
Treeffuser: Probabilistic Predictions via Conditional
Diffusions with Gradient-Boosted Trees

Nicolas Beltran-Velez∗1 Alessandro Antonio Grande∗ 2,3 Achille Nazaret∗ 1,3

Alp Kucukelbir1,4 David Blei1,5

1Department of Computer Science, Columbia University, New York, USA
2Halvorsen Center for Computational Oncology, Memorial Sloan Kettering

Cancer Center, New York, USA
3Irving Institute for Cancer Dynamics, Columbia University, New York, USA

4Fero Labs, New York, USA
5Department of Statistics, Columbia University, New York, USA

Abstract

Probabilistic prediction aims to compute predictive distributions rather than sin-
gle point predictions. These distributions enable practitioners to quantify uncer-
tainty, compute risk, and detect outliers. However, most probabilistic methods
assume parametric responses, such as Gaussian or Poisson distributions. When
these assumptions fail, such models lead to bad predictions and poorly calibrated
uncertainty. In this paper, we propose Treeffuser, an easy-to-use method for
probabilistic prediction on tabular data. The idea is to learn a conditional diffu-
sion model where the score function is estimated using gradient-boosted trees.
The conditional diffusion model makes Treeffuser flexible and non-parametric,
while the gradient-boosted trees make it robust and easy to train on CPUs. Treef-
fuser learns well-calibrated predictive distributions and can handle a wide range
of regression tasks—including those with multivariate, multimodal, and skewed
responses. We study Treeffuser on synthetic and real data and show that it out-
performs existing methods, providing better calibrated probabilistic predictions.
We further demonstrate its versatility with an application to inventory allocation
under uncertainty using sales data from Walmart. We implement Treeffuser in
https://github.com/blei-lab/treeffuser.

1 Introduction

In this paper, we develop a new method for probabilistic prediction from tabular data. This problem
is important to many fields, such as power generation [1], finance [2], and healthcare [3]. It drives
decision processes such as supply chain planning [4], risk assessment [5, 6], and policy-making [7].

Example: Manufacturing plants measure information as they operate. This information—properties of
raw materials, operational flows, temperatures, and level measurements—collectively determine the
output of the plant [8]. From this data, how can manufacturers adapt operations to reduce emissions
while maximizing profits? The answer requires both good predictions and estimates of uncertainty,
so as to trade off the risk of failure with the reward of lower emissions and higher profit. More
broadly, such industrial workflow problems often rely on predictions from vast amounts of tabular
data—observations of variables arranged in a table [9, 10].

∗Equal contribution, authors listed in alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/blei-lab/treeffuser

x = 0.2

x = 0.5

−1.0 −0.5 0.0 0.5 1.0 1.5

y

x = 0.8

x = 0.2

x = 0.5

0 2 4 6 8

y

x = 0.8

y1

y 2

x = 0.2

x = 0.5

x = 0.8

Figure 1: Samples y | x from Treeffuser vs. true densities, for multiple values of x under three
different scenarios. Treeffuser captures arbitrarily complex conditional distributions that vary with x.

Our method builds on two ideas: diffusions [11] and gradient-boosted trees [12]. Diffusions accurately
estimate conditional distributions, but existing methods are not designed for tabular data. Decision
trees excel at analyzing tabular data, but do not provide probabilistic predictions. Our method, which
we call Treeffuser, combines the advantages of both formalisms. It defines an accurate tree-based
diffusion model for probabilistic prediction which can easily handle large datasets.

Fig. 1 shows Treeffuser in action. We feed it data from three complex distributions–a multimodal
response with varying components, an inflated response with shifting support, and a multivariate
response with dynamic correlations. For each task, Treeffuser uses trees to learn a diffusion model
and then outputs samples from the target conditional. These samples fully capture the complexity of
the response functions.

Treeffuser exhibits several advantages:

• It is nonparametric. It makes few assumptions about the form of the conditional response
distribution. For example, it can estimate response distributions that are multivariate,
multimodal, skewed, and heavy-tailed.

• It is efficient. Diffusions can be slow to train [13]. Treeffuser relies on trees and is fast. For
instance, in section 5.3, Treeffuser trains from a table with 112,000 observations and 27
variables in 53 seconds on a laptop.

• It is accurate. On benchmark datasets, Treeffuser outperforms NGBoost [14], IBUG [15],
quantile regression [16] and deep ensembles [17]. It provides better probabilistic predictions,
including more precise quantile estimations and accurate mean predictions.

The rest of the paper is organized as follows. Section 2 reviews diffusions and gradient-boosted trees.
Section 3 integrates these two ideas into Treeffuser and justifies the method. Section 4 discusses
related work. Section 5 studies synthetic and standard benchmark datasets.

2 Background

Treeffuser combines two ideas: diffusion models and gradient-boosted trees (GBTs). This section
provides a gentle introduction to both topics. Familiar readers can skip ahead to Section 3.

2.1 Diffusion Models

A diffusion model is a generative model that learns an arbitrarily complex distribution π(y). It
consists of two processes: forward and reverse diffusion.

The forward process takes the target distribution π(y) and continuously transforms it into a simple
distribution. It does so by progressively adding noise to samples from π:{

Draw y(0) ∼ π,
Evolve y(t) until T according to: dy(t) = f(y(t), t)dt+ g(t)dw(t),

(1)

2

where Eq. (1) defines a stochastic differential equation (SDE) with a standard Brownian motion w(t),
and drift and diffusion functions f and g. The time horizon T is large, such that the resulting marginal
distribution psimple := pT (y(T)) =

∫
y′ pT (y(T) | y(0) = y′)π(y′)dy′ is agnostic to π.

The reverse process transforms the simple distribution back into the target distribution by denoising
perturbed samples from psimple. It posits the following model, which runs backward from T to 0:{

ỹ(T) ∼ psimple,
dỹt = [f(ỹ(t), t)− g(t)2∇ỹ(t) log pt(ỹ(t))]dt+ g(t)dw̃(t),

(2)

where w̃(t) is a standard Brownian with reversed time. Anderson [18] shows that ỹ(t) d
= y(t) for

each time t, and so ỹ(0) ∼ π. This means that by drawing a sample from psimple and then numerically
approximating the reverse process in Eq. (2), we obtain samples from π.

However, the score function, y 7→ ∇y log pt(y), is usually unknown. Vincent [19] shows it can be
estimated from the trajectories of the forward process as the minimizer of the following objective:[

y 7→ ∇y log pt(y)
]
= argmin

s∈S
EtEπEp0t

[∥∥∇y(t) log p0t(y(t) | y(0))− s(y(t), t)
∥∥2] , (3)

where S is the set of all possible functions of y indexed by time t, and p0t denotes the conditional
distribution of y(t) given y(0). In practice, we set t ∼ Uniform([0, 1]) and choose the drift f and
diffusion function g so that p0t is Gaussian. We detail our choice of f and g in Appendix C.

We approximate the expectations in Eq. (3) with the empirical distribution of the observed y for
Eπ, and with the known Gaussian trajectories y(t) | y(0) = y for Ep0t . The objective can then be
minimized by parametrizing the score s with any function approximator, such as a neural network or,
as we do, with trees. By estimating the score function, we effectively learn the distribution π.

For a more detailed introduction to diffusion models, we provide an expanded version of this section
in Appendix A.

2.2 Gradient Boosted Trees

Consider the following common machine learning task. Given variables (a, b) ∼ π, where b is scalar,
learn the function F ∗(a) that best approximates b from a:

F ∗ = argmin
F

E(a,b)∼π

[
L(F (a), b)

]
, (4)

where L is a loss function measuring the quality of F , such as the squared loss L(u, v) = (u− v)2.
Gradient-boosted trees (GBTs) are a widely used non-parametric machine learning model for this
task [12]. GBTs use decision trees [20] as simple building block functions f : Rd → R to form a
good approximation F̂ of F ∗. GBTs sequentially build approximations F̂i defined as

F̂i(a) =

i−1∑
m=0

εfm(a), (5)

where ε ∈ (0, 1) is a parameter akin to a learning rate.

Each decision tree fi is constructed to minimize the squared error between the current approximation
F̂i and the negative gradient of the loss function:

fi = argmin
f∈Trees

Ea,b

[(
f(a) +

∂L(Fi(a), b)

∂Fi(a)

)2
]
. (6)

As the number of trees i increases, the approximation F̂i becomes a better minimizer of Eq. (4).
Various modifications to this basic algorithm have been proposed, including different loss functions
in Eq. (4), higher order optimizations for Eq. (6) and general heuristics for faster training [21–23].

3 Probabilistic Prediction via Treeffuser

Treeffuser tackles probabilistic prediction by learning a diffusion model with gradient-boosted trees.
It is particularly well-suited to modeling tabular data. Trees offer useful inductive biases, natural

3

handling of categorical and missing data, and fast and robust training procedures. Diffusions eliminate
the need for restrictive parametric families of distributions and protect against model misspecification.

Denote an independently distributed set of observations as D = {(xi,yi)}ni=1. Treeffuser forms the
predictive distribution π(y | x) as a function of inputs x. We first introduce conditional diffusion
models and discuss the conditional score estimation problem for both univariate and multivariate
outcomes. We then outline the training and sampling procedures for Treeffuser.

3.1 The Conditional Diffusion Model

Treeffuser produces a distribution over y for each value of x using conditional diffusion models.
Unlike approaches that guide an unconditional model to achieve conditionality, Treeffuser follows
the line of work that directly fits the conditional score function [24–26].

Conditional diffusion models. The diffusion models introduced in Section 2.1 target the marginal
distribution of y. Here, we extend them to conditional distributions πx(y) := π(y | x).
To model πx, assign a diffusion process yx(t) to each value of x. These processes share the same
diffusion equation but have different boundary conditions corresponding to their target conditionals:{

yx(0) ∼ πx(y),
dyx(t) = f(yx(t), t)dt+ g(t)dw(t).

(7)

As before, f and g are simple functions such that yx(T) ∼ psimple for all x. Denote the marginal
distribution of yx(t) as px,t. For two time points t and u, where t > u, denote the conditional
distribution yx(t) | yx(u) as put. (Note how put does not vary in x.)

To match each x-dependent forward SDE we have an x-dependent reverse SDE of the form:

dỹx(t) =
[
f(ỹx(t), t)− g(t)2∇ỹx(t) log px,t(ỹx(t))

]
dt+ g(t)dw̃(t), (8)

where the score function∇ log px,t now also depends on x. Similar to unconditional diffusions, by
estimating the conditional score, we can sample from yx by first sampling ỹx(T) from psimple(y)
and then solving the corresponding reverse SDE.

Conditional score estimation objective. Estimating the conditional score follows a similar strategy
as the unconditional version, but with the added requirement of simultaneously estimating the score
for all x. Recall that by Eq. (3), for a fixed x, the function s∗x defined by

s∗x = argmin
s∈S

EtEπx(yx(0))Ep0t(yx(t)|yx(0))

[∥∥∇yx(t) log p0t(yx(t) | yx(0))− s(yx(t), t)
∥∥2]

satisfies s∗x(yx, t) = ∇yx(t) log px,t(yx(t)) for all y, t and the fixed x. Intuitively, if we allow s ∈ S
to also take x as input, we can gather all of these individual optimization problems into a single large
problem by taking an additional expectation over x ∼ π, that is:

argmin
S∈S+

Eπ(x)EtEπ(yx(0))Ep0t

[∥∥∇yx(t)log p0t(yx(t) | yx(0))− S(yx(t), t,x)
∥∥2] . (9)

Here, S+ represents the set of functions that take x as an extra input along y and t. The uppercase S
emphasizes that S takes x as input, contrary to lowercase s. The validity of this objective is given by
the following result.
Theorem 1 (Optimal Conditional Objective). Define S∗ as the solution of Eq. (9). Then, for almost
all x,y, t with respect to π(x,y) and the Lebesgue measure on t ∈ [0, T], we have

S∗(y, t,x) = ∇y log px,t(y). (10)

We refer to Eq. (9) as the conditional score objective. The proof is provided in Appendix B.

3.2 The Trees

Treeffuser uses gradient-boosted trees (GBTs) to minimize Eq. (9). As GBTs work on scalar outputs,
we separate the conditional score objective into an equivalent set of dy independent scalar-valued

4

Algorithm 1: Treeffuser Training
Data: D, R, SDE-specific (h, T)
Result: GBTs (u1, ..., ud) optimizing Eq. (12)
D′ ← ∅
for (x(i),y(i)) ∈ D do

for r = 1, ..., R do
t ∼ Uniform[0, T]
ζ ∼ N (0, Idy

)

D′ ← D′ ∪ ((h(ζ, t,y(i)), t,x(i)),−ζ)
for k = 1, ..., dy do
Dk ← {(a, bk) | (a, b) ∈ D′}
Uk ← TrainGBT(Dk)

return (U1, . . . , Ud)

Algorithm 2: Treeffuser Sampling
Data: GBTs (U1, ..., Udy

), input instance x,
discretization steps nd, SDE-specific
(psimple, T, f, g, σ)

Result: A sample y ∼ π(y | x)
δ ← T/nd

y ∼ psimple(y)
t← T
for i = 1, . . . , nd do

w ∼ N (0, Idy
)

f̃ ← f(y, t)− g(t)2U(y, t,x)/σ(t;y)

y ← y − (f̃ δ + g(t)δw)
t← t−∆

return y

sub-problems

S∗
k = argmin

Sk∈GBT
EtEπ(x,y)Ep0t(yx(t)|y)

[(
∂ log p0t(yx(t) | y)

∂yx(t)k
− Sk(yx(t), t,x)

)2
]
, (11)

where ak denotes the k-th component of vector a.

Recall that the drift and diffusion functions of the forward process are chosen such that p0t is
Gaussian. Let m = m(t;y) and σ = σ(t) denote the corresponding mean and standard deviation,
respectively. Treeffuser replaces the partial derivative in Eq. (11) with its closed-form expression as a
function of m and σ. Treeffuser further reparametrizes S(y, t,x) with U(y, t,x)/σ(t) and defines
h(ζ, t,y) = m(t;y) + ζσ(t), the process by which a sample y at time 0 gets diffused into a sample
at time t with Gaussian noise ζ. The optimization problems in Eq. (11) are then:

∀k ∈ {1, ..., dy}, U∗
k = argmin

Uk

E(x,y)∼πEtEζ∼N (0,Idy)

[
(ζk + Uk(h(ζ, t,y), t,x))

2
]
. (12)

The next theorem justifies how the individual problems in Eq. (12) estimate the conditional score.
Theorem 2 (Treeffuser One-Dimensional Objectives). Denote U∗ = (U∗

1 , ..., U
∗
dy
). Then for almost

all x,y, t with respect to π(x,y) and the Lebesgue measure on t ∈ [0, T], we have

∇y log px,t(y) =
U∗(y, t,x)

σ(t)
. (13)

Each problem in Eq. (12) is a GBT problem where the notation within Eq. (4) corresponds to F := Uk,
a := (h(ζ, t,y), t,x) ∈ Rdy+1+dx , b := −ζk ∈ R and L is the square loss. We note that the noise
scaling reparametrization, S = U/σ, is key to stabilizing the learning process; see the ablation study
in Appendix G.

Finally, Treeffuser approximates the expectations in Eq. (12) with Monte Carlo sampling. For each
sample (x,y) from the datasetD, Treeffuser samples R pairs of (t, ζ) ∼ Uniform([0, 1])⊗N (0, Idy)

and creates new datasets Dk containing R · n datapoints of the form
(
(h(ζ, t,y), t,x),−ζk

)
, one

Dk per dimension of y. Then, each of these datasets is given to a standard GBT algorithm, such as
LightGBM [22] or XGBoost [21]. Our implementation of Treeffuser uses LightGBM. Algorithm 1
details this procedure.

3.3 Sampling and Probabilistic Predictions

Treeffuser provides samples from the probabilistic predictive distribution π(y | x). It does so as in
standard unconditional models by plugging in the GBT-estimated conditional score from Eq. (12)

5

into a numerical approximation of the SDE in Eq. (8). While Treeffuser is compatible with any SDE
solver, our implementation leverages Euler-Maruyama [27] due to its good balance between accuracy
and the number of function evaluations. In general, we found good performance with as few as 50
steps. Algorithm 2 implements this procedure.

The samples generated by Treeffuser can then be used to estimate means, quantiles, probability
intervals, expectations, or any other quantity of interest that depends on the response distribution.

3.4 Limitations

The design of Treeffuser offers advantages in terms of usability, versatility, and robustness. But it
also comes with a few limitations. First, the diffusion process is theoretically defined to only model
continuous responses y. However, count and other forms of discrete responses are common in the
probabilistic modeling of tabular data. While our experiments show that this limitation does not
prevent Treeffuser from outperforming comparable methods on these kinds of data, there may be
opportunities for further improvement with direct modeling of discrete outcomes. Second, Treeffuser
does not offer a closed-form density and must solve an SDE to generate samples. This sampling
process, in contrast with the fast training, can become expensive when many samples per datapoint x
are required.

4 Related Work

Treeffuser builds on advances in diffusion models to form probabilistic predictions from tabular data.

Diffusion models. Diffusion models excel at learning complex unconditional distributions on a
range of data, such as images [28–30], molecules [31], time series [32], and graphs [33]. A common
task is conditional generation, where the goal is to generate samples from a distribution conditioned
on features. There are two approaches to this objective. One approach is to use guidance methods by
which the score of an unconditional diffusion model is altered during generation to mimic the score
of the conditional distribution [11, 34, 35]. This approach is especially popular for inverse problems
[11, 36, 37]. Another approach is to train a conditional model from the start, incorporating the
conditioning information during training [24–26, 38, 39]. This is the approach adopted by Treeffuser.

Treeffuser contributes to a recent line of work that applies diffusions to tabular data. This includes
deep learning approaches for data generation [40], probabilistic regression [41], and missing data
imputation [42]. Among these methods, CARD [41] uses neural-net based diffusions for probabilistic
predictions and thus is most similar to Treeffuser in scope. We attempted to include it in our
experiments using the implementation from Lehmann [43], but returned very poor results. We
therefore excluded it from our testbed. The imputation of missing data has been recently extended to
gradient-boosted trees [44].

Probabilistic prediction for tabular data. Probabilistic prediction for tabular data can be classified
into parametric and non-parametric methods based on their assumptions about the likelihood shape.
Parametric tree-based methods include NGBoost [14] and PBGM [45]. NGBoost uses natural
gradients to optimize a scoring rule, while PBGM sequentially updates the mean and standard
deviation for predictions. DRFs obtain maximum likelihood estimates by using this criteria to choose
splits. Neural-based parametric methods include Bayesian Neural Networks [46], MC Dropout [47],
and Deep Ensembles [17]. Notably these methods are all indirectly or directly Bayesian. Another
approach, normalizing flows, transforms a latent distribution via an invertible neural network [48] and
has been applied to tabular data [49]. Non-parametric methods are often tree-based, such as Quantile
Regression Forests [16], Distributional Random Forests (DRF) [50], and IBUG [15]. Quantile
Regression Forests approximate the inverse cumulative distribution function by minimizing pinball
loss, while DRF and IBUG use a tree-based similarity metric to weight training data for predictions.
These methods are baselines in our empirical studies, with detailed descriptions in Appendix F.1.

5 Empirical studies

We demonstrate Treeffuser across three settings: synthetic data, standard UCI datasets [51], and sales
data from Walmart. We find that Treeffuser outperforms state-of-the-art methods [15, 17, 50];

6

Dataset N, dx, dy Deep NGBoost iBUG Quantile DRF Treeffuser Treeffuser
ensembles (Gaussian) (XGBoost) regression (no tuning)

bike 17,379,12,1 1.61± 0.05 7.15± 0.18 1.88± 0.11 1.85± 0.07 2.15± 0.06 1.60± 0.05 1.64± 0.05 ×101

energy 768, 8, 2 5.00± 0.71 4.78± 0.49 NA NA 5.43± 0.69 3.07± 0.40 3.32± 0.48 ×100

kin8nm 8,192, 8, 1 3.59± 0.12 9.48± 0.29 7.74± 0.41 6.63± 0.16 9.44± 0.20 5.89± 0.14 5.88± 0.17 ×10−2

movies 7,415, 9, 1 2.94± 0.35 × 3.42± 0.52 7.90± 0.68 5.57± 0.61 2.68± 0.31 2.69± 0.28 ×107

naval 11,934,17,1 4.11± 0.39 4.43± 0.19 3.20± 0.17 16.86± 2.46 4.55± 0.16 2.02± 0.08 2.46± 0.07 ×10−4

news 39,644,58,1 2.53± 0.27 × 3.89± 1.19 2.32± 0.17 1.98± 0.16 1.98± 0.17 1.98± 0.16 ×103

power 9,568, 4, 1 2.06± 0.10 2.01± 0.13 1.61± 0.07 5.40± 0.12 1.90± 0.11 1.49± 0.07 1.52± 0.07 ×100

superc. 21,263,81,1 4.89± 0.31 5.24± 0.50 4.14± 0.28 3.79± 0.14 4.32± 0.16 3.52± 0.13 3.60± 0.15 ×100

wine 6,497, 12, 1 3.59± 0.10 3.82± 0.11 3.25± 0.14 3.24± 0.14 3.30± 0.12 2.59± 0.13 2.67± 0.13 ×10−1

yacht 308, 6, 1 4.86± 1.38 3.67± 1.47 3.75± 1.24 3.53± 1.30 7.73± 2.43 3.11± 0.99 3.39± 0.97 ×10−1

Table 1: CRPS (lower is better) by dataset and method. × indicates the method failed to run, and NA
that the method is not directly applicable to multivariate outputs. Standard deviations are measured
with 10-fold cross-validation. For each dataset, the two best methods are bolded. Treeffuser provides
the most accurate probabilistic predictions, even with default hyperparameters (no tuning). Powers of
ten are factorized out of each row in the rightmost column.

it can capture complex distributions with multimodal, inflated, or multivariate responses; it
achieves better probabilistic predictions on many real-world datasets and it produces more ac-
curate sales forecasts on Walmart data. We also find that Treeffuser can outperform other (tuned)
methods without dataset-specific hyperparameter tuning. We provide the code for Treeffuser at
https://github.com/blei-lab/treeffuser.

5.1 Probabilistic prediction on synthetic data

We show the flexibility of Treeffuser on three probabilistic regression tasks that are difficult to model
with standard parametric models. We also show its competitive performance on Gaussian data when
compared to methods that posit a Gaussian likelihood.

Treeffuser vs. complex response functions. We design three difficult probabilistic regression
tasks: a multimodal response where the number of modes changes with x, an inflated response with
support that changes with x, and a multivariate response with nontrivial covariance structure. The
data generation processes for these datasets are detailed in Appendix E. For each dataset, we generate
10,000 observations (xi, yi) and train Treeffuser with its default parameters (see Appendix C).

Fig. 1 shows the histograms of 1,000 Treeffuser samples for three different values of x and compares
them with the true conditional densities of the response. Treeffuser captures the conditional distribu-
tion for all values of x across all settings. For multimodal data, Treeffuser correctly detects the modes
of the distribution without knowing their number a priori. For inflated data, it recovers the peak at the
inflation point and the x-dependent support of the response. For multivariate data, it recovers the
complex covariance structures.

Treeffuser vs. parametric oracles. We simulate Gaussian responses with a linear response function
and compare Treeffuser to other parametric methods that assume a Gaussian likelihood. These
methods serve as oracles in these experiments as they are informed by the true functional form of the
conditional response distribution. Results and further details are reported in Appendix E. Among all
methods, Treeffuser consistently ranks second best, only behind the Deep Ensemble oracle.

5.2 Probabilistic prediction on real-world datasets

We compare Treeffuser with state-of-the-art methods for probabilistic predictions on standard UCI
datasets [51]. A detailed description of the baseline models can be found in Appendix F.1.

Metrics. We evaluate probabilistic predictions with the continuous ranked probability score (CRPS)
and standard accuracy metrics.

CRPS is defined as CRPS(F, y) =
∫∞
−∞(F (y′) − 1(y ≤ y′))2dy′, where F is the cumulative

distribution function of the predicted distribution p(y | x) and y is the true observed value [52].
CRPS is a proper scoring rule, in that its expected value is minimized under the true conditional
distribution of the response [53]. CRPS is usually preferred over the log-likelihood, which is also

7

https://github.com/blei-lab/treeffuser

a proper scoring rule, but is sensitive to the estimation of the tail densities [54]. Also, CRPS can
readily be estimated from samples of p(y | x), which is our setting with the non-parametric methods
we evaluate. We evaluate CRPS by generating 100 samples from p(y | x) for each x. For evaluating
multivariate responses, we report the average marginal CRPS over each dimension.

We also measure the quality of point predictions for each model. This is the ability to predict
conditional means E[y | x]. We approximate E[y | x] using 50 samples and evaluate the accuracy
using the mean absolute error (MAE) and the root mean squared error (RMSE).

Experimental setup. We performed 10-folds cross-validation. For each fold, we tuned the hyper-
parameters of the methods using Bayesian optimization for 25 iterations, using 20% of the current
fold’s training data as a validation set. Additional Bayesian optimization’s iterations did not change
the results. We detail the search space of hyperparameters for each method in Appendix F.2.

Results. Table 1 presents CRPS by dataset and method. Treeffuser consistently provides the most
accurate predictions across datasets, as measured by CRPS. Notably, it outperforms other methods
even when initialized with its default parameters. There is no consistent runner-up: among parametric
methods, deep ensemble does overall better than NGBoost and IBUG; quantile regression does well
on some datasets but underperforms in others.

We find that Treeffuser also returns the best point predictions of E[y | x], as reported in Table 4. For
comparison, we report the accuracy of point predictions from vanilla XGBoost and LightGBM in
Table 6 in Appendix F.3. These methods do not provide probabilistic predictions but are tailored for
point predictions. As expected, XGBoost and LightGBM outperform or tie with all the probabilistic
methods. In particular, they often tie with Treeffuser, suggesting that Treeffuser provides probabilistic
prediction without sacrificing average point predictions.

Finally, we conducted an ablation study to investigate the impact of the noise-scaling reparametrization
of the score function on Treeffuser’s performance. As detailed in Appendix G, noise scaling is key to
achieving top accuracy and stability.

5.3 Sales forecasting with long tails and count data

model Deep IBUG NGBoost Poisson Quantile Treeffuser Treeffuser
metric ensembles regression (no tuning)

CRPS 7.05 7.75 6.86 7.11 6.44 6.62 ×10−1

RMSE 2.03 2.16 2.33 2.88 2.09 2.09 ×100

MAE 0.97 1.04 0.99 1.01 0.99 0.99 ×100

Table 2: Walmart dataset metrics (lower is better). The evaluation is on the last 30 days of data.
Treeffuser provides the best probabilistic predictions alongside NGBoost Poisson. Deep ensembles
excel at point predictions. Powers of tens are factorized out of each row in rightmost column.

We further demonstrate the applicability of Treeffuser on a publicly available dataset [55] for sales
forecasting under uncertainty. The goal is to forecast the number of units sold for a product given
features such as its price, its type (e.g., food, cloths), and past sales.

This task is challenging due to zero inflation and long tails in the distribution of item sales. (E.g.,
umbrella sales are typically low but can spike during rainy weeks.) It is even more challenging for a
diffusion model like Treeffuser, which is designed for continuous responses and not count data.

We use five years of sales data from ten Walmart stores (a large American retail chain). We randomly
select 1,000 products, training on 112,000 data points from the first 1,862 days and evaluating 10,000
other data points for the remaining 30 days.

In addition to the previous baselines, we include NGBoost Poisson, a parametric model specifically
designed for count data. We evaluate the predictions returned by each method in three ways.

CRPS and accuracy metrics. First, we compute the same evaluation metrics as in the previous
experiments. We benchmark against the methods in the experiment and the methods in section 5.2.

8

The results are reported in Table 2. We find that Treeffuser again proves competitive, achieving a
better CRPS than all methods and comparable MAE and RMSE.

Posterior predictive checks. Second, we perform held-out predictive checks [56], examining six
statistics on the number of items sold: the total count of zero sales, the highest sales figure, and sales
figures at the 0.99, 0.999, and 0.9999 quantiles (lower quantiles are well captured by all methods).
We produce probabilistic predictions of these quantities by returning their empirical distributions as
induced by the samples generated by the models. Fig. 2 compares the observed values against the
probabilistic predictions. Treeffuser best captures the proportion of zeros and performs as well as
NGBoost-Poisson in modeling the behavior of the tails.

0.35 0.40 0.45 0.50 0.55 0.60

Proportion of zeros

1 2 3 4 5

Quantile 0.9

10 12 14

Quantile 0.99

100 200 300

Max

Treeffuser
NGBoost
Poisson
Quantile
Regression

20 40 60

Quantile 0.999

50 100 150

Quantile 0.9999

Figure 2: Posterior predictive checks for Treeffuser, NGBoost Poisson, and quantile regression. Red
dashed line shows the realized value on the test set. Treeffuser best captures the inflation point at
zero and performs well on the tails.

Newsvendor model. Finally, we illustrate the practical relevance of accurate probabilistic predic-
tions with an application to inventory management, using the newsvendor model [57]. Assume that
every day we decide how many units q of an item to buy. We buy at a cost c and sell at a price p.
However, the demand y is random, introducing uncertainty in our decision. The goal is to maximize
the expected profit:

max
q

p E [min(q, y)]− cq.

The solution to the newsvendor problem is to buy q = F−1
(

p−c
p

)
units, where F−1 is the quantile

function of the distribution of y.

We apply this model to evaluate the inventory decisions induced by each method on the Walmart
dataset. To compute profits, we use the observed prices and assume a margin of 50% over all products.
We let Treeffuser, NGBoost-Poisson, and quantile regression learn the conditional distribution of the
demand of each item, estimate their quantiles, and thus determine the optimal quantity to buy.

Fig. 3 plots the cumulative profits over the last 30 days of data. Treeffuser outperforms quantile
regression by a large margin and performs comparably to NGBoost-Poisson. This is coherent with
our PPC results in Fig. 2, showing better quantile estimations for Treeffuser. This demonstrates that
Treeffuser delivers competitive probabilistic predictions even for count data responses, a scenario it
was not specifically designed to handle.

5.4 Runtime Performance Overview

We measure Treeffuser’s performance in terms of training and inference speed across different
datasets. On the M5 dataset, using default parameters, Treeffuser completed training in 53.2 seconds
on a MacBook Pro M3 Max and generated 10,000 samples (one per test data point) in 2.53 seconds.
We conducted additional benchmarking experiments on both the UCI and M5 datasets, with results
detailed in Appendix H. (Further discussion on the model’s time complexity is also provided in that
appendix.) Details about the computational resources used in all of our experiments are available in
Appendix D.

9

0 5 10 15 20 25 30
Day

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e

pr
of

it

Model
Treeffuser
NGBoost-Poisson
QuantileRegression

Hyperparameters
Tuned
Default

Figure 3: Cumulative profits by method on an inventory management problem. Treeffuser produces
more accurate probabilistic predictions yielding higher profits.

6 Conclusion

We have introduced Treeffuser, a new model for probabilistic prediction from tabular data.

Treeffuser combines conditional diffusions models with gradient-boosted trees. It can capture
arbitrarily complex distributions without requiring any data-specific modeling or tuning. It is
amenable to fast CPU learning and naturally handles categorical data and missing values. We have
demonstrated that Treeffuser outperforms state-of-the-art methods in probabilistic regression across
datasets and metrics. These characteristics make Treeffuser a flexible, easy-to-use, and robust model
for probabilistic predictions.

One limitation of our diffusion-based approach is the need to numerically solve an SDE to generate
samples, which can be costly when producing many samples. Recent advances, such as progressive
distillation [58] and consistency models [59], address this issue. Applying these methods to Treeffuser
is a direction for future work.

References
[1] Aristeidis Mystakidis, Evangelia Ntozi, Konstantinos Afentoulis, Paraskevas Koukaras,

Paschalis Gkaidatzis, Dimosthenis Ioannidis, Christos Tjortjis, and Dimitrios Tzovaras. Energy
generation forecasting: Elevating performance with machine and deep learning. Computing,
105(8):1623–1645, 2023.

[2] Jillian M. Clements, Di Xu, Nooshin Yousefi, and Dmitry Efimov. Sequential deep learning for
credit risk monitoring with tabular financial data, 2020. arXiv preprint arXiv:2012.15330.

[3] Snigdha Somani, Adam J Russak, Filippo Richter, Simon Zhao, Akhil Vaid, Farah Chaudhry,
Jason K De Freitas, Niyati Naik, Riccardo Miotto, Girish N Nadkarni, Jagat Narula, Edgar
Argulian, and Benjamin S Glicksberg. Deep learning and the electrocardiogram: Review of the
current state-of-the-art. Europace, 23(8):1179–1191, 2021.

[4] Anshuman Gupta and Costas D Maranas. Managing demand uncertainty in supply chain
planning. Computers & Chemical Rngineering, 27(8-9):1219–1227, 2003.

[5] Yacov Y Haimes. Risk Modeling, Assessment, and Management. John Wiley & Sons, 2011.

[6] Philippe Jorion. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill,
2007.

[7] James W. Taylor and Kimberly S. Taylor. Combining probabilistic forecasts of covid-19
mortality in the united states. European Journal of Operational Research, 304(1):25–41, 2023.

10

[8] Ziqiu Kang, Cagatay Catal, and Bedir Tekinerdogan. Machine learning applications in produc-
tion lines: A systematic literature review. Computers & Industrial Engineering, 149:106773,
2020.

[9] Anna L. Buczak and Erhan Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications Surveys and Tutorials, 18(2):
1153–1176, 2016.

[10] Thi-Thu-Huong Le, Yustus Eko Oktian, and Howon Kim. XGBoost for imbalanced multiclass
classification-based industrial Internet of Things intrusion detection systems. Sustainability, 14
(14), 2022.

[11] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[12] Jerome H Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189–1232, 2001.

[13] Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang,
Weizhu Chen, and Mingyuan Zhou. Patch Diffusion: Faster and more data-efficient training of
diffusion models, 2023. arXiv preprint arXiv:2304.12526.

[14] Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, and
Alejandro Schuler. NGBoost: Natural gradient boosting for probabilistic prediction, 2020.
arXiv preprint arXiv:1910.03225.

[15] Jonathan Brophy and Daniel Lowd. Instance-based uncertainty estimation for gradient-boosted
regression trees. In Advances in Neural Information Processing Systems, volume 35, pages
11145–11159, 2022.

[16] Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of Machine
Learning Research, 7(6), 2006.

[17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, volume 30, 2017.

[18] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[19] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661–1674, 2011.

[20] Trevor Hastie, Robert Tibshirani, and Jerome H Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, volume 2. Springer, 2009.

[21] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16. ACM, 2016.

[22] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[23] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. CatBoost: Unbiased boosting with categorical features, 2019. arXiv preprint
arXiv:1706.09516.

[24] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models, 2021. arXiv preprint arXiv:2111.13606.

[25] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mo-
hammad Norouzi. Image super-resolution via iterative refinement, 2021. arXiv preprint
arXiv:2104.07636.

11

[26] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based
diffusion models for probabilistic time series imputation. In Advances in Neural Information
Processing Systems, volume 34, pages 24804–24816. Curran Associates, Inc., 2021.

[27] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Stochastic Modelling and Applied Probability. Springer Berlin, Heidelberg, 1992.

[28] Stability AI. Introducing stable diffusion. https://stability.ai/blog/
stable-diffusion-public-release, 2022.

[29] MidJourney. Midjourney. https://www.midjourney.com/, 2022.

[30] OpenAI. Dall·e 2. https://openai.com/index/dall-e-2/, 2022.

[31] Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
Baek, and David Baker. De novo design of protein structure and function with rfdiffusion.
Nature, 620(7976):1089–1100, 2023.

[32] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denois-
ing diffusion models for multivariate probabilistic time series forecasting. In International
Conference on Machine Learning, pages 8857–8868. PMLR, 2021.

[33] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In International
Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

[34] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems, volume 34, pages 8780–8794, 2021.

[35] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. arXiv preprint
arXiv:2207.12598.

[36] Hyungjin Chung, Jeongsol Kim, Michael T. Mccann, Marc L. Klasky, and Jong Chul Ye.
Diffusion posterior sampling for general noisy inverse problems, 2023. arXiv preprint
arXiv:2209.14687.

[37] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations,
2022. arXiv preprint arXiv:2108.01073.

[38] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents, 2022. arXiv preprint arXiv:2204.06125.

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

[40] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Mod-
elling tabular data with diffusion models. In International Conference on Machine Learning,
pages 17564–17579. PMLR, 2023.

[41] Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. CARD: Classification and regression
diffusion models. In Advances in Neural Information Processing Systems, volume 35, pages
18100–18115, 2022.

[42] Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation
in tabular data, 2022. arXiv preprint arXiv:2210.17128.

[43] Nils Lehmann. lightning-uq-box 0.1.0. https://pypi.org/project/lightning-uq-box/,
2024.

12

https://stability.ai/blog/stable-diffusion-public-release
https://stability.ai/blog/stable-diffusion-public-release
https://www.midjourney.com/
https://openai.com/index/dall-e-2/
https://pypi.org/project/lightning-uq-box/

[44] Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular
data via diffusion and flow-based gradient-boosted trees. In International Conference on
Artificial Intelligence and Statistics, pages 1288–1296. PMLR, 2024.

[45] Olivier Sprangers, Sebastian Schelter, and Maarten de Rijke. Probabilistic gradient boosting
machines for large-scale probabilistic regression. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’21. ACM, 2021.

[46] Radford M Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science &
Business Media, 2012.

[47] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning, pages
1050–1059. PMLR, 2016.

[48] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction
and review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(11):3964–3979, 2021.

[49] Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised
learning with normalizing flows, 2019. arXiv preprint arXiv:1912.13025.

[50] Domagoj Cevid, Loris Michel, Jeffrey Näf, Peter Bühlmann, and Nicolai Meinshausen. Distri-
butional random forests: Heterogeneity adjustment and multivariate distributional regression.
Journal of Machine Learning Research, 23(333):1–79, 2022.

[51] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning repository,
2023. URL https://archive.ics.uci.edu.

[52] James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management Science, 22(10):1087–1096, 1976.

[53] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

[54] Mathias Blicher Bjerregård, Jan Kloppenborg Møller, and Henrik Madsen. An introduction to
multivariate probabilistic forecast evaluation. Energy and AI, 4:100058, 2021.

[55] Spyros Makridakis Addison Howard. M5 Forecasting - Accuracy, 2020. URL https://
kaggle.com/competitions/m5-forecasting-accuracy.

[56] Andrew Gelman, Xiao-Li Meng, and Hal Stern. Posterior predictive assessment of model fitness
via realized discrepancies. Statistica Sinica, 6:733–807, 1996.

[57] Kenneth J Arrow, Theodore Harris, and Jacob Marschak. Optimal inventory policy. Economet-
rica: Journal of the Econometric Society, pages 250–272, 1951.

[58] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models,
2022. arXiv preprint arXiv:2202.00512.

[59] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023.
arXiv preprint arXiv:2303.01469.

[60] Roger Koenker and Kevin F Hallock. Quantile regression. Journal of Economic Perspectives,
15(4):143–156, 2001.

Acronyms
CRPS continuous ranked probability score. 7, 8, 9

GBT gradient-boosted tree. 2, 3, 4, 5, 16

MAE mean absolute error. 8, 9

RMSE root mean squared error. 8, 9

SDE stochastic differential equation. 3, 4, 6, 14, 15, 16

13

https://archive. ics. uci. edu
https://kaggle.com/competitions/m5-forecasting-accuracy
https://kaggle.com/competitions/m5-forecasting-accuracy

A A primer on unconditional diffusion models

A diffusion model is a generative model that consists of two processes, a forward diffusion, and a
reverse diffusion. The forward process takes an unknown target distribution π(y) and continuously
transforms it into a simple distribution psimple(y), typically a Gaussian. It does so by progressively
adding noise to samples from π, such as our data.

The reverse process transforms the simple distribution back into the target distribution by denoising
any perturbed samples from psimple. If we can learn the reverse process, we can effectively access
the target distribution π: first draw samples from psimple and then use the reverse transformation, as
guided by the score, to map them back to π.

One way to learn this noising-denoising process is to estimate the score function, the gradient of the
log probability of the noisy data with respect to the data itself.

We detail the three main components of score-based diffusions–the forward process, the reverse
process, and the estimation of the score function–below.

The forward diffusion process. A diffusion model is described by the following generative process:{
Draw y(0) ∼ π,
Evolve y(t) until T according to: dy(t) = f(y(t), t)dt+ g(t)dw(t),

(14)

where the process of evolving the stochastic differential equation (SDE) involves a standard Brownian
motion w(t) and model parameters f : Rdy × [0, T]→ Rdy and g : [0, T]→ R, respectively called
the drift and diffusion functions.

The SDE in Eq. (14) determines the evolution of y(t) over time, thereby inducing a distribution of
y(t) at each t, that we write pt(y(t)). We further write the distribution of y(t) conditional on another
y(u) as put(y(t) | y(u)). In practice, f and g are simple functions such that p0t(y(t) | y(0)) has a
closed form. In fact, if the drift f is affine in y(t) and the diffusion function g is a scalar that does
not depend on y(t), the distribution p0t is always Gaussian, with a mean we write m(t;y(0)) and a
covariance multiple of the identity we write σ(t)2I .

W choose the time horizon T such that the resulting marginal distribution pT (y(T)) =
∫
y′ pT (y(T) |

y(0) = y′)π(y′)dy′ is a simple distribution psimple agnostic to π. The intuition is that as the diffusion
progresses, the initial density π is forgotten.

We detail our choice of f , g and T in Appendix C, which is the variance exploding SDE (VESDE) in
Song et al. [11]. This choice induces a trivial closed form expression for the functions m and σ.

There are no model parameters to learn in the diffusion model, and the conditional distributions
p0t(y(t) | y(0)) are trivial to compute. The challenge is to learn how to compute (or sample from) the
conditional distribution pTt(y(t) | y(T)). This is called reversing the diffusion process. Knowing pTt

is key to learning the target distribution π, which can be written as π(y(0)) = EpT
[pT0(y(0) | y(T))]

where pT = psimple is known.

The reverse diffusion process. Consider the following SDE that is reversed in time from T to 0,{
ỹ(T) ∼ psimple,
dỹt = [f(ỹ(t), t)− g(t)2∇ỹ(t) log pt(ỹ(t))]dt+ g(t)dw̃(t),

(15)

where w̃(t) is a standard Brownian with reversed time and pt is the density of y(t) defined by the
forward SDE (1). Similar to the forward case, the reverse SDE induces a distribution p̃t for ỹ(t)
at each t. Anderson [18] shows that, if we denote by p̃Tt the conditional distribution of ỹ(t) given
ỹ(T), then p̃Tt = pTt for any time t. In other words, ỹ(t) | ỹ(T) = a and y(t) | y(T) = a have
the same distribution for all a. Since we designed the diffusion such that pT ≈ psimple = p̃T , we have
in particular ỹ(t) ∼ y(t).

SDE solvers let us sample from distributions that are solutions of an SDE; hence, we can obtain
samples of π(y) by solving Eq. (15). However, the function y 7→ ∇y log pt(y), called the score, is
usually unknown and needs to be estimated.

14

Estimating the score. Vincent [19] shows that the score can be estimated from trajectories of the
SDE as the minimizer of the following objective function:

[y 7→ ∇y log pt(y)] = argmin
s∈S

EtEπEp0t

[∥∥∇y(t) log p0t(y(t) | y(0))− s(y(t), t)
∥∥2] , (16)

where S = {s : Rdy × [0, T]→ Rdy} is the set of all possible score functions indexed by time t, and
Et can be an expectation over any distribution of t whose support is exactly [0, T]. Since p0t is a
normal distribution N (m(t;y(0)), σ(t)2I), we have

∇y(t) log p0t(y(t) | y(0)) =
m(t;y(0))− y(t)

σ(t)2
. (17)

In practice, the expectations in Eq. (16) are approximated using the empirical distribution formed
by the observed y for Eπ, and by sampling the simple and known forward SDE trajectories y(t) |
y(0) = y for Ep0t . The objective can then be minimized by parametrizing s with any function
approximator, e.g., a neural network. The score estimator can then be used to reverse the diffusion
process and estimate the target distribution π(y).

B Proofs of the main theorems

In this section, we provide the proofs for the two main theorems in the text.

Theorem 1 (Optimal Conditional Objective). Define S∗ as the solution of Eq. (9). Then, for almost
all x,y, t with respect to π(x,y) and the Lebesgue measure on t ∈ [0, T], we have

S∗(y, t,x) = ∇y log px,t(y). (10)

Proof. For conciseness, define for any function s : Rdy × [0, T] → Rdy the quantity: r(x, s) =

EtEπ(yx(0))Epx,0t

[∥∥∇yx(t)log p0t(yx(t) | yx(0))− s(yx(t), t,x)
∥∥2]. Also write for any function

S : Rdy × [0, T]× Rdx → Rdy and x ∈ Rdx the function Sx : (y, t) 7→ S(y, t,x) .

The function S∗ is characterized as, S∗ ∈ argminS∈S+ Eπ(x)[r(x, Sx)] where S+ = {S : Rdy ×
[0, T]× Rdx → Rdy}
Define Ω = {x ∈ Rdx | S∗(y, t,x) ̸∈ argmins r(x, s)}, we will show that π(Ω) = 0.

By [19], we know that ∇y log px,t(y) ∈ argmins r(x, s) for all x, so by definition of Ω, we have:

∀x ∈ Ω, r(x, S∗
x) > r(x, (y, t) 7→ ∇y log px,t(y)). (18)

We further have for any other x ̸∈ Ω, r(x, S∗
x) = r(x, (y, t) 7→ ∇y log px,t(y)).

If π(Ω) > 0, then integrating Eq. (18) over π(x) will yield Eπ(x)[r(x, S
∗
x)] >

Eπ(x)[r(x, ((y, t,x) 7→ ∇y log px,t(y))x)], which is not possible by definition of S∗. Hence
π(Ω) = 0.

Hence we have S∗
x ∈ argmins r(x, s) for almost any x, so by [19] again, we can conclude that

S∗(y, t,x) = ∇y log px,t(y) for almost any x, t,y.

Theorem 2 (Treeffuser One-Dimensional Objectives). Denote U∗ = (U∗
1 , ..., U

∗
dy
). Then for almost

all x,y, t with respect to π(x,y) and the Lebesgue measure on t ∈ [0, T], we have

∇y log px,t(y) =
U∗(y, t,x)

σ(t)
. (13)

Proof. By definition in Eq. (12), we have

U∗
k = argmin

Uk

Ex,y∼πEtEζ∼N (0,Idy)

[
(ζk − Uk(h(ζ, t,y), t,x))

2
]
.

15

With Theorem 1, we have S∗(y, t,x) = ∇y log px,t(y) almost everywhere, with S∗ defined as

S∗ ∈ argmin
S∈S+

Eπ(x)EtEπ(yx(0))Epx,0t

[∥∥∇yx(t)log p0t(yx(t) | yx(0))− S(yx(t), t,x)
∥∥2] .

We have:

Eπ(x)EtEπ(yx(0))Epx,0t

[∥∥∇yx(t)log p0t(yx(t) | yx(0))− S(yx(t), t,x)
∥∥2] (19)

= Eπ(x)EtEπ(yx(0))Epx,0t

[∥∥∥∥m(t;yx(0))− yx(t)

σ(t)2
− S(yx(t), t,x)

∥∥∥∥2
]

(20)

=

dy∑
k=1

Eπ(x)EtEπ(yx(0))Epx,0t

[
1

σ(t)

(
m(t;yx(0))k − yx(t)k

σ(t)
− σ(t)S(yx(t), t,x)k

)]2
(21)

=

dy∑
k=1

Eπ(x,y)EtEζ∼N (0,Idy)

[
1

σ(t)

(
−ζk − σ(t)S

(
y + σ(t)ζ, t,x

)
k

)]2
(22)

where we used the following facts:

• from Eq. (19) to Eq. (20): the closed-form expression of the score S from Eq. (17),

• from Eq. (20) to Eq. (21): expanding the norm and switching the expectations with the finite
sum over k,

• from Eq. (21) to Eq. (22): reparametrizing the expectation of yx(t) | yx(0) which by
definition is a normal distribution with mean m(t;yx(0)) and variance σ(t)2.

The final manipulation is to remember that theorem 1 and the theorems from Vincent [19] are valid
with expectations Et against any strictly positive measure of t over [0, T]. In particular, we can absorb
1

σ(t) as a reweighted non-negative measure, and we obtain exactly the definition of U∗
k by defining

U(y, t,x) = σ(t)S
(
y + σ(t)ζ, t,x

)
which concludes the proof.

C Treeffuser default configuration

We use the following configuration as defaults for Treeffuser.

Forward diffusion. We use the variance exploding SDE [11] for all experiments, defined by setting:

f(y, t) = 0 and g(t) =

√
d[σ(t)2]

dt
, (23)

where σ is a given increasing function defined by,

σ(t) = αmin

(
αmax

αmin

)t

(24)

and αmin = 0.01 and αmax = 20. For all our experiments we let t ∈ [0, 1] (i.e. T = 1).

Gradient-boosted tree (GBT) parameters and dataset repetitions. We provide a short description
of each hyper-parameter of the model alongside the default value. Treeffuser uses LightGBM [22] to
learn the GBTs.

• n estimators (3000): Specifies the maximum number of trees that will be fit, regardless
of whether the stopping criterion is met.

• learning rate (0.1): Specifies the shrinkage to use for every tree.
• num leaves (31): Specifies the maximum number of leaves a tree can have.
• early stopping rounds (50): Specifies how long to wait without a validation loss

improvement before stopping.
• n repeats (30): Specifies how many Monte Carlo samples to draw per data point to

estimate Et,ζ in equation Eq. (9).

16

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

y

(a) Simulation 1: branching Gaussian mixture.

0.0 0.2 0.4 0.6 0.8 1.0

x

0

2

4

6

8

10

12

14

16

y

(b) Simulation 2: shifted and inflated Gamma.

Figure 4: Visualization of ground-truth samples for the one-dimensional synthetic datasets used in
the empirical studies.

D Experiments: description of computer resources

All benchmark tasks presented in Section 5.1 and Section 5.2 were run on a cluster with one job per
triplet of (model, dataset, split index).

The real world experiments totalled 1135h for 700 tasks (10 datasets, 7 methods, 10 splits). Each task
was allocated 4 cpus.

The synthetic experiments totalled 290 hours, for 800 tasks (16 datasets, 5 methods, 10 splits). Each
task was allocated 2 CPU.

The M5 experiments were run on a single MacBook Pro over a couple hours. Other figures such as
Fig. 1 were also generated on a MacBook pro in a few seconds.

E Experiments on synthetic data (supplement)

E.1 Arbitrarily complex synthetic data

We provide details on the three synthetic data experiments presented in Section 5.1 and illustrated
in Fig. 1. Each experiment introduces a different distribution of the response variable y given
the covariate x. The first experiment generates multimodal responses from a branching Gaussian
mixture, the second experiment generates inflated responses from a mixture of a shifted Gamma
distribution and an atomic measure, and the third experiment generates two-dimensional responses
from a nonlinear multioutput regression.

We provide additional visualization of samples for the one-dimensional datasets in Fig. 4.

Models We assume that x ∼ Uniform([0, 1]) and model the conditional distribution of the response
y given x differently for each of the synthetic dataset. Scatter plots of synthetic data from these
distributions are provided in Fig. 4

Branching Gaussian mixture. We generate multimodal responses from a mixture of equally-weighted
Gaussians. In our experiments, we fix the scale σ = 0.05 and let the number of components and their
means scale with x as follows:

y | x ∼

GaussianMixtureσ(x,−x), 0 ≤ x ≤ 1/3;

GaussianMixtureσ(x, 2/3− x,−x), 1/3 < x ≤ 2/3;

GaussianMixtureσ(x, 4/3− x, 2/3− x,−x), 2/3 ≤ x ≤ 1;

(25)

where GaussianMixtureσ(µ1, µ2, . . . , µK) denotes a Gaussian mixture distribution with K equally-
weighted components, each with mean µk and scale σ.

17

Covariate inflated Gamma. We generate inflated responses through the following mixture of a shifted
Gamma distribution and an atomic measure:

z ∼ Bernoulli(p), y | x, z ∼
{

ShiftedGamma(k, θ, x), z = 0;

δx, z = 1;
(26)

where ShiftedGamma(k, θ, x) denotes a Gamma distribution with scale k and shape θ shifted by x.
In words, given x, we set y to be equal to x with probability p, and to be drawn from a Gamma
shifted by x otherwise. Hence, the conditional distribution of y given x is x-inflated and its support
[x,∞) changes with x. In our experiments, we set p = 0.15, k = 2, θ = 1.

Nonlinear multioutput regression. We generate two-dimensional responses from a density p(y |
x) ∝ exp

(
− dist(y,C(x))2

2σ2

)
where σ = 0.05, dist(a,B) measures the shortest Euclidean distance

from a ∈ R to the set B ⊂ R2, and C(x) is a circular arc centered at (0, 0) with radius radius(x) and
angles of extremities θ1, θ2 evolving as functions of x. Intuitively, they interpolate the circular arc
represented in Section 1.

The functions are defined as follows.

• If x ≤ 0.5

– radius(x) = ℓ(x) · 1 + r(x) · 0.1,
– θ0(x) = ℓ(x) · (−0.05) + r(x) · (−0.375),
– θ1(x) = ℓ(x) · 0.3 + r(x) · 0.625,

where ℓ(x) = (0.5− x)/(0.5− 0.17), r(x) = 1− ℓ(x).
• If x > 0.5

– radius(x) = ℓ(x) · 0.1 + r(x) · 1,
– θ0(x) = ℓ(x) · 0.125 + r(x) · 0.45,
– θ1(x) = ℓ(x) · 1.125 + r(x) · 0.8,

where ℓ(x) = (0.83− x)/(0.83− 0.5), r(x) = 1− ℓ(x).

E.2 Data with normal likelihood

We study the performance of Treeffuser in a setting where a simpler model is better adjusted to the
generating process. In particular, we let N be number of data points sampled and dx the dimension
and use a linear generative model

β ∼ N (0, Idx)

xi ∼ N (0, Idx
) i ∈ [N]

yi ∼ N (10β⊤x, σ2) i ∈ [N]

where σ2 = 1. The results are provided in table 3 using the same configuration described in section
section 5.2.

Results From Table 3, we observe that while Treeffuser remains competitive, Deep Ensembles
and NGBoost now demonstrate either equal or very close performance. This is expected since both
models assume a normal distribution for the outcomes and the model assumed by Deep Ensembles
closely resembles the real generative model. Interestingly, Treeffuser outperforms both iBUG and
quantile regression (QReg), suggesting that its superior performance is not merely due to using
LightGBM or XGBoost. Finally, we note that Treeffuser continues to perform well in low-data
situations compared to other models.

F Experiments on standard datasets (supplement)

F.1 Baseline methods.

We briefly describe the methods used as baselines in our empirical studies.

18

N dx Deep Ens. IBUG NGBoost QReg Treeffuser
(oracle) (oracle) (oracle)

100 1 2.62±1.67 8.65±10.30 4.08±4.35 5.00±4.59 4.01±4.11 ×10−2

100 5 3.72±1.60 4.45±1.67 4.63±1.75 4.69±2.02 3.86±1.67 ×10−1

100 10 4.04±1.77 5.31±2.23 4.58±1.60 5.13±2.20 4.90±2.08 ×10−1

100 20 4.27±2.65 5.15±2.29 4.49±2.30 5.87±3.03 4.63±2.19 ×10−1

500 1 0.84±0.41 1.58±0.66 0.87±0.41 1.36±0.73 1.11±0.44 ×10−2

500 5 3.19±0.27 4.00±0.55 3.82±0.58 4.44±0.74 3.85±0.51 ×10−1

500 10 3.44±0.71 4.25±0.87 4.03±0.90 4.51±1.10 3.98±0.83 ×10−1

500 20 3.69±0.81 4.31±1.04 4.82±1.50 4.80±1.18 4.32±0.91 ×10−1

1000 1 2.51±1.08 10.59±2.57 7.10±2.09 11.85±2.34 9.72±2.47 ×10−3

1000 5 3.18±0.26 3.67±0.39 3.73±0.33 3.66±0.34 3.52±0.21 ×10−1

1000 10 3.29±0.42 4.01±0.63 4.01±0.54 4.23±0.76 3.95±0.59 ×10−1

1000 20 3.40±0.29 4.25±0.34 4.11±0.47 4.27±0.49 4.00±0.38 ×10−1

5000 1 0.56±0.25 9.25±2.71 3.87±2.26 10.36±2.96 10.00±2.49 ×10−3

5000 5 3.27±0.26 3.69±0.36 3.63±0.33 3.63±0.34 3.63±0.29 ×10−1

5000 10 3.18±0.18 3.82±0.26 3.66±0.25 3.65±0.27 3.59±0.25 ×10−1

5000 20 3.21±0.20 3.86±0.23 3.90±0.25 3.80±0.24 3.69±0.22 ×10−1

Table 3: CRPS (lower is better) by dataset and method. Treeffuser provides comparable predictions
to methods with parametric assumptions that match the generating process. The standard deviations
are measured with 10-fold cross-validation.

NGBoost (parametric, tree-based). NGBoost [14] models the conditional distribution of the target
variable using a parametric family of distributions whose parameters are predicted by a gradient-
boosting algorithm. It uses natural gradients for more stable, accurate, and faster learning. In our
experiments, we set the parametric model to be Gaussian.

Deep ensembles (parametric, nnet-based). A Deep ensemble [17] is a collection of neural networks
that are individually trained to model a parametric conditional distribution p(y|x). The neural
networks are then combined to obtain a mixture. We set the parametric model to be Gaussian.

Quantile regression (nonparametric, tree-based). Quantile regression [60] estimates the quantiles of
the conditional distribution p(y|x). We implemented a GBT-based version of the method by fitting
trees with inputs x and q, where q is the probability of the desired quantile. During training, we
optimized the objective EqEx,y[L(Q(x,y), q)], where L is the pinball loss and q is sampled from a
zero-one uniform distribution. In our experiments, we used LightGBM as a GBT method.

IBUG (parametric, tree-based). IBUG [15] extends any GBT into a probabilistic estimator. Given
an input instance x, it outputs a distribution around the prediction using the k-nearest training data
points. The distance between a training instance x0 and x depends on the number of co-occurrences
of x0 and x across the leaves of the ensemble. In our experiments, we used XGBoost and a Gaussian
likelihood, following the default specifications of the method.

DRF (nonparametric, tree-based). DRF [50] grows a random forest by maximizing the differences in
the response distributions across split groups with a distributional metric. Repeated randomization
induces a weighting function that assesses how relevant a training data point is to a given input x.
These weights are used to return a weighted empirical distribution of the response.

F.2 Hyperparameters of the methods.

Unless specified otherwise, we tuned the hyperparameters of each method using Bayesian optimiza-
tion for 25 iterations. We used the following search space for each method (where Ja, bK denotes the
set of integers from a to b):

• Treeffuser

– n estimators ∈ J100, 3000K
– n repeats ∈ J10, 50K
– learning rate ∈ [0.01, 1] (log-uniform)
– early stopping rounds ∈ J10, 100K
– num leaves ∈ J10, 100K

19

• Quantile regression (QReg)
– n estimators ∈ J100, 3000K (log-uniform)
– n repeats ∈ J10, 100K
– learning rate ∈ [0.01, 1]
– early stopping rounds ∈ J10, 100K
– num leaves ∈ J10, 100K

• IBUG
– k ∈ J20, 250K
– n estimators ∈ J10, 1000K
– learning rate ∈ [0.01, 0.5] (log-uniform)
– max depth ∈ J1, 100K

• DRF
– min node size ∈ J5, 30K
– num trees ∈ J250, 3000K

• NGBOOST
– n estimators ∈ J100, 10000K
– learning rate ∈ [0.005, 0.2]

• Deep ensemble
– n layers ∈ J1, 5K
– hidden size ∈ J10, 500K
– learning rate ∈ [10−5, 10−2] (log-uniform)
– n ensembles ∈ J2, 10K

For the methods that only return point predictions, we used the following search spaces:

• XGBoost
– n estimators ∈ J10, 1000K
– learning rate ∈ [0.01, 0.5] (log-uniform)
– max depth ∈ J1, 100K

• LightGBM
– n estimators ∈ J10, 1000K
– learning rate ∈ [0.01, 0.5] (log-uniform)
– num leaves ∈ J10, 100K
– early stopping rounds∈ J10, 100K

20

F.3 Accuracy and calibration results.

dataset N, dx, dy Deep NGBoost iBUG Quantile DRF Treeffuser Treeffuser
ensembles (Gaussian) (XGBoost) regression (no tuning)

bike 17379,12,1 3.70±0.13 11.52±0.30 4.11±0.19 4.63±0.21 4.86±0.18 3.69±0.14 3.81±0.15 ×101

energy 768, 8, 2 11.34±2.08 11.41±1.25 NA NA 13.73±1.69 8.32±1.35 8.79±1.46 ×10−1

kin8nm 8192, 8, 1 0.64±0.02 1.71±0.06 1.38±0.08 1.18±0.04 1.72±0.04 1.06±0.03 1.06±0.02 ×10−1

movies 7415, 9, 1 9.35±1.90 × 9.83±1.44 18.23±2.61 15.87±2.59 8.85±1.66 8.63±1.38 ×107

naval 11934,17,1 10.42±1.69 8.66±0.61 6.46±1.07 148.80±35.50 11.49±0.98 4.40±0.26 4.92±0.57 ×10−4

news 39644,58,1 1.95±2.66 × 1.18±0.40 1.12±0.40 1.08±0.41 1.10±0.40 1.09±0.41 ×104

power 9568, 4, 1 3.81±0.32 3.66±0.35 3.06±0.32 36.27±0.56 3.65±0.35 2.93±0.30 3.02±0.30 ×100

superc. 21263,81,1 11.26±0.74 11.25±0.87 9.67±0.54 9.36±0.48 10.79±0.56 9.08±0.48 9.21±0.53 ×100

wine 6497, 12, 1 6.54±0.17 6.85±0.18 6.02±0.26 6.28±0.29 6.84±0.21 5.88±0.17 5.98±0.19 ×10−1

yacht 308, 6, 1 1.06±0.46 0.83±0.31 0.83±0.31 1.22±0.74 2.30±1.07 2.10±1.08 2.08±0.45 ×10−1

Table 4: RMSE (lower is better) by dataset and method. × indicates the method failed to run, and
NA that the method is not directly applicable to multivariate outputs. The standard deviations are
measured with 10-fold cross-validation. For each dataset, the two best methods are bolded. Treeffuser
provides the most accurate probabilistic predictions, even when initialized with defaults.

dataset N, dx, dy Deep NGBoost iBUG Quantile DRF Treeffuser Treeffuser
ensembles (Gaussian) (XGBoost) regression (no tuning)

bike 17379,12,1 3.28±0.97 17.79±0.68 5.77±1.04 2.55±0.29 3.45±0.43 1.73±0.62 1.86±0.87 ×10−2

energy 768, 8, 2 8.08±1.41 5.82±1.74 NA NA 4.54±0.74 4.11±1.14 5.53±1.42 ×10−2

kin8nm 8192, 8, 1 2.58±1.50 4.70±0.44 2.99±0.58 8.47±0.80 2.79±0.52 3.85±0.96 3.34±1.22 ×10−2

movies 7415, 9, 1 5.75±1.38 × 7.56±3.31 49.93±0.07 1.31±0.47 2.71±1.36 5.17±1.32 ×10−2

naval 11934,17,1 13.31±1.90 5.50±0.75 3.86±2.59 15.05±0.58 17.37±0.40 7.75±0.41 9.10±0.39 ×10−2

news 39644,58,1 11.36±0.63 × 14.43±1.82 18.96±0.42 1.14±0.25 3.50±0.70 4.87±0.28 ×10−2

power 9568, 4, 1 2.52±1.18 2.53±1.00 3.67±1.42 4.75±0.93 2.37±0.58 4.36±1.31 1.77±0.74 ×10−2

superc. 21263,81,1 3.19±0.63 2.75±0.69 5.39±1.97 5.47±0.44 3.87±0.32 1.34±0.10 1.33±0.16 ×10−2

wine 6497, 12, 1 1.92±0.56 2.68±0.55 4.72±0.83 4.36±0.91 22.02±1.13 5.70±0.55 5.22±0.69 ×10−2

yacht 308, 6, 1 13.35±2.17 9.04±2.41 9.06±3.26 8.26±2.80 7.15±2.86 7.27±2.58 10.02±2.29 ×10−2

Table 5: MACE (lower is better) by dataset and method. × indicates the method failed to run, and
NA that the method is not directly applicable to multivariate outputs. The standard deviations are
measured with 10-fold cross-validation. For each dataset, the two best methods are bolded. Treeffuser
has a competitive calibration error across most datasets.

dataset N, dx, dy iBUG XGBoost LightGBM Treeffuser Treeffuser
(XGBoost) (no tuning)

bike 17379,12,1 4.11 ± 0.19 3.72 ± 0.13 3.79 ± 0.12 3.69 ± 0.14 3.81 ± 0.15 ×101

kin8nm 8192, 8, 1 1.38 ± 0.08 1.12 ± 0.04 1.04± 0.03 1.06± 0.03 1.06± 0.02 ×10−1

movies 7415, 9, 1 9.83 ± 1.44 8.96 ± 1.60 9.08 ± 1.76 8.85 ± 1.66 8.63 ± 1.38 ×107

naval 11934,17,1 6.46 ± 1.07 5.11 ± 0.45 6.68 ± 1.53 4.40 ± 0.26 4.92 ± 0.57 ×10−4

news 39644,58,1 1.18 ± 0.40 1.09 ± 0.40 1.09 ± 0.40 1.10 ± 0.40 1.09 ± 0.41 ×104

power 9568, 4, 1 3.06 ± 0.32 2.97 ± 0.33 2.99 ± 0.32 2.93 ± 0.30 3.02 ± 0.30 ×100

superc. 21263,81,1 9.67 ± 0.54 9.04 ± 0.48 9.21 ± 0.44 9.08 ± 0.48 9.21 ± 0.53 ×100

wine 6497, 12, 1 6.02 ± 0.26 5.95 ± 0.23 5.90 ± 0.27 5.88 ± 0.17 5.98 ± 0.19 ×10−1

yacht 308, 6, 1 0.83 ± 0.31 2.19 ± 1.82 0.67 ± 0.40 2.10 ± 1.08 2.08 ± 0.45 ×10−1

Table 6: RMSE (lower is better) by dataset and method. This table extends Table 4 by includes vanilla
XGBoost and LightGBM, alongside iBUG and Treeffuser. The standard deviations are measured
with 10-fold cross-validation. For each dataset, the two best methods are bolded.

G Ablation study on noise scaling

We evaluate the impact of including noise scaling in the score parametrization of Eq. (13), specifically
S(y, t,x) = U(y, t,x)/σ(t), where S(y, t,x) denotes the score function of y(t) | x, U the gradient-
boosted trees, and σ(t) the noise schedule of the diffusion process. We compare Treeffuser with and
without noise scaling under the same experimental setup of Section 5.2.

21

Table 7 presents the CRPS by dataset and method. Treeffuser without noise scaling fails to achieve any
reasonable CRPS. We believe Treeffuser without noise scaling may require extra model capacity (e.g.,
deeper trees and more training iterations) to handle the varying noise levels adequately. However,
we did not further optimize it, as noise scaling provides state-of-the-art results without the need for
additional complexity.

Treeffuser bike energy kin8nm naval news power superc. wine yacht

with scaling 1.60±0.05 3.07±0.40 5.89±0.14 2.02±0.08 1.98±0.17 1.49±0.07 3.52±0.13 2.59±0.13 3.11±0.99

without scaling 176±211 5258±9667 204±240 154±175 62.1±78.4 289±296 112±162 30±53 18682±41026

×101 ×10−1 ×10−2 ×10−4 ×103 ×100 ×100 ×10−1 ×10−1

Table 7: CRPS (lower is better) by dataset for Treeffuser with and without the noise scaling
reparametrization in Eq. (13). Without scaling, Treeffuser does not produce meaningful results.

H Runtime and Complexity

m5 movies bike energy kin8nm naval news power superc. wine yacht
Time

sample 1.33 0.68 1.33 0.55 1.23 1.46 1.31 1.15 0.85 0.56 0.28

Table 8: Average running time in milliseconds for producing a sample from the model.

To demonstrate the efficiency of Treeffuser, we present the results of the following experiments and
benchmarks:

1. We run Treeffuser on subsets of the M5 dataset (section 5.3) of various sizes and report the
training time in Fig. 5.

2. We report the training time for running Treeffuser on the datasets used in the paper in Fig. 6.
3. We report in Table 8 the average runtime for generating a single sample after training

Treeffuser. The average is calculated by sampling five thousand points after training the
model with default settings and 50 discretization steps.

We conducted all of these experiments on a 2020 MacBook Pro with a 2.6 GHz 6-Core Intel Core i7
processor.

From these results we find that:

• Treeffuser is very fast at fitting moderately sized datasets, with runtime increasing linearly
with dataset size.

• Sampling a single points is very fast (≈ 10−3 seconds) yet, drawing many samples can
become significant, e.g., with a large test set.

With respect to the time complexity of the model we note the following. If the time complexity
of fitting a single GBT is of order O(F (|D|)), where F : R+ → R+ and |D| is the size of the
dataset, then the time complexity of fitting Treeffuser is O(d × F (n_repeats × |D|)), where d
is the dimension of y and n_repeats is the parameter that determines how many noisy versions
of the dataset are sampled. Similarly, assuming constant time per GBT evaluation, the complexity
of sampling is O(n_samples × n_discretization_steps), where n_samples is the number
of samples drawn from the model, and n_discretization_steps is the number of function
evaluations used by the SDE solver.

22

0 20000 40000 60000 80000 100000
Number of Samples in Dataset

0

20

40

60

80

100
M

ea
n

Tr
ai

ni
ng

 T
im

e
(s

ec
on

ds
)

m5
(9000, 27)

m5
(18000, 27)

m5
(27000, 27)

m5
(36000, 27)

m5
(45000, 27)

m5
(54000, 27)

m5
(63000, 27)

m5
(72000, 27)

m5
(81000, 27)

m5
(90000, 27)

Figure 5: Dataset size vs training time on subsets of the M5 dataset. Error bars are computed over 5
runs. Treeffuser training speed grows linearly with the size of the training points.

0 20000 40000 60000 80000 100000
Number of Samples in Dataset

0

20

40

60

80

100

120

M
ea

n
Tr

ai
ni

ng
 T

im
e

(s
ec

on
ds

)

m5
(90000, 27)
movies
(7415, 9)
bike
(17379, 12)
energy
(768, 8)
kin8nm
(8192, 8)
naval
(11934, 17)

news
(39644, 58)
power
(9568, 4)
superc
(21263, 81)
wine
(6497, 12)
yacht
(308, 6)

Figure 6: Dataset size vs training time on benchmark datasets. Error bars are computed over 5 runs.
Treeffuser trains in under 120 seconds for all datasets.

23

	Introduction
	Background
	Diffusion Models
	Gradient Boosted Trees

	Probabilistic Prediction via Treeffuser
	The Conditional Diffusion Model
	The Trees
	Sampling and Probabilistic Predictions
	Limitations

	Related Work
	Empirical studies
	Probabilistic prediction on synthetic data
	Probabilistic prediction on real-world datasets
	Sales forecasting with long tails and count data
	Runtime Performance Overview

	Conclusion
	A primer on unconditional diffusion models
	Proofs of the main theorems
	Treeffuser default configuration
	Experiments: description of computer resources
	Experiments on synthetic data (supplement)
	Arbitrarily complex synthetic data
	Data with normal likelihood

	Experiments on standard datasets (supplement)
	Baseline methods.
	Hyperparameters of the methods.
	Accuracy and calibration results.

	Ablation study on noise scaling
	Runtime and Complexity

