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Abstract

In probabilistic approaches to classification
and information extraction, one typically
builds a statistical model of words under the
assumption that future data will exhibit the
same regularities as the training data. In
many data sets, however, there are scope-
limited features whose predictive power is
only applicable to a certain subset of the
data. For example, in information extrac-
tion from web pages, word formatting may
be indicative of extraction category in differ-
ent ways on different web pages. The dif-
ficulty with using such features is capturing
and exploiting the new regularities encoun-
tered in previously unseen data. In this pa-
per, we propose a hierarchical probabilistic
model that uses both local/scope-limited fea-
tures, such as word formatting, and global
features, such as word content. The local
regularities are modeled as an unobserved
random parameter which is drawn once for
each local data set. This random parame-
ter is estimated during the inference process
and then used to perform classification with
both the local and global features— a proce-
dure which is akin to automatically retuning
the classifier to the local regularities on each
newly encountered web page. Exact inference
is intractable and we present approximations
via point estimates and variational methods.
Empirical results on large collections of web
data demonstrate that this method signifi-
cantly improves performance from traditional
models of global features alone.

1 Introduction

The web provides novel challenges to information ex-
traction because structural regularities — its linkage,
formatting, layout, and directories — can be powerful
features that are necessarily ignored in traditional text
learning. For example, to extract all the book titles on
Amazon.com, one can rely on each title appearing in
the same location and font on each book’s page. Us-
ing this information in a machine learning context is
difficult, however, because each web site has different
structural regularities. Models trained on the struc-
tural information of one set of sites cannot be be used
for extraction or classification from another. In re-
sponse, researchers have created tools for hand-tuning
site-specific extractors (Cohen and Jensen, 2001).

The central problem with modeling site-specific regu-
larities without hand-intervention is that most statis-
tical models assume data to be independent and iden-
tically distributed (iid). As in the above example, cer-
tain disjoint subsets of the data may share identifiable
and useful regularities which invalidate the iid assump-
tion. Other examples of subsets that may have local
regularities include patients from a particular hospital,
voice sounds from a particular speaker, and vibration
data from a particular airplane.

This paper presents scoped learning, a probabilistic
framework that combines traditional iid features, such
as word content, with scope limited features, such as
formatting. We introduce a graphical model within
this framework that exhibits two levels of scope, lo-
cal and global. The global parameters are estimated
from all the training data and the scope limited pa-
rameters, those shared for certain disjoint subsets of
data, are modeled as unobserved random variables. It
is important to note that this concept is recursively
applicable to multiple levels of scope.

The intuitive procedure for using local features is to
use information from the global (iid) features to infer
the rules that govern the local information for a par-
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Figure 1: The graphical model representation of the
scoped-learning model in a text domain. The square
plates represent repetitions of documents (D) and the
words in them (N). The (global) word content wn
is generated independently of any parameters local to
each document. The local formatting feature fn is gen-
erated dependent on the document-specific parameters
φ. These parameters, in turn, are generated once per
document.

ticular subset of data. Continuing the example above,
given that we know a certain number of book titles
(global information), we can identify that they are all
at the same location and font on the pages of Ama-
zon.com. We can then reasonably infer that a pre-
viously unknown group of words, in that same loca-
tion and font, is probably a book title. In the scoped
learning framework, inference on a previously unseen
subset of data naturally leads to exactly this process:
first, estimate the local parameters from the observed
global and local features; then, estimate the variable
to be predicted (e.g., category) based on both sets of
features and the inferred local parameters.

We describe generative and discriminative approaches
to training and using the model for classification and
extraction tasks. When data exhibits scope, we find
significant gains in performance over traditional mod-
els which only use iid features.

2 A generative model with scope

In this section, we present a generative model of data
which exhibits two kinds of scope: global features are
governed by parameters which are shared by all data;
local features are governed by parameters which are
shared by particular subsets of the data.

A subset of data for which the local features exhibit the
same regularity is called a locale. We assume that all
future data will naturally be organized into identifiable
locales. Note that the local regularities in the future
data may be different from the local regularities in the
data used for parameter estimation.

For simplicity of explanation, we will describe our
model with reference to information extraction (IE) on
web pages since the data naturally exhibits the scoped
regularities which our model can exploit.

We cast IE as the classification problem of labeling
certain individual words on a web page with different
extraction categories such as “Job Title” or “Book Re-
view”. The data, comprising of word content and its
corresponding formatting, can be easily divided into
locales according to page boundaries. The assumption
stated above holds since future data will naturally be
organized into pages.

The individual terms on the page, without reference
to their formatting, are the global features of the IE
web data. This feature is a good predictor of extrac-
tion category in the same way for all documents. For
example, the word “engineer” is probably part of a job
title whether it appears on a page in www.amazon.com
or www.google.com.

The local features are the formatting of the individual
terms. These features, such as font size or color, can be
a good predictor of category on a particular web page.
The regularity which they capture, however, does not
necessarily hold on other pages. For example, all the
job titles on www.amazon.com may be green while all
the job titles on www.google.com may be red.

2.1 Generative process and parameterization

To build a generative model, the data should be in-
dependent and identically distributed (iid). In the IE
data, however, the word content (global features) and
formatting (local features) are not iid since their joint
distribution depends on the particular document to
which each pair belongs. We can, however, model doc-
uments as iid by introducing an unobserved random
parameter, drawn once for each document, that gov-
erns the local features. Positing this latent structure
allows us to properly model the scope-limited features.

Denote the number of extraction categories by K, the
size of the vocabulary by V , and number of possible
values of the formatting feature (i.e., the formatting
vocabulary) by F . Let an N word document con-
tain corresponding word content w = {w1, . . . , wN},
formatting f = {f1, . . . , fN}, and class labels c =
{c1, . . . , cN}. We assume that a document is gener-
ated by the following process:

1. For each of the K extraction categories:

(a) Generate the formatting feature parameters
φi from p(φi).

2. For each of the N words in the document:



(a) Generate the nth class label cn from p(cn).

(b) Generate the nth word from p(wn|cn).

(c) Generate the nth formatting feature from
p(fn|cn, φ).

This models the following joint distribution over local
parameters, class labels, words, and formatting fea-
tures:

p(φ, c,w, f) = p(φ)
N∏

n=1

p(cn)p(wn|cn)p(fn|cn, φ),

which is exhibited as a graphical model in Figure 1.
The figure further illustrates the model parameters,
α, β, and η, which are suppressed in the equations.
All probabilities are assumed to be conditioned on a
point estimate of these parameters.

For each document and extraction category, φi is a
random parameter to a multinomial over values of the
formatting feature, i.e., p(fn|cn, φ) = φcnfn

. Thus,
each random parameter is a point on the F -simplex
which we can parameterize by a Dirichlet distribution
(recall that the Dirichlet is the exponential family dis-
tribution on the simplex). Note that we generate K
such parameters for each document.

Observe that there are no parameters which explicitly
reference how the formatting features are generated for
a particular document — only parameters on the ran-
dom document-specific parameters which govern those
features. This is the key element to the model since
the formatting features will be generated by different
(randomly-generated) parameters for different docu-
ments.

Finally, we assume the local features and global fea-
tures are independent of each other given the class la-
bel. This is often a reasonable assumption. In IE, for
example, the formatting of a word depends more on
its role in the document (i.e., the extraction category)
than what that word is in particular.

2.2 Parameter estimation

We fit the model by maximum likelihood estimation
from a set of documents with observed class labels.
Given the label, the global (word) features are inde-
pendent of the local (formatting) features. From this
independence, the parameters p(w|c) and p(c) can be
estimated without using the formatting or page bound-
aries. Thus, we can train the class-conditional word
distributions and class prior as a traditional genera-
tive probabilistic classifier such as naive Bayes.

In estimating the Dirichlet parameters on p(φi), we
can quantify general trends in the local contexts (e.g.,
“boldness is usually indicative of class label” or “font

size 12 is usually not indicative of class label”). We fix
the Dirichlet parameters, however, to give a uniform
distribution on the random local distributions. In do-
ing so, we do not need to estimate any parameters with
the formatting features of the training data. The for-
matting of future data, by the definition of the model,
will be governed by different instances of φ than those
that generated the training data.

2.3 Inference

Given an unlabeled web page, we would like to classify
each word-formatting pair using the scoped-learning
model described above. Inference on the class labels
naturally leads to an intuitive method that uses both
the word content and how it is formatted relative to
the formatting of the rest of the document. First, use
the uncertain labels given by the global information
to infer the document-specific local parameters; then,
refine the original (globally-estimated) labels using the
local features.

Observe that, in the scoped-learning model, we need
to simultaneously infer all the extraction labels of
a document since they are dependent on each other
through the unobserved local parameter. In particu-
lar, we compute the posterior distribution on the set
of information labels c for some document (w,f). This
can be computed, in principle, by marginalizing out
the document-specific parameter φ and invoking Bayes
rule:

p(c|w, f) =
∫ ∏N

n=1 p(wn|cn)p(fn|cn, φ)p(cn)p(φ)dφ∫ ∏N
n=1

∑
c p(wn|c)p(fn|c, φ)p(c)p(φ)dφ

.
(1)

Exact computation of the integral is computationally
infeasible because of the integral over the simplex of a
product of sums in the denominator. We present two
approaches to approximate inference, both of which
operate on the model induced by the single document
in question. The first approach is maximum likelihood
estimation of φ on that model. The second, more
Bayesian approach, uses variational methods to ap-
proximate the integral in Equation 1.

2.3.1 MAP estimates of the local parameter

By approximating φ with a point estimate φ̂, the pos-
terior on c is tractable:

p(c|w, f, φ̂) =
N∏

n=1

p(wn|cn)p(fn|cn, φ̂)∑
c p(wn|c)p(fn|c, φ̂)

. (2)

Furthermore, the labels for each word-formatting pair
are conditionally independent given φ̂ and we can label



each pair with:

ĉn = argmax
c

p(wn|c)p(fn|c, φ̂)p(c).

A natural point estimate for the local parameter is
the posterior mode φ̂ = argmaxφ p(φ|f,w). On the
document in question, this corresponds to holding the
global parameters fixed and finding a maximum likeli-
hood estimate, using the observed formatting features,
of the local parameters.

Since c is a set of unobserved random variables, we can
use the Expectation-Maximization (EM) algorithm to
maximize the expected log likelihood of the formatting
features of the document:

Ld(φ) =

N∑

n=1

K∑

c=1

p(c|wn, fn;φ) log p(fn|c;φ). (3)

The E-Step computes the posterior distribution over
extraction categories:

p(t+1)(c|wn, fn;φ) ∝ p(t)(fn|c;φ)p(wn|c)p(c).

The M-Step finds the new estimate of φ̂ = p(f |c):

p(t+1)(f |c;φ) ∝
∑

{fn:fn=f}

p(t)(c|wn, fn),

where the notation under the sum indicates the set of
formatting features fn which are equal to the value f .
Alternating between these two steps guarantees that
we take positive steps in Equation 3. Once converged,
we use the resulting φ̂ to find the best value of cn for
each word-formatting pair.

2.3.2 Variational approximation

An alternative approach is to use variational meth-
ods (Jordan et al., 1999) to approximate the true pos-
terior distribution on the local parameters. A vari-
ational distribution can be used to provide a better
approximation to the integrals in Equation 1 than the
point estimate of the previous section.

For each new document, define a factorized variational
distribution on the unobserved random variables c and
φ:

q(c, φ) =

K∏

k=1

q(φk; γk)

N∏

n=1

q(cn;µn),

where γk are a set of variational Dirichlet parameters
for each extraction category and µn are a set of varia-
tional multinomial parameters over categories for each
word-formatting pair. We optimize these parameters

to find the distribution that is as close as possible in
KL divergence to the true posterior:

(γ̂, µ̂) = arg min
(γ,µ)

KL(q(c, φ; γ, µ)‖p(c, φ|w, f)).

Let γij be the Dirichlet parameter for the jth value of
f and the ith information category. The variational
Dirichlet parameters are maximized by:

γij = 1 +
∑

{fn:fn=j}

q(cn = i;µn).

This update is similar to computing a posterior Dirich-
let distribution with a uniform prior and expected
counts under the variational distribution.

The variational multinomial parameters are updated
by:

q(cn;µn) ∝ p(cn)p(wn|cn) exp(E[log p(fn;φ); γc]).

This equation is similar to the E-step in Section 2.3.1
with p(fn|φ̂, cn) replaced by the exponential of the ex-
pected value of its log under the posterior (variational)
Dirichlet. That expectation is easily computable:

E[log p(fn;φ); γc] = Ψ(γcfn
)−Ψ(

∑
f γcf ),

where Ψ is the digamma function. Iterating between
the updates of γ and µ will converge on a set of varia-
tional parameters which are close to the true posterior.
Notice that the variational approximation maintains
the same computational complexity as EM but may
mitigate the problem of overfitting inside a locale.

We can view this attempt to approximate the inte-
gral over φ from a Bayesian point of view. A point
estimate of the local parameters, such as the MAP es-
timate of section 2.3.1, is justified in large data limits
where p(φ|w, f) is peaked at a particular value of φ.
This large data assumption will generally be invalid
because we specifically model small subsets of word-
formatting pairs and thus, we can expect to gain from
an attempt at proper integration. With this perspec-
tive, the update equations for the variational distribu-
tion follow the variational Bayes recipe given in Attias
(2000).

3 A discriminative model with scope

In Section 2, we assume a generative model of the local
(formatting) features. Often, such models place strong
and unwarranted independence assumptions on the lo-
cal features and it is desirable to learn a local discrim-
inative model that captures p(c|f). In Figure 1, this
corresponds to reversing the arc from local features f
to the category c and changing the direction of the
arrow on the random parameter φ to point to c.



As before, exact inference is intractable. We can find a
point estimate for the optimal conditional parameters
by maximizing the conditional log likelihood p(w|f;φ):

log p(w|f;φ) =

N∑

n=1

log
∑

cn

p(cn|fn;φ)p(wn|cn).

In the equation above, we implicitly assume a gen-
erative global classifier. To recover a completely dis-
criminative solution, we use Bayes’ rule to rewrite the
conditional probability of the global features:

p(wn|cn) = p(cn|wn)p(wn;φ)/p(cn;φ).

This exposes a dependence of the likelihood on the
marginal probability of the global features which, to be
completely discriminative, we wish to avoid modeling.
We can correct this by enforcing the constraint that
p(c) is constant with respect to φ. Thus, p(w) also is
independent of φ and factorizes out of the likelihood.
We then optimize the local parameters with respect to
the following complete data likelihood:

Lcond(φ) =
N∑

n=1

∑

cn

p(cn|wn, fn) log
p(cn|fn;φ)p(cn|wn)

p(cn)
.

The E-step, again, computes the posterior distribu-
tion:

p(t+1)(cn|wn, fn) ∝
p(t)(cn|fn)p(cn|wn)

p(cn)
.

The M-step corresponds to maximizing the weighted
log likelihood:

J (t+1) =
N∑

n=1

∑

cn

p(t)(cn|wn, fn) log p(cn|fn;φ),

which is trivial to implement for most discriminative
probabilistic classifiers (e.g., maximum entropy).

The conditional likelihood objective function p(w|f)
has interesting information-theoretic content. The cri-
teria is equivalent to maximizing an approximation to
the mutual information:

I(w, f;φ) ≈
∑

p̂(w, f) log
p(w, f ;φ)

p(w)p(f)
,

where p̂(w, f) is the empirical distribution of the fea-
tures. We can thus consider the class variables and
the local parameters to be a “channel” where we try
to recover as much information as possible about the
global features from the local features.

4 Example and empirical results

4.1 Data

We test our scoped-learning model on two real-world
data sets obtained from the web. The first is 1000
HTML documents that are automatically divided into
sets of words with similar layout characteristics. Each
group of words, called a text node, is hand-labeled as
containing or not containing a job title. We split the
data into two equal parts, a testing set and training
set, keeping together the text nodes of a single docu-
ment and documents of a single site. Given an unla-
beled document from the testing set, we use a trained
model to try to correctly label the text nodes. In this
data, the word content are the global features and the
word formatting are the local features (formatting fea-
tures are easy to obtain in web data from the tags in
the HTML source). A locale is a page since the job
titles on each page tend to share formatting charac-
teristics and all the data is naturally organized into
pages.

Our second data set consists of 42,548 web pages from
330 web sites where each page is hand-labeled as be-
ing a press release or not being a press release. Given
a new site, we use a trained model to try to identify
the press-release pages within that site. The global
features, again, are the words of the documents. The
local features come from the URL because we expect
that, within a particular web site, the URL structure
is consistent with the function of the document to
which it refers. For example, all press release pages
of a particular company may be in a subdirectory
company/news, or may be in files named similarly to
pressrel20010402.html. The particular local fea-
tures which we used were all the 4-grams of charac-
ters that appear in the URL. A locale in this dataset
is a web site. Again, all the data is naturally orga-
nized into sites and we expect that press releases on
each site will share the same URL regularities. As in
the job title data set, we split the data equally into
training and testing sets.

We note that the scoped-learning model which we use
for both these data sets is slightly augmented from
the one depicted in Figure 1. In particular, each class
label is associated with multiple local and global fea-
tures. Thus we have repetitions of the w and f nodes
inside the repetition over class labels. The training
and inference procedures, however, are almost exactly
the same.

4.2 An example page

We describe an example web page from the job ti-
tle corpus to aid in understanding the scoped-learning



Figure 2: A sample web page from the job title dataset. The global classifier (depicted by the bold rectangles)
correctly labeled 3 out of 8 jobs. Inference with our scoped-learning model (depicted by the thin and bold
rectangles) correctly labeled 7 out of 8 jobs.

model presented here. Figure 2 shows a web page from
the test set. Clearly, the job titles on this page have a
consistent formatting.

A simple naive Bayes classifier mislabels 5 of the 8
jobs on this page due to the lack of training data. In
particular, it misses “Family Services Director”, “Mas-
sage Therapist”, “Starbucks Server”, “Teachers”, and
“Lifeguard”. For all these job titles, with the exception
of “Starbucks Server”, the classifier is relatively unsure
of the label and only leans slightly away from classi-
fying them correctly. Furthermore, the global classi-
fier is very sure of the jobs which it correctly labels:
“Teacher”, “Art Coordinator”, and “Customer Service
Rep”.

We applied the scoped-learning model to this docu-
ment and learned, from the correctly labeled jobs, that
the probability of boldness, the Arial font, and orange
is very high when conditioned on the job title class la-
bel. Posterior inference on the class labels then yields
the correct labeling for all but “Starbucks Server”, giv-
ing a significant increase in classification accuracy. In
the next section, we show that such improvement is
typical on this data and these models can dramatically
improve overall classification performance.

4.3 Quantitative results

Since both data sets correspond to binary classifica-
tion problems, we quantify performance with precision
and recall. Changing the threshold of probability with
which to classify an example as being the positive class
trades off classifying more negative examples as posi-
tive and finding more true positive examples (i.e., low
precision, high recall) and missing more true positives
but reducing the number of false positives (i.e., high
precision, low recall).

The graph in Figure 3 (left) illustrates the performance
of the naive Bayes classifier and the two generative
variants of inference described in Section 2 on the job
title data. The first variant is the MAP estimate of the
local parameters learned via EM; it consistently domi-
nates the performance of the global classifier. The sec-
ond variant is the variational inference algorithm. This
algorithm also dominates the global classifier and gen-
erally dominates the MAP estimate as well. At high
levels of recall, which is an important part of the graph
from a practical perspective, both algorithms that ex-
ploit the local features show significant improvement
over the global classifier.
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Figure 3: Scoped learning dominates the global classifier alone. (Left) A precision-recall curve that summarizes
the the experimental results on the Job-Title information extraction task. (Right) A precision-recall curve
that summarizes the experimental results on the Press-Release classification task.

The graph in Figure 3 (right) illustrates the perfor-
mance of some of our algorithms on the press release
data. In this case, the global classifier and scoped-
learning discriminative classifiers are both maximum
entropy classifiers with a Gaussian prior on the param-
eters. On this data, it is relatively easy to obtain high
precision at low and moderate recall. The more inter-
esting task, however, is to maintain such precision at
higher recall. The scoped-learning models again out-
perform the global classifier at these levels of recall;
they reduce error by more than one third at 90% re-
call and by more than half at 80% recall. Note that
the local features are highly dependent and the dis-
criminative approach outperforms the generative MAP
estimate.

5 Related work

The central focus of this work is to emphasize the util-
ity of features which exhibit scope-limited regularity
and derive methods of learning this regularity in pre-
viously unseen data.

Blum and Mitchell’s PAC-style co-training (1998) is
one thread of related work. In this framework, two in-
dependent views of the data, each sufficient to predict
the class label without error, can influence each other
in making a final prediction. Although co-training
does not exploit scope-limited features, its conditional
independence assumption is similar to the one made
here.

Taskar et al.’s work in probabilistic classification of
relational data (2001) extends the notion of multi-
ple views of a data set to multiple kinds of relation-

ships and connections between the components of the
data. The authors use probabilistic relational mod-
els (PRM’s) to represent an entire data set as an in-
terconnected graphical model. Inference on the un-
known class variables implicitly exploits the regulari-
ties learned about different kinds of features which are
present in the data.

In a sense, the model presented here can be cast as
a PRM where each locale is represented as a separate
group of nodes with a separate local parameter. This
representation, and the maximum likelihood estimate
of its parameters, exactly supports the MAP approxi-
mation in Section 2.3.1. By treating the local param-
eter as a random variable, however, we can explicitly
treat each locale as iid and integrate out φ. We showed
in Section 4.3 that this leads to a significant increase
in performance over the MAP estimate.

Our work is also related to learning supervised tasks
using a combination of labeled and unlabeled data —
particularly transduction, in which the unlabeled set
is the test set (Vapnik, 1995). As in the transduc-
tion setting, we have no truly labeled data for a par-
ticular locale and need to learn the local parameters
with uncertain labels obtained from an existing clas-
sifier. Previous work in this area, however, does not
model locales, represent a difference between local and
global features, or have the opportunity to use locales
at training time to learn hyperparameters over local
features.

Finally, Slattery and Mitchell build a system that au-
tomatically adjusts a trained classifier to the regu-
larities discovered in the data which it is classifying
(2000). This is similar to the scoped-learning model,



but their method has no explicit notion of locale and
is not designed for any features other than web page
links. Furthermore, since it is not a probabilistic
model, their method does not afford such benefits as
integrating out parameter uncertainty.

6 Conclusion

We have presented a probabilistic model and train-
ing/inference procedures which can exploit both local
and global features in various prediction tasks. On two
large, real-world problems the model performs signifi-
cantly better than the traditional global classifier. In
comparing approximation methods, we find that the
MAP estimate tends to overfit while integration via
variational methods alleviates this issue. Furthermore,
the discriminative approach can outperform the gen-
erative methods particularly when the local features
are not independent.

Though we introduce the model with only two levels of
feature scope, it is important to understand that the
concept is recursively applicable to arbitrarily nested
levels. This is necessary to capture the notion that
some features may be meaningful, for example, on all
English-language web sites, others within a corporate
domain, and others within a single web page. Future
work should leverage the more fine-grained distinction
in feature scope which this framework admits.

Furthermore, we have developed and tested our mod-
els using simple mixtures as the underlying local and
global models. It is possible to incorporate more so-
phisticated models of local and global features as well
as structural relationships between class labels. For
example, the models presented here treat the IE task
as one of independent classification; a more natural
model would be a finite-state sequence problem. Us-
ing scoped models in this way is straightforward by
introducing a chain-structure to the class labels. With
this change, the inference algorithms become a vari-
ant of standard inference routines on hidden Markov
models.

An additional level of complexity can be gained by
blurring the difference between local and global fea-
tures. While we assume that the local and global fea-
tures are disjoint, one can imagine models in which the
same features appear in both the global and local set-
tings and inference must determine which model has
generated a particular occurrence of a feature. This
would be useful, for example, in situations where word
usage exhibits local regularities.

Finally, we have presented three approximate infer-
ence algorithms that are simple and efficient. Other
methods, such as sampling or Expectation Propaga-

tion (Minka, 2001), could also be used to estimate the
posterior distribution on the local parameters; these
approximations may lead to improved performance.
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