological phenomena. The results indicate that
despite being estimated from a simple bag of words repre-
sentation of items in the CGC Bibliography, the intra-doc-
ument statistical structure captured by an LDA model is
sufficient for the model to be used to enhance under-
standing of C. elegans biology. For example, analysis of the
corpus-, document- and word-level parameters of a
trained LDA model enabled the exploration and creation
of hypotheses about known and putative nematode
aging-related genes.

The CGC corpus studied here had M = 5, 225 documents
and a V = 28, 971 word vocabulary. Estimating a 50-topic
LDA model from such training data took 3 hours on a
Macintosh Powerbook G4. It should be straightforward to
estimate a model for larger corpora such as MEDLINE
where the number of documents is many orders of mag-
nitude greater (M ~ 107) and the vocabulary size is only
one order of magnitude larger (V ~ 105). In estimating an
LDA, the computational bottleneck is the variational E-
step, i.e., computing the posterior topic Dirichlet distribu-
tion for each document. Fortunately, this procedure can
be parallelized because given a model, the posterior for
each document can be assessed independently. Thus, it is
feasible for the techniques described in this study to be


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applied to other corpora and to address questions other
than life span modification.

From an applications perspective, it is possible to envisage
a scenario involving the creation of a library of LDA mod-
els where each constituent model was estimated from a
user- and/or computationally-defined corpus of docu-
ments focused on a specific area such as "aging," "cancer,"
"yeast biology," "response to stress," "antibiotics," "HIV,"
"Parkinson's disease," "kinases," and so on. A query doc-
ument would be compared to each subject-specific LDA in
the collection as opposed to a single model as described
here. This approach seeks to mirror a common strategy in
sequence analysis whereby a query sequence is rated
against a library of hidden Markov models (HMMs) [31]
estimated for domains of interest, for example, the Pfam

database of protein families [32]. Since seaching a data-
base of probabilistic models of proteins in order to iden-
tify "remote" sequence homologs is known to be effective,
an analogous approach could prove useful in retrieving
distant document homologs.

The ideas discussed in this work can be extended and
improved in a variety of ways. Currently, the number of
latent topics in an LDA model K is a user-defined param-
eter but recent research has examined the task of choosing
K [33]. In particular, if the LDA is augmented with a non-
parametric Bayesian prior known as  a hierarchical
Dirichlet process, both topic probabilities and the
number of topics can be estimated from data. Under the
hierarchical Dirichlet process prior, the number of topics
grows as data are added to a collection []. The significance

CGC LDA topics that have no GO-based topic labels and capture hidden factors in the CGC corpus that pertain to the practi-cal aspects of investigating biological mechanisms and processesFigure 7
CGC LDA topics that have no GO-based topic labels and capture hidden factors in the CGC corpus that pertain to the practi-
cal aspects of investigating biological mechanisms and processes. Topics are represented in the same manner as in Figure 6.
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GO-based labels: MF: ; CC: ; BP: CGC-based labels: cdna, clone, north-
ern, vector, primer, designated, yac, oligonucleotide, southern, lambda, am-
plified, rt, volvulu, phage, hybridize, chicken, interrupted, degenerate, kex2,
cerac1, p21, hybridized, subclone, transfected, artificial, proteinase, endopro-
tease, ggt, introns, aspartic, hybridizing, nucleoside, cepak, oscillin, opt3,
cdc42ce, lh, overlapping, representing, aqp, bip, smt3, middle, onchocerca,
clones, segregator, pyrimidine, designed, nucleosome
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GO-based labels: MF: ; CC: ; BP: CGC-based labels: handedness, vary, hy-
pothesi, fit, tpa1, brood, duplicate, comparing, deleteriou, substantial, con-
straint, fitness, aser, striking, redundancy, evident, experimentally, innate,
asel, toll, million, faster, equal, hypothese, logistic, phyla, proportion, repro-
duce, equation, symmetry, architecture, exponential, immunity, tpa, complex-
ity, frequently, belonging, populations, isogenic, ftt1, fewer, extent, weibull,
sinistral, b3, speciation, ftt2, argue
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GO-based labels: MF: ; CC: ; BP: CGC-based labels: multigene, cadherin,
pseudogene, diverged, distantly, duplicated, existence, irp, intergenic, dlg,
families, dispersed, ancestral, pairs, raise, sea, basepair, urchin, clustered,
imply, members, interspecy, raising, remarkably, innexin, synapsin, connexin,
arranged, metazoans, strikingly
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GO-based labels: MF: ; CC: ; BP: CGC-based labels: dys1, acedb, dys-
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viding, fgd1, dyb1, construction, comprehensive, completed, world, anno-
tated, list, assigned, improved, full, obtaining, highthroughput, progressive,
traditional, access, roundworm, disorder, scientist, smn, tfg, began, table,
databases, practical, starting, outgroup, genomics, amenable, diseases, anno-
tation, cambridge, microarray, glycopeptide, collection, explore, tcp1, chaper-
onin, duchenne, vacht, catalogue, genomewide, science, make, greatly, thou-
sand, wealth, people, public, tcp, cpb, working, decade, medical, aid, spinal,
success, john, technology, knockout, successfully
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Table 1: C. elegans genes known to extend or shorten life span. The list is taken from the Genes database of SAGEKE http://
www.sageke.org

Life span extension

Hsp-6 heat shock 70 protein
age-1 inositol/phosphatidylinositol kinase; signal transduction
age-2 AGEing alteration
che-2 G-beta-repeats
che-3 microtubule motor, dynein ATPase; microtubule-based movement
che-11 abnormal CHEmotaxis
che-13 abnormal CHEmotaxis
clk-1 ubiquinone biosynthesis
clk- 2 CLocK (biological timing) abnormality
clk-3 CLocK (biological timing) abnormality
daf-2 transmembrane receptor protein tyrosine kinase; phosphorylation, hydrogen transport, 

signalling
daf-6 abnormal DAuer Formation
daf-10 abnormal DAuer Formation
daf-12 steroid hormone receptor; transcription regulation
daf-19 DNA binding transcription factor; transcription regulation
daf-28 abnormal DAuer Formation
eat-1 EATing: abnormal pharyngeal pumping
eat-2 EATing: abnormal pharyngeal pumping
eat-3 EATing: abnormal pharyngeal pumping
eat-6 Na+/K+ ATPase α subunit; cation transport, metabolism
eat-13 EATing: abnormal pharyngeal pumping
glp-1 calcium ion binding; cell differentiation
gro-1 tRNA isopentenyltransferase; tRNA processing
ins-1 INSulin related
ins-18 insulin-like growth factor I like; hormone
isp-1 ubiquinol-cytochrome c reductase, Rieske iron-sulfur protein; electron transport
mec-8 nucleic acid binding; mechanosensory
mes-1 protein tyrosine kinase
osm-1 OSMotic avoidance abnormal
osm-3 kinesin
osm-5 aspartic-type endopeptidase; proteolysis and peptidolysis
osm-6 N-acetyllactosamine synthase
pdk-1 protein serine/threonine kinase
pgl-1 P GranuLe abnormality
rad-8 RADiation sensitivity abnormal/yeast RAD-related
sir-2.1 DNA binding; transcription regulation, chromatin silencing
spe-10 defective SPErmatogenesis
spe-26 MIPP repeats; defective SPErmatogenesis
tax-4 Cyclic-nucleotide-gated olfactory channel; potassium transport
tkr-1 G protein coupled receptor; signalling
unc-4 homeobox protein (otd subfamily); transcription regulation
unc-13 intracellular signaling cascade
unc-26 inositol/phosphatidylinositol phosphatase
unc-31 PH (pleckstrin homology) domain
unc-32 TJ6/proton pump
unc-64 syntaxin
unc-76 UNCoordinated

Shortened life span

ctl-1 CaTaLase
daf-16 transcription factor
eat-7 EATing: abnormal pharyngeal pumping
fer-15 FERtilization defective (abnormal sperm)
mev-1 Succinate dehydrogenase cytochrome b chain; electron transport, tricarboxylic acid cycle
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and practical importance of this feature is that when mod-
eling scientific documents, the nature and size of the cor-
pus is evolving constantly meaning that discovering topics
is an ongoing task. Further studies are required to devise
rigorous methods for determining a set of words best able
to characterize a topic: the current approach is somewhat
arbitary in that corpus-based topic labels were defined as
the 500 words in CGC vocabulary with the highest values
for the likelihood of the word given the topic.

In the LDA model, topics represent entities that are pre-
sumed to permeate a corpus and these latent variables are
to be inferred by statistical analysis. These implicit con-
cepts are assumed to be equally related to one another,
i.e., the topics are not organized in any way and form a
"flat structure." It seems reasonble to believe that, for
example, topics embodying the concepts of "DNA repair"
and "chromosome structure and function" should be
more related to each other than to a topic focused on

The LDA topics most associated with words in the CGC item shown in Figure 1Figure 9
The LDA topics most associated with words in the CGC item shown in Figure 1. A word is identified with the topic k given in 
parenthesis when the document-specific, variational posterior topic probability exceeds a threshold, φn(zn= k) > 0.9. As illus-
trated by "telomere (9)", identical words within a document are generated by the same topic. Note that only the Title, Genes 
and Abstract records were concatenated and processed to generate the bag-of-words document used to estimate the LDA.

Key: 4951
Authors: Lim CS;Mian IS;Dernburg AF;Campisi J
Title: C. elegans(38) clk-2,(9) a gene(38) that limits(9) life(9) span,(9) encodes(38) a telomere(9) length(9) regulator(19)
similar(38) to yeast(9) telomere(9) binding(13) protein(13) Tel2p.(9)
Genes: clk-2(9)
Abstract: An important(38) quest(9) in modern(9) biology(7) is to identify(38) genes(38) involved(9) in aging.(9) Model(7)
organisms(7) such as the nematode(38) Caenorhabditis(9) elegans(38) are particularly useful in this regard.(9) The C. elegans(38)
genome(38) has been sequenced(38) [1], and single(38) gene(38) mutations(9) that extend(9) adult(9) life(9) span(9) have been
identified(38) [2]. Among these longevity-controlling(9) loci(34) are four apparently(38) unrelated(38) genes(38) that belong(38) to the
clk(9) family(38) [3-5]. In mammals,(38) telomere(9) length(9) and structure(38) can influence(9) cellular,(9) and possibly(9)
organismal,(9) aging(9) [6]. Here, we show(9) that clk-2(9) encodes(38) a regulator(19) of telomere(9) length(9) in C. elegans.(38)

The two CGC LDA topics with the greatest numbers of aging-related gene words (CGC-based topic labels corresponding to the names of genes implicated in modifying life span)Figure 8
The two CGC LDA topics with the greatest numbers of aging-related gene words (CGC-based topic labels corresponding to 
the names of genes implicated in modifying life span). Each topic is represented the same manner as Figure 6. In the graph, 
words in bold are the gerontogenes listed in Table 1.
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GO-based labels: MF: ; CC: mitochondrial derivative, kinetoplast, mitochon-
drial degradosome, microsome, telomerase holoenzyme complex; BP: adult
feeding behavior, determination of adult life span, abscission, aging, drug
metabolism, adult behavior CGC-based labels: age1, longevity, lifespan,
clk1, ageing, insulin, mev1, insulinlike, longlived, daf18, superoxide, fer15,
clk2, gro1, daf23, clk, akt1, dismutase, akt2, extended, consumption, clk3,
pdk1, rad8, sod3, pten, old1, diapause, ctl1, aged, thermotolerance, caloric,
igf, tkr1, gerontogene, daf28, agespecific, coq7, sod2, expectancy, ubiquinone,
receptorlike, dramatically, carbonyl, sod, sir2, hx546, antioxidant, capacity,
tension, paraquat, daf9, itt, lengthen, cln3, agedependent, pi3k, chronologi-
cal, fashion, nondauer, postreproductive, ins1, replica, lived, slow, slowing,
singlegene, age2, coenzyme, spe10
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pho1, chaperonelike, cog, focusing, ciliary, rectum, tagged, deleted, dyf1, con,
dendritic, che12, ase, perception, sorting, fluorescein, repellents, raft, poly-
cystic, lip, dendrites, fitc, pkd1, adl, chemoreception, deirid, flagella, dimeric,
chemotaxis
Page 12 of 19
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:250 http://www.biomedcentral.com/1471-2105/7/250
"locomotion." Thus, a model in which topics were them-
selves arranged as a hierarchy could prove useful and
inspection of the relationship(s) between topics might be
informative. The current LDA model represents a model
for a particular instantiation of a corpus. It might be inter-
esting to formulate dynamic models of corpora which
sought to capture how a collection such as the CGC or
MEDLINE changes over time. In addition to theoretical
studies of their properties and behavior, such models
might be useful not only for biomedical researchers and
clinicians, but also policy makers, historians, and sociolo-
gists interested in the evolution of biology and its disci-
plines.

Statistical IR models are applicable not only to "tradi-
tional" document collections, but also to genome-scale
biological data. In one example of such an LDA model,
"documents" could correspond to genes, "topics" to regu-
latory networks and "words" to motifs. Since LDA does
not require mutually exclusive clustering, a given gene can
participate in several networks and a given motif can
appear in several genes. Merging this type of analysis with
that described here would result in evidential support for
the functional behavior and role of a gene being derived
both from primary biological data and from corpus-based
analysis. This capacity to fuse support from disparate
sources has been illustrated using a variant of LDA known
as "correspondence LDA" and in the context of automated
image annotation [23].

CGC homologs of the clk-2 item shown in Figure 1Figure 10
CGC homologs of the clk-2 item shown in Figure 1. When this clk-2 item is used as the query document, the three items 
shown have the largest topic-space pairwise similarity scores, (q, t). The documents are depicted in the same format as Fig-
ure 9. As illustrated by "elegans(38)" and "elegans(41)" in the first and second top-ranked documents, identical words may be 
attributed to different topics in different documents.

Key: 3416
Authors: Sluder AE;Mathews SW;Hough D;Yin VP;Maina CV
Title: The nuclear(44) receptor(45) superfamily(38) has undergone(38) extensive(38) proliferation(44) and diversification(44) in
nematodes.(44)
Genes: daf-12(44) fax-1(44) nhr-1(44) nhr-2(44) nhr-3(44) nhr-4(44) nhr-5(44) nhr-6(44) nhr-7(44) nhr-8(44) nhr-8(44)
nhr-10(44) nhr-11(44) nhr-12(44) nhr-13(44) nhr-14(44) nhr-15(44) nhr-16(44) nhr-17(44) nhr-18(44) nhr-20(44) nhr-21(44)
nhr-22(44) nhr-23(44) nhr-24(44) nhr-25(44) nhr-28(44) nhr-31(44) nhr-34(44) nhr-35(44) nhr-40(44) nhr-41(44) nhr-42(44)
nhr-43(44) nhr-44(44) nhr-45(44) nhr-46(44) nhr-47(44) nhr-48(44) nhr-49(44) nhr-50(44) nhr-51(44) nhr-52(44) nhr-53(44)
nhr-54(44) nhr-55(44) nhr-56(44) nhr-57(44) nhr-58(44) nhr-59(44) nhr-60(44) nhr-61(44) nhr-62(44) nhr-63(44) nhr-64(44)
nhr-65(44) nhr-66(44) nhr-67(44) odr-7(44) sex-1(44) unc-55(44)
Abstract: The nuclear(44) receptor(45) (NR) superfamily(38) is the most abundant(38) class(44) of transcriptional(19) regulators(19)
encoded(38) in the Caenorhabditis(44) elegans(38) genome,(38) with >200 predicted(38) genes(38) revealed(44) by the screens(44)
and analysis(38) of genomic(38) sequence(38) reported(44) here. This is the largest(44) number(44) of NR(44) genes(38) yet
described from a single(38) species,(44) although our analysis(38) of available genomic(38) sequence(38) from the related(38)
nematode(44) Caenorhabditis(44) briggsae(38) indicates that it also has a large(44) number.(44) Existing(44) data(38)
demonstrate(44) expression(38) for 25% of the C. elegans(38) NR(44) sequences.(38) Sequence(38) conservation(38) and
statistical(44) arguments(44) suggest(38) that the majority(44) represent(44) functional(38) genes.(38) An analysis(38) of these
genes(38) based(44) on the DNA-binding domain(13) motif(13) revealed(44) that several NR(44) classes(44) conserved(38) in both
vertebrates(38) and insects(44) are also represented(44) among the nematode(44) genes,(38) consistent(44) with the existence(38) of
ancient(44) NR(44) classes(44) shared(44) among most, and perhaps all, metazoans. None of the nematode(44) NR(44) sequences,(38)
however, are distinct(44) from those currently known in other phyla,(44) and reveal(38) a previously(38) unobserved(44) diversity(44)
within the NR(44) superfamily.(38) In C. elegans,(38) extensive(38) proliferation(44) and diversification(44) of NR(44)
sequences(38) have occurred(44) on chromosome(38) V, accounting(44) for > 50% of the predicted(38) NR(44) genes.(38)
Key: 4694
Authors: Sluder AE;Maina CV
Title: Nuclear(44) receptors(45) in nematodes:(44) themes(44) and variations.
Genes: daf-12(44) fax-1(44) nhr-2(44) nhr-6(44) nhr-8(44) nhr-23(44) nhr-25(44) nhr-41(44) nhr-48(44) nhr-64(44) nhr-67(44)
nhr-69(44) nhr-85(44) nhr-91(44) odr-7(44) sex-1(44) unc-55(44) xol-1(6)
Abstract: Large-scale(41) sequencing(41) efforts(41) are providing(41) new perspectives(41) on similarities(38) and differences(44)
among species. Sequences(38) encoding(38) nuclear(44) receptor(45) (NR) transcription(19) factors(19) furnish(44) one striking(29)
example of this. The three complete(41) or nearly complete(41) metazoan(38) genome(41) sequences(38) - those of the nematode(44)
Caenorhabditis(38) elegans,(41) the fruit(41) fly(38) (Drosophila melanogaster) and the human(41) - reveal(38) dramatically(44)
different numbers(44) of predicted(38) NR(44) genes:(38) 270 for the nematode,(44) 21 for the fruit(41) fly(38) and similar(38) to 50
for the human.(41) Although some classes(44) of NRs(44) present(38) in insects(44) and mammals(38) are also represented(44) among
the nematode(44) genes,(38) most of the C. elegans(41) NR(44) sequences(38) are distinct(38) from those known in other phyla.(44)
Questions(41) regarding the evolution(38) and function(38) of NR(44) genes(38) in nematodes,(44) framed(44) by the abundance(44)
and diversity(44) of these genes(38) in the C. elegans(41) genome,(41) are the focus(41) of this article.(41)
Key: 1885
Authors: Johnson TE;Tedesco PM;Lithgow GJ
Title: Comparing(29) mutants,(17) selective(7) breeding,(34) and transgenics(30) in the dissection(7) of aging(9) processes(7) of
Caenorhabditis(9)
Genes: age-1(9) fer-15(9) rol-6(39) mnDf63(39) mnDf89(39) mnDf91(34) mnDf92(9)
Abstract: The genetic(7) analysis(7) of aging(9) processes(7) has matured(9) in the last ten(17) years(7) with reports(34) that
long-lived(9) strains(34) of both fruit(7) flies(7) and nematodes(7) have been developed.(7) Several attempts(7) to identify(17)
mutants(17) in the fruit(7) fly(7) with increased(9) longevity(9) have failed(30) and the reasons(7) for these failures(9) are
analyzed.(17) A major(7) problem(7) in obligate(9) sexual(34) species,(29) such as the fruit(7) fly(7) is the presence(30) of
inbreeding(34) depression(34) that makes(9) the analysis(7) of life-history(34) traits(34) in homozygotes(34) very difficult.(7)
Nevertheless, several successful(7) genetic(7) analyses(7) of aging(9) in Drosophila(7) suggest(9) that with careful(9) design,(7)
fruitful(39) analysis(7) of induced(30) mutants(17) affecting(17) life(9) span(9) is possible. In the nematode(7) Caenorhabditis(9)
elegans,(7) mutations(17) in the age-1(9) gene(17) result(9) in a life(9) extension(9) of some 70%; thus age-1(9) clearly specifies(34)
a process(7) involved(7) in organismic(9) senescence.(9) This gene(17) maps(34) to chromosome(34) II, well separated(34) from a
locus(34) (fer-15) which is responsible(7) for a large(7) fertility(34) deficit(9) in the original(7) stocks.(34) There is no trade-off(29)
between either rate(9) of development(7) or fertility(34) versus(30) life(9) span(9) associated with the age-1(9) mutation.(17)
Transgenic(30) analyses(7) confirm(30) that the fertility(34) deficit(9) can be corrected(30) by a wild-type(17) fer-15(9)
transformant(30) (transgene); however, the life(9) span(9) of these transformed(30) stocks(34) is affected(17) by the transgenic(30)
array(30) in an unpredictable(9) fashion.(9) The molecular(7) nature(7) of the age-1(9) gene(17) remains(7) unknown(9) and we
continue(7) in our efforts(7) to


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Conclusion
LDA is a special case of the family of probabilistic graphi-
cal models. This family includes a wide variety of other
models that have proved useful in biology such as HMMs,
phylogenetic trees, and pedigrees [34]. The graphical
model formalism allows such graphical components to be
combined into heterogenous, large-scale statistical mod-
els that integrate evidence from multiple sources. Doing
so would yield a system for facilitating the formulation of
ideas that could be interrogated and verified experimen-
tally.

Methods
CGC document corpus
The CGC Bibliography (October 2002 release) was down-
loaded [35] and included abstracts from the published lit-
erature, "worm meetings," and the "Worm Breeder's
Gazette." Each CGC item is a series of defined records
(Key, Medline, Authors, Title, Citation, Type, Genes,
Abstract) and associated free-text (see Figure 1 for an
exemplar). In an item, the Genes record associated with
an Abstract record was added by a curator and so reflects
the personnel interest(s) and background of the individ-

The CGC LDA topics most associated with words in the document homologs of the clk-2 query shown in Figure 10Figure 11
The CGC LDA topics most associated with words in the document homologs of the clk-2 query shown in Figure 10.
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GO-based labels: MF: ; CC: parasitophorous vacuolar membrane, para-
sitophorous vacuole, host cell plasma membrane; BP: drug metabolism CGC-
based labels: biomass, ache, ace3, web, helminth, cyclophilin, trophic, root,
gst, ace, microbial, fungu, nr, plantparasitic, antibiotic, predator, mif, spp,
tannin, capture, trap, microcosm, brugia, infective, incognita, parasites, can-
inum, habitat, arthrobotry, supply, ace4, microbivore, nematodetrapping, de-
pendence, flu2, parasitism, helminths, top, condensed, fungivore, ml1, ellagi-
tannin, filarial, greatest, hosts, represented, exploited, productivity, bacteri-
vore, graph, ypd, aphelenchoide, fungal, forms, bacterialfeeding, antifungal,
acrobeloide, cycloheximide, prey, lbp, predatory, cpl, wormpd, flu3, microbe,
agriculture, flu1, qualitative, malayi, nematophagou, penetran, spore, troph-
iclevel, omnivore, cpl1, gallo, lph, xylophilu, veterinary, minititin, trapping,
predaceou, bacteriophagou, ancylostoma
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brenner, reviewed, example, physiology, opportunity, description, summarize,
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address, contribution, way, emerged, difficult, briefly, interested, focused,
challenge, volume, simplicity, investigator, sparc, sydney, kingdom, remark-
able, invertebrates, highlight, elucidation, ideal
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ual, i.e., the list of genes discussed in the abstract was not
derived in a systematic, automated manner and according
to a fixed scheme and/or philosophy. For each item, the
Genes, Title, and Abstract records were concatenated. The
resultant text was tokenized by partitioning on the basis of
white spaces and punctuation. Variants of the same word
were stemmed to produce a single word by removing the
suffixes s, ss, ies and sses. A word was discarded if it was in
a set of 619 generic stop words that included ii, iii, iv, iv,
a, a., yourselves, z, and zero. The ensuing text was not
tagged, i.e., words were not annotated in terms of syntax
(parts of speech) or semantics (pre-defined class such as
"gene name").

A CGC document is the bag of words (vector space repre-
sentation) obtained after tokenizing, stemming, and
removing suffixes from a CGC item. The CGC vocabulary
is the non-redundant set of discrete objects produced after
application of the preceeding processing steps to all items
in the corpus. Words in this vocabulary are unigrams
because phrases such as "DNA repair" are considered to be
two objects rather than one. The final CGC corpus had M
= 5, 225 documents and a vocabulary of V = 28, 971
words. The shortest and longest documents had N = 9 and
N = 261 words respectively. It should be noted that words
originating from the Genes record were not marked in any
way so neither the vocabulary constructed for the corpus
nor the bag of words representation of a particular docu-
ment contained explicit knowledge of, or information
about the curation effort.

Latent Dirichlet Allocation (LDA) model
A detailed description of the LDA model and attendant
algorithms can be found elsewhere [22,36]. Figure 2 gives
a graphical model representation of LDA. Consider a cor-
pus of M documents, {w1, ..., wM}, based on a vocabulary
of words indexed by [1, ..., V]. A document is a sequence
of N words, w = [w1, ..., wN]. Each word in a document is
represented by a V-dimensional unit-basis vector in which
only one component is equal to one, i.e., a word that is the
vth word in the vocabulary is described by a vector where
wv = 1 and wu = 0 for all u ≠ v.

LDA generates a document according to the following
process,

1. Choose a point θ from a Dirichlet distribution parame-
terized by α: θ ~ Dirichlet (α).

2. For each word wn in turn,

(a) Choose a topic zn from a multinomial distribution
parameterized by θ: zn ~ Multinomial(θ).

(b) Choose a word wn from the multinomial distribution

associated with the selected topic and parameterized by

: wn ~ Multinomial ( ).

The parameters of a K-iopic LDA are the Dirichlet param-

eter, α, and the topic-word matrix, β. α is a K-dimensional
Dirichlet parameter that determines the distribution over

topic proportions, α = [α1, ..., αK] where αk> 0. β is a K ×

V matrix that determines the likelihood of the vth word in

the vocabulary given the kth topic, βkv= p(wv = 1 | zk = 1).

The topic-specific word distribution βk  is the kth row

of β. The document-specific topic proportions θ lie in the

(K - 1)-dimensional simplex, θ = [θ1, ..., θk] where θk =

p(zk= 1 | θ), θk> 0, and .

The likelihood of an LDA document is obtained by mar-
ginalizing over the latent variables,

The probability of a corpus is the product of the marginal
probabilites of single documents.

Inference and parameter estimation
Estimating the parameters of an LDA from data and calcu-
lating the probability of a document both involve infer-
ence or computing the posterior distribution of latent
variables given a document,

The denominator of this expression, the likelihood of a
document, cannot be computed exactly because of the
coupling between θ and z (left, Figure 2). Instead, approx-
imate inference methods are required for the LDA model.
Such methods include the convexity-based variational
approach used here [22], Markov chain Monte Carlo sam-
pling [37] and expectation propagation [38].

Variational inference approximates the posterior by find-
ing a lower bound on the likelihood of a document [22].
The family of graphical models obtained by uncoupling θ
and z (right, Figure 2) is characterized by the following
variational distribution,
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where the Dirichlet parameter γ and the multinomial
parameters {φ1, ..., φN} are the free variational parameters
for document w. For the nth word, φn(zn = k) is the (varia-
tional) posterior topic probability for the kth topic. Opti-
mal document-specific values can be found by
minimizing the Kullback-Leibler (KL) divergence between
the variational distribution and the true posterior,

The variational Dirichlet parameter γ* (w) provides a rep-
resentation of the document in the topic simplex. The var-

iational multinomial parameters φ*(w) = { , ..., }

approximate the true, but intractable distributions
p(zn|w).

Estimating an LDA from data involves finding the Dirich-
let parameter α* and topic-word matrix β* which maxi-
mize the log marginal likelihood of a corpus. A variational
Expectation-Maximization procedure results in parameter
estimates that are a (possibly local) maximum of a lower
bound of the log marginal likelihood. This alternates
between maximizing a lower bound with respect to the
variational parameters for each document, and maximiz-
ing the lower bound with respect to the model parame-
ters.

An LDA-based measure of pairwise document similarity
The transformation of bags of words into bags of topics by
LDA provides a means to address the task of searching a
corpus to retrieve similar and/or relevant items. Word-
space representations of documents (high-dimensional,
variable length, vectors of discrete-valued features) are
converted into topic-space representations (low-dimen-
sional, fixed length, vectors of real-valued features). In
particular, the variational posterior Dirichlet parameter γ*
(w) indicates the degree to which each of the K topics is
referenced by document w.

A new measure of pairwise document similarity was for-
mulated using the Dirichlet probability distribution spec-

ified by the document-level LDA parameter γ (Figure 2).
Recall that the variational posterior Dirichlet distribution

for document d is Dirichlet(γd) where 

and  denotes the extent to which document d refers to

the kth topic. A random variable θ drawn from Dirich-

let(γd) has the probability density

where , ,  > 1, and Γ(·) is the

Gamma function. Given two Dirichlet densities, the KL
divergence is given by

The similarity between two documents i and j can be
quantified by computing the KL divergence between their
corresponding Dirichlet distributions as follows

where γi and γj are the parameters for the two documents.
ψ (·) is the digamma function and arises when taking
expectations of log θ.

Let (q, t) be the topic-space pairwise similarity score
between a query document q and a target document t.
Here, this score is defined as the symmetrized KL diver-
gence between the variational posterior Dirichlet distribu-
tions,

where the component KL terms are computed using Equa-
tion 2.

An alternative definition of the topic-space pairwise simi-
larity score is the Jensen-Shannon divergence

where γx = (γq + γt)/2 so that γx
kis the average degree to

which documents q and t refer to topic k.

Given a database of D documents, t1, ..., tD, the task of

retrieving documents related to a query q was addressed
by computing the score between q and each document in
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the collection, (q, t1), ..., (q, tD) (cf. searching a pro-

tein or nucleic acid sequence database to find homolo-
gous sequences). For simplicity, a "homolog" of a
document q is a CGC document td that has a high topic-

space pairwise similarity score (q, td).

Mixture of unigrams model and unigram model
Figure 3 shows graphical model representations of two
existing models of text. Like the graphical model represen-
tation of the LDA model (left, Figure 2), the open circles
represent parameters for the mixture of unigrams model
(mixing weights θ; word distribution βk)and unigram
model (word distribution β).

The unigram model contains no latent variables and each
word in every document is assumed to have been drawn
from the same multinomial distribution. Denoting this
word distribution as β, the likelihood of a unigram docu-
ment is

The mixture of unigrams model [39] assumes that each
document is generated by first choosing one of K topics,
and then drawing words independently, conditioned on
that topic. As in LDA, the K multinomial distributions rep-
resent an underlying semantic structure in the corpus but
a mixture of unigrams document is a manifestation of
only one of these topics. Denoting the mixing weights as
θ and the word distributions as β, the likelihood of a mix-
ture of unigrams document is

The LDA model builds upon the mixture of unigrams in
that documents are able to manifest multiple topics.
Overall, the estimated LDA word distributions are better
reflections of the underlying topics in a corpus, particu-
larly in light of heterogenous documents.

Assessment of statistical models of text
Perplexity: generalization performance
The performance of a statistical model on unseen data was
evaluated by computing the perplexity of a test set of J
documents not used to estimate the model,

where Nj is the number of words in test document wj. The
perplexity is equivalent to the inverse of the geometric

mean per-word likelihood and a lower score indicates bet-
ter generalization performance.

The three different bag of words models described above
were assessed by determining their respective perplexity
on the same set of test documents. The likelihood of a test
document p(wj) was computed using Equation 1 for an
LDA model (left, Figure 2), Equation 4 for a unigram
model (left, Figure 3), and Equation 5 for a mixture of
unigrams model (right, Figure 3). A model was trained
using 90% of the CGC corpus (4,700 documents) and the
remaining 10% (J = 525) used to compute perplexity. A
single unigram model was estimated and evaluated
whereas LDA and mixture of unigram models with vary-
ing numbers of latent topics were estimated and evaluated
(K = 5,10, 20, 50,100).

Precision/recall (PR) curves and F1 measure: retrieval capability

The ability of a statistical model to retrieve a set of related
documents was evaluated using a language modeling
approach [20,40]. Let ND be the number of "relevant"

documents in a collection of D documents, documents
that are related according to some criterion. Let NP be the

number of these relevant documents that are present in a

list of P of these documents (P ≤ D). Precision, , is the
fraction of documents in the list that are relevant and is
defined as NP/P. Recall, , is the fraction of relevant doc-

uments in the list and is defined as NP/ND (  = 1 when

the list of documents and collection of documents are
identical, NP = ND). The F1 measure is the harmonic mean

of these two statistics,

Given a ranking of the documents in the collection, D lists
of documents are produced by selecting the top P-ranked
documents where P = 1, ... ,D. For the dth list, the preci-
sion, d, recall, d, and F1 measure, F1d are computed.

The average of the D Fl measures for the collection, F1, ...,

FD, is calculated.

Three different models were assessed by determining their
respective retrieval capability on the same set of relevant
documents present in the collection of D = 5, 225 CGC
documents (an LDA model, a mixture of unigrams model,
and a model which ranks documents randomly). The
common subject matter of the relevant documents was
genes implicated in extending or shortening the life span
of C. elegans. This set of ND = 842 aging-related documents
was created by identifying CGC items in which the Genes
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record (Figure 1) refers to one or more of the genes listed
in Table 1 that are known to modify life span.

A K = 50 topic LDA model was trained using all D CGC
documents. Given this model, the symmetrized KL diver-

gence between an aging-related document posterior (γq)

and every CGC document posterior (γt) was computed

using Equations 2 and 3. These D topic-space pairwise

similarity scores, (q, t1), ..., (q, tD), were used to rank

the CGC documents from most (highest score) to least
similar. This process was repeated for each relevant docu-

ment in turn, q1, ..., , resulting in ND rankings of the

CGC documents. Let Pi be the P top-ranked CGC docu-

ments for query qi. The number of known aging-related

documents in this list was determined and used to calcu-
late precision and recall. The average precision (average
recall) is the mean of the precision (recall) value com-

puted for each list P1,..., . A series of such average pre-

cision and average recall values were computed by varying
the number of top-ranked documents used to create lists,
P = 1, ..., D. A PR curve was constructed from these D pairs
of average precision and average recall values. The average
F1 measure is the mean of the F1 measure computed for
each of the ND relevant documents.

A K = 50 topic mixture of unigrams model was trained
using all D CGC documents. Given this model, the sym-
metrized KL divergence between an aging-related docu-
ment wq and a CGC document wt was computed using

In the mixture model, the divergence is between posteri-
ors of the single latent topic rather than the vector of latent
topic proportions as is the case with LDA. The component
KL term between documents wi and wj is calculated using

where p(z|wi) and p(z|wj)are the posterior probabilities of

class z given documents wi and wj respectively. The mix-

ture model pairwise similarity scores, (wq, ),...,

(wq, ) were used to rank the CGC documents

from most (highest score) to least similar and the proce-
dure repeated for each of the ND relevant documents. The

resultant ND rankings were used to construct a PR curve

and calculate average F1 as described above for the LDA
model.

A random model was created by randomly ordering the D
CGC documents and repeating this process ND times.
These ND "rankings" of the D documents in the collection
were used to construct a PR curve and calculate averate F1
as described above for the LDA model.
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