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In this article, we review probabilistic topic models: graphical models that can be used to

summarize a large collection of documents with a smaller number of distributions over

words. Those distributions are called “topics” because, when fit to data, they capture the

salient themes that run through the collection. We describe both finite-dimensional

parametric topic models and their Bayesian nonparametric counterparts, which are based on

the hierarchical Dirichlet process (HDP). We discuss two extensions of topic models to

time-series data—one that lets the topics slowly change over time and one that lets the

assumed prevalence of the topics change. Finally, we illustrate the application of topic

models to nontext data, summarizing some recent research results in image analysis.

INTRODUCTION

Hierarchical mixture modeling has emerged as a powerful methodology for finding patterns

and structure in large collections of data. A recent success story for hierarchical mixture

modeling is topic modeling where the data under study are large collections of documents

and mixture modeling algorithms find the underlying patterns of words that are embedded in

the collection (see Figure 1) [15], [35]. Finding these patterns, which are known as topics

allows for effective clustering, searching, sorting, exploring, predicting and summarizing a

large corpus of documents.

While developed as a way of analyzing documents, topic modeling algorithms— which are

fast algorithms for computing with hierarchical mixture models—have been successfully

applied in many domains. For example, topic modeling algorithms have been used to find

patterns in images, music [34], audio and speech [33], [49], genetic data [46], computer code

[4], and even architectural excavations [40]. In particular, applications to computer vision

are extensive [6], [10], [16], [19], [28], [37], [57], [59] and researchers have used topic

models in a variety of computer vision problems. Examples include sorting multiple images

into scene-level classes, annotating images with words, and segmenting and labeling objects

within images. Recently, researchers have extended such statistical topic models to analysis

of video [60], [61].

Furthermore, new applications of topic modeling have driven new statistical developments

in hierarchical mixture modeling. Topic models originally assumed that the data are

exchangeable, i.e., that the order of documents in a collection does not matter and that the

order of words in a document does not matter. This is too restrictive for many problems, and

relaxing this assumption is a central way of building better topic models; topic models have

now been applied and extended in spatial settings [3], [24], [53], time series settings [14],

[47], [62], and settings that depend on external covariates [39].
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Another notable statistical development in topic modeling is their extension to Bayesian

nonparametric methods. The original topic models were finite hierarchical mixtures, i.e.,

parametric mixture models. Recent advances in Bayesian nonparametric modeling,

specifically the HDP [54], has lead to “infinite” topic models. The number of topics need not

be specified in advance, and can grow as the collection grows.

In this article, we review recent progress on development of hierarchical mixture models,

with a specific focus on topic models. We initially focus on analyzing documents and

describe both finite topic models and Bayesian nonparametric topic models (of infinite

capacity). We then describe extensions to sequential document collections to show how

partial exchangeability may be incorporated into hierarchical mixture models. Finally, we

briefly discuss how topic models may be applied to other applications, and show results on

analyzing partially annotated images. Throughout, we emphasize the graphical model

constructions of the associated models. Graphical models provide a useful schematic of

topic modeling assumptions—they are the lever from which researchers have been able to

build topic modeling extensions and a myriad of applications.

LATENT DIRICHLET ALLOCATION

Latent Dirichlet allocation (LDA) is a hierarchical probabilistic model used to decompose a

collection of documents into its salient topics, where a “topic” for LDA is a probability

distribution over a vocabulary [15]. LDA and its relatives are called probabilistic topic

models.

LDA posits a fixed number of topics in a document collection and assumes that each

document reflects a combination of those topics. When a document collection is analyzed

under these assumptions, probabilistic inference algorithms reveal an embedded thematic

structure (see Figure 1). With this structure, LDA provides a way to quickly summarize,

explore, and search massive document collections.

A topic β is a distribution over a fixed vocabulary of V terms, and recall that the Dirichlet

distribution is a distribution over multinomial parameter vectors, i.e., vectors of positive

values that sum to one. The generative probabilistic assumptions of LDA assume that a

document collection is drawn as follows (Figure 2).

1. Draw K topics from a symmetric Dirichlet distribution, βk ~ DirV(η), k ∈ {1, …,

K}.

2. For each document d, draw topic proportions from a symmetric Dirichlet θd ~

DirK(α), d ∈ {1,…,D}.

3. For each word n in each document d,

• Draw a topic assignment from the topic proportions, zd,n | θd ~ Mult(θd).

• Draw the word from the corresponding topic, wd,n | zd,n, β1:K ~ Mult

(βzd,n).

The graphical model in Figure 2 reveals the nested multilevel structure of the LDA

assumptions. LDA is composed of a hierarchy of mixture models. Each document is
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modeled with a finite mixture model, where the mixture proportions (i.e., the topic

proportions) are drawn uniquely for each document but the mixture components (i.e., the

topics) are shared across the collection. In statistics, this is known as a grade of membership

or mixed membership model [25]. LDA builds on seminal work in psychology [23] and

machine learning [35]. It has close links to classical principal component analysis [18].

The generative process defines a joint distribution of the latent variables (topics, topic

proportions, and topic assignments) and observed variables (words). We analyze a document

collection by examining the posterior distribution of the latent variables given the

observations

(1)

Posterior modes of the topics β1:K identify corpus-wide patterns of words; posterior modes

of the topic proportions θd identify how the dth document expresses those patterns; posterior

modes of the topic assignments zd,n identify which topic the nth word of the dth document is

associated with.

Posterior inference can be thought of as “reversing” the generative process. Conditioned on

a corpus, the goal of posterior inference is to find the posterior distribution over alternative

topical structures that generated its documents. This posterior provides structure that is

unavailable in the words alone, and this is the structure that can be used to explore and

summarize a document collection. For example, Figure 1 illustrates the topics from a 20-

topic LDA posterior estimated from articles from Science. When fit to language, the

posterior distribution of LDA has been shown to match human cognition of themes and

associations [32], [52], and to be interpretable for document and corpus understanding [22,]

[44].

Exactly computing the posterior of (1) is intractable [15]. Approximating the posterior is the

central computational problem for LDA, and devising and improving posterior

approximation algorithms is an active area of topic modeling research. Most methods rely

either on variational inference [15] [56] or Markov chain sampling [32]. In variational

inference, we approximate the posterior by optimizing a distribution to be close to it. In

Markov chain sampling, we define a Markov chain whose stationary distribution is the LDA

posterior, run the chain for a long time, and collect samples from (what we hope is) the

stationary distribution.

These algorithms allow for large scale analysis of document collections, and speeding up

LDA inference is an active area of machine learning research. Progress in inference

algorithms has included processing on a graphics processing unit [66], parallel processing

across machines [43], and combinations of variational and sampling methods [63].

Moreover, several implementations of LDA inference are freely available as open-source

software [8], [20], [38]. (The model of Figure 1 was fit with [20].)
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HIERARCHICAL DIRICHLET PROCESSES

Though we can use LDA to successfully learn the topics from a document collection, LDA

analysis requires that the number of topics be fixed in advance (e.g., in Figure 1 the number

of topics was fixed at 20). This is a serious limitation—one of the tenets of hierarchical

modeling with latent variables is to let the data inform the hidden structure. Choosing the

number of topics in LDA is usually done by examining the fit to held-out documents [15], or

by selecting based on the marginal probability of the whole collection [32], [36].

Bayesian nonparametric methods—methods that place priors on the infinite-dimensional

space of probability distributions—provide an elegant solution to this problem. In particular,

the discrete HDP can be used in a topic model where the number of topics is “infinite” a

priori [54]. Given a collection of documents, the number of topics that it exhibits becomes

part of the posterior distribution of the latent structure.

Furthermore, the HDP allows for previously unseen documents to “ignite” previously

unseen topics. This is a particularly attractive property for analyzing growing and changing

collections. Even with an excellent approach to selecting the number of topics based on a

finite sample, it often does not make sense to assume that all future documents will only use

those topics. The HDP allows new topics to emerge naturally as a consequence of the

probability model.

Before describing the HDP topic model, we review the Dirichlet process (DP) [5], [29]. The

DP provides a distribution on distributions over an arbitrary space. It is denoted

(2)

In this expression, G is itself a distribution (it is a random distribution) over some space. Its

distribution has two parameters: the precision parameter alpha a positive scalar, and the base

distribution G0 is a known distribution over the same space as G. (We will describe the roles

of these parameters in detail below.) The DP can be used as a prior over the infinite

dimensional space of distributions. In these settings, it is thus referred to as a Bayesian

nonparametric method [41].

For developing a Bayesian nonparametric topic model, there are two important properties of

the DP. First, draws from the DP are discrete, with positive probability mass placed at

values (called “atoms”) generated independently from G0. If G0 is continuous or contains

infinitely many atoms, then each draw from the DP will assign nonzero probability to each

of infinitely many values. The allocation of probability across these atoms is controlled by

the precision parameter α, with small values of α implying that a few dominant atoms get

almost all of the probability. Higher values of α lead to discrete distributions that more

closely resemble the base distribution G0. See Figure 3 for an illustration of this property.

For example, suppose that G0 is a standard Gaussian distribution with mean zero and unit

variance. The random distribution G is a distribution over the real line, with positive mass at

a countably infinite set of points drawn from G0. If α is large then this distribution looks like
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a discrete version of a standard Gaussian; if α is small, then some individual points will have

much higher probability.

The second property of a draw from a DP is the so-called “clustering property.” If we draw

G from a DP and then draw variables repeatedly from G then our draws will exhibit a

partition structure, and we can partition them according to which draws share the same

atom. In the example above, this means that drawing Xn repeatedly from G will lead to a

collection of real numbers, some of which are exactly the same. Note that repeated draws

from the standard Gaussian will not have this property.

This perspective sheds light on the role of the base distribution G0 and scaling parameter α.

The unique values drawn (i.e., the atoms) are independent draws from G0 and if G0 is

continuous (as in the Gaussian example) then the number of unique values increases with α.

Though we focus on the random distribution representation here, the clustering effect links

DPs to models of random partitions, specifically the Chinese restaurant process [45] and the

Ewens sampling formula [27].

We now return to topic modeling. In LDA, the topic proportions are a distribution over the

K topics. To build a Bayesian nonparametric topic model, we replace the topic proportions

θd, drawn from a finite Dirichlet, with a distribution over topics Gd, drawn from a DP. The

atoms of Gd are topics, i.e., multinomial parameters over the vocabulary, and so the base

distribution G0 is a distribution over topics (this replaces the Gaussian base distribution in

the example above). To draw a document, we first draw a distribution Gd ~ DP(α, G0).

Then, for each word, we draw a topic βn from Gd and finally draw the word from βn. The

clustering property is critical—it guarantees that the words of the document will share a

smaller subset of topics.

However, this is not enough to fully specify a Bayesian nonparametric topic model. A

defining characteristic of LDA is that the topics themselves are shared across the corpus. If

the base distribution G0 is a continuous distribution over topics, e.g., a symmetric Dirichlet

distribution, then words within documents will share the same topics but words across

documents will not. In the HDP, the base distribution G0 is itself a draw from a DP, G0 ~

DP(γ, H). The atoms of the per-document distributions over topics Gd are thus shared across

documents [54].

Putting this together, the HDP topic model draws a collection of documents from the

following process.

1. Draw the base distribution over topics G0 ~ DP(γ,H), where H is a symmetric

Dirichlet on the word simplex.

2. For each document d, draw the per-document distribution over topics Gd ~ DP(α,

G0).

3. For each word n in each document d,

• Draw the topic for the word βd,n ~ Gd.

• Draw the word wd,n ~ Mult(βd,n).
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This is illustrated as a graphical model in Figure 4.

In theory, the posterior distribution for the HDP topic model provides per document

distributions over topics Gd and the per-corpus distribution over topics H. In practice,

however, the random distributions themselves are marginalized out and posterior inference

provides topic indices (as for LDA) and posterior distributions of the corresponding

distributions over words. The key difference is that in the HDP the number of topics is

determined by the data. Moreover, as we mentioned above, when performing prediction a

new document can “ignite” a new topic—it is simply considered an atom that had not yet

appeared.

As for LDA, exact posterior inference for the HDP is intractable and a number of methods

have been developed. The original approximate inference algorithm was based on Markov

chain Monte Carlo (MCMC) sampling [54], but faster variational approaches have been

recently proposed [55]. When compared to LDA, [54] showed that the HDP topic model

finds the “right” number of topics in collection, when using model selection based on

marginal likelihood.

MODELING SEQUENTIAL COLLECTIONS

While powerful, LDA assumes that documents are exchangeable. That is, their ordering is

irrelevant to determining the corpus-wide topics and the decomposition of each document

into those topics. In this section, we describe two topic models that account for sequential

document collections. In different ways, these methods model language that changes over

time.

DYNAMIC TOPIC MODELING

The dynamic topic model (DTM) accounts for topics changing over time [12]. It assumes

that the corpus is organized into epochs, each epoch is associated with its own set of topics,

and each topic in each epoch drifts randomly from the same topic in the previous epoch.

Given topics for a particular epoch, the generative process of the documents of that epoch is

the same as for LDA. Recall that a topic is a multinomial parameter for a distribution over

words. To build the DTM, we need to specify a model how each topic evolves from epoch to

epoch.

The building block for this sequential model of multinomial parameter vectors is the logistic

normal distribution. A logistic normal distribution is a distribution of multinomial

parameters that is an alternative to the more commonly used Dirichlet distribution. It was

first developed to allow for complex patterns of correlation between components of the

vector [2]. The idea is to draw a real-valued vector from a multivariate Gaussian, and then to

transform to a multinomial parameter by first exponentiating it and then renormalizing it to

sum to one.

For the DTM, the logistic normal is embedded in a state-space model [64]. The covariance

matrix for the topic simplex is diagonal, i.e., the components are independent. However, the

Blei et al. Page 6

IEEE Signal Process Mag. Author manuscript; available in PMC 2014 August 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mean of the distribution is the mean of the previous epoch’s real-valued random vector.

Thus, to obtain topic k at time t,

(3)

with βt,k,v representing the probability of word v ∈ {1,…,V}, topic k at time t. The variance

parameter σ2 controls the prior drift of the log probability of each word. Notice the

difference between the DTM and LDA. In LDA, each word is associated with a probability

under each topic. In the DTM, each word is associated with a sequence of probabilities

under each topic. These generative assumptions lead to a richer posterior distribution. See

Figure 5 for the graphical model representation of the full DTM model.

With an approximation of the posterior distribution (see [12] for a structured variational

approach), the richer latent space allows for new ways to investigate long-running sequential

corpora. First, we can examine how topics changed over time, by looking at the top words

from the topic at each epoch. Second, we can analyze how a particular word’s probability

changed over time within a topic. Finally, we can examine articles associated with a topic at

different times. Note that this associates articles with each other while taking into account

how word use has changed. Traditional document clustering methods do not account for

such shifts.

As an example, we analyzed the journal Science (1880–2002) using the DTM. The articles

were scanned by the service JSTOR, and divided by year. Investigations of two topics are

illustrated in Figure 6.

The DTM provides a window into the collection that LDA or the HDP do not provide. The

DTM has been additionally extended to model continuous time [58] and as a component in a

model of document influence, i.e., a language-based approach to finding high impact

scholarly documents [31]. Note that developing the HDP analog of the DTM is an open

issue in topic modeling. Ideally, a kind of “birth” and “death” of topics over time should be

modeled, and perhaps a splitting and merging of topics as well. The beginnings of this kind

of model were developed in [48].

DYNAMIC HIERARCHICAL DIRICHLET PROCESSES

The DTM models topics that change over time. In this section, we describe a different kind

of time-based topic model, one that models the topic proportions changing over time. This

model—the dynamic HDP (dHDP) [49]—is based on extensions of the HDP [54] discussed

in the section “Hierarchical Dirichlet Processes.”

Rather than positing a document-dependent distribution over topics Gd, as discussed above,

the dHDP posits a distribution over topics Gt, which corresponds to all documents at time t.

The goal is to impose a generally smooth evolution of Gt as time evolves, with the potential

for sharp changes in time, as needed to describe the data. The Gt is are assumed drawn as

follows:
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(4)

(5)

with w̃1 = 1.

The graphical model is depicted in Figure 7. The parameters (at, bt) are typically made time

independent for simplicity, and set such that with high probability w̃t will be small, but

infrequently w ̃t may be near one, indicating a sharp change in the probability of topics at a

given time (e.g., because a new subject/ topic becomes important suddenly at a given time).

In the dHDP, since G0 is discrete, each of the Gt is composed of the same discrete set of

topics and the probability of each topic being used in a document evolves with time. With

this model we again infer the number of topics nonparametrically from the observed data,

but the temporal exchangeability of the data (associated with HDP) has been removed.

Using appropriate approximations, the dHDP model has been implemented using variational

Bayesian inference [11] and applied to the United States presidential State of the Union

addresses from 1790 to 2008, with example results depicted in Figure 8 [47]. The number of

topics, the time periods when they are important, and the topic-dependent probability of

words are inferred from the data, while human (author) defined labels are associated

(imperfectly) to each of the topics.

OTHER APPLICATIONS OF TOPIC MODELS

The examples discussed above have focused on analysis of documents. However, topic

models have been extended to many other kinds of data. For example they are widely used

in computer vision problems, i.e., for the analysis of images, video, and simultaneous

analysis of images and words (e.g., annotations) [3], [6], [10], [19], [24], [28], [37], [51],

[53], [57], [59]–[61], [65]. Additionally, researchers have applied topic models to sound

features, genetic markers [46], survey responses [26], computer code [4], and social network

data [1], [21], [42]. Topic modeling began as a field about finding structure in texts, but has

become an area of research that exploits grouped data in many settings.

For these applications, the basic form of the graphical model is typically very similar to that

associated with words/documents, with differences manifested in the form of the “words.”

For example, in image or video processing, if one quantizes the image features, each

member of the (discrete and finite) code-book now takes the form of the words [3], [24],

[28], [51], [53]. In the time-dependent analysis of documents, the exchangeability

assumption in the DP was removed, allowing one to exploit the temporal information

(documents that are temporally proximate are likely to be composed of similar topics). In the

image processing application, the image words (codes) typically correspond to local regions

in the image, and it is again desirable to account for the known inter-relationships between

image words, now defined by their spatial location within the image. Specifically, the model

parameters associated with proximate regions of an image are likely to be more correlated.
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There have been several recent papers that have addressed this issue [3], [24], [53],

explicitly accounting for the spatial location of features within an image.

As an example of recent research on moving beyond the exchangeability (“bag of image

words”) assumption, consider the logistic stick-breaking process (LSBP) [24]. The LSBP

and the related kernel stick-breaking process (KSBP) [3], uses a spatial kernel to define

proximity within an image. The radial basis function is a widely employed kernel for such

purposes. The probability of whether image features are drawn from the same topic is

defined by a probability distribution constituted in terms of spatial kernel functions.

Specifically, to map the kernel output to a probability, the kernel is utilized within the

logistic link function. Via this construction, image features that are spatially proximate are

more probable to be associated with the same topic. It is also possible to associate words

with the topics [24], and therefore the topics are manifested in two forms: by spatially

dependent image features and via words, the latter constituted in the form of image

annotations. Such a model allows one to label localized regions (objects) within an image,

based upon a set of annotated images.

The use of a kernel construction to impose spatial structure within a topic model is intuitive

and computationally efficient. Alternative means of imposing spatial structure have

employed nonparametric constructions, such as spatially dependent Gaussian processes and

the Pitman-Yor process [53]. Researchers have also recently developed a distance dependent

Chinese restaurant process [9], which removes the exchange-ability assumption inherent to

the DP.

We summarize example results from [24]. Figure 9 shows example results that demonstrate

the ability to nonparametrically infer the number of topics in a database of images (here the

database was designed with ten different classes of images, with this properly inferred by the

model), and to associate words with each topic. Once such a model is learned, it may be

used to annotate previously nonannotated images, assuming the new images cover the same

range of topics as those used for learning. In addition to providing a means of annotating

images, such topic models may also be used to label segmented objects within an image.

Figure 10 shows example results [24] of jointly segmenting and labeling objects in multiple

images, based upon a set of annotated images (the objects are not explicitly labeled in the

training set, simply annotated, with the relationship between objects/ segments and words

inferred by the model). Figure 10 also shows the evolution in the performance of image-

processing-related topic models. Corr-LDA [10] is an early model that seeks to label entities

within images, but it does not explicitly account for spatial locations of the image words,

and the performance of this model is relatively poor. The DP-based and LSBP-based

clustering of spatially dependent image words yields significant improvements in the ability

to link objects and words in images, within a Bayesian topic-modeling framework.

DISCUSSION

We have described recent developments in hierarchical mixture models, specifically in topic

modeling of large document collections and image collections. We have discussed how the

exchangeability assumption can be relaxed in both spatial and sequential settings. We have
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described flexible Bayesian nonparametric models based on the HDP, to perform model

selection of the number of topics as part of posterior inference.

We have focused on graphical model design and on applications to problems of interest to

the signal-processing community. Note that we have not addressed computational tools for

efficient calculation of the posterior distribution. Modeling and computation are intertwined

—many modeling decisions made in developing new topic models keep the ease of

approximate posterior inference in mind. For example, when consecutive elements in the

graphical model are conjugate-exponential family pairs, then the Gibbs sampling algorithm

and variational coordinate ascent algorithm can be derived in closed form [7], [30]. That

said, relaxing this restriction allows for more expressive models (the DTM is an example)

though also requires more sophisticated approximate methods, e.g., by using the delta

method in variational inference [17] or Metropolis-Hastings updates in MCMC [50].
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FIG1.

Top words from all 20 topics of a 20-topic LDA model. This posterior was approximated

from 17,000 articles from Science (all the articles published in the 1990s). The size of each

term is proportional to its probability in the topic. This LDA posterior was approximated

with Gibbs sampling using open source software [20].
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FIG2.

The graphical model representation of LDA [15].
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FIG3.

Three draws from a DP with standard normal base distribution. Draws from the DP are

discrete; as α increases, the resulting random distribution looks more like the base

distribution.
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FIG4.

The graphical model representation of the HDP topic model [54].
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FIG5.

The graphical model representation of the DTM [12].
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FIG6.

Two example topics from a DTM fit to the Science archive (1880–2002). Note that the

model posited an epoch at each year of publication. We have illustrated the top words at

each decade. This figure is reprinted with permission from [13].
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FIG7.

A graphical model of the dHDP model.
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FIG8.

Topics inferred via dHDP analysis of the presidential State of the Union addresses in the

United States, from 1790–2008. Each plot depicts topic probability as a function of year, and

the most probable words in each topic are shown at right. Notional topics are (a) world

peace, (b) health care, (c) U.S. Navy, (d) income taxes, and (e) American Civil War. This

figure is reprinted with permission from [47].
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FIG9.

Example inferred latent properties associated with Microsoft data set. (a) Posterior

distribution on the mixtureweights, quantifying the probability of scene topics (ten topics are

inferred). Parts (b) and (c) show the example probability of objects for a given class of

images, or topic (probability of object/ words); here we only give the top five words for each

topic. This figure is reprinted with permission from [24].
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FIG10.

Example segmentation and labeling results. (a) Original images; (b) Corr-LDA [10]; (c) with

segmentation of image words performed with DP; (d) segmentation of the visual words

accounts for spatial location in the image LSBP [24]). Columns 1–3 from Microsoft data set;

Columns 4–6 from UIUC-Sport data set. All of these examples were not annotated

originally when performing learning. This figure is reprinted with permission from [24].
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