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Where should a new restaurant be located? 
What type of restaurant would be best in a given 
location? What defines a geographical market? 
These are examples of questions about product 
design and product choice. While there is exten-
sive literature on consumer response to prices, 
there is relatively little attention to firm choices 
about physical location and product character-
istics. Recent trends in digitization have led 
to the creation of many large panel datasets of 
consumers, which in turn motivates the develop-
ment of models that exploit the rich information 
in the data and provide precise answers to these 
questions.

Answering many of these questions requires 
a model that incorporates individual-level 
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 heterogeneity in preferences for product attri-
butes and travel time, as these characteristics 
might vary substantially even within a city; and 
understanding individual heterogeneity in travel 
preferences is a key input for urban planning. 
To this end, we develop an empirical model of 
consumer choices over lunchtime restaurants, 
the travel-time factorization model (TTFM). We 
apply the model to a dataset derived from mobile 
phone locations. The personalized predictions of 
TTFM for individuals and restaurants are more 
accurate than existing methods, especially for 
high-activity individuals and restaurants.

TTFM can answer counterfactual questions 
such as, what would happen if a restaurant with 
a given set of characteristics opened or closed 
in a given location? Using data about several 
hundred openings and closings, we compare 
TTFM’s predictions to actual outcomes.

TTFM incorporates recently developed 
approaches from machine learning for estimating 
models with a large number of latent variables. 
It uses a standard discrete choice framework to 
model each user’s choice over restaurants, infer-
ring the parameters of the users’ utility functions 
from their choice behavior. TTFM differs from 
traditional models in the number of latent vari-
ables; it incorporates a vector of latent charac-
teristics for each restaurant as well as latent user 
preferences for these characteristics. In addition, 
it incorporates heterogeneous user preferences 
for travel distance, which vary by restaurant. 
These distance preferences are represented as 
the inner product of restaurant-specific factors 
and user willingness to travel to restaurants with 
those factors. Finally, TTFM is a hierarchical 
model, where observable restaurant character-
istics affect the distribution of latent restaurant 
characteristics. We use a Bayesian approach to 
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inference, where we estimate posterior distri-
butions over each user’s preferences and each 
restaurant’s characteristics. We rely on sto-
chastic variational inference to approximate the 
posterior distribution with a stochastic gradient 
optimization algorithm.

Our approach builds on a large literature in 
economics and marketing on estimating dis-
crete choice models of consumer behavior (e.g., 
Keane 2015). It also relates to a literature in 
marketing on inferring “product maps” from 
panel data (Elrod 1988). Our estimation strategy 
is drawn from approaches developed in Athey 
et al. (2017) and Ruiz, Athey, and Blei  (2017), 
both of which considered the problem of choos-
ing items from a supermarket, and it also relates 
to Wan et al. (2017). A few authors have esti-
mated consumer preferences for travel time, 
e.g., Neilson (2013).

I. Empirical Model

We model the consumer’s choice of restaurant 
conditional on deciding to go out to lunch. We 
assume that the consumer selects the restaurant 
that maximizes utility, where the utility of user  u  
for restaurant  i  on her  t -th visit is

  U uit   =  λ i   +  θ  u  ⊤   α i   +  μ  i  
⊤   δ  w ut     −  γ  u  

⊤    β i   log( d ui  ) +  ϵ uit   , 

where   w ut    denotes the week in which trip  t  hap-
pens, and   d ui    is the distance from  u  to  i . This 
gives a parameterized expression for the utility:   
λ i    is an intercept term that captures a restau-
rant’s popularity;   θ u    and   α i    are latent vectors 
that model a user’s latent preferences and a 
restaurant’s latent attributes;   β i    is a vector that 
captures a restaurant’s latent factors for travel 
distance and   γ u    is a user’s latent preferences of 
willingness to travel to restaurants with those 
factors;   δ w    and   μ i    are latent vectors of week/
restaurant time effects (this allows us to capture 
varying effects for different parts of the year); 
and   ϵ uit    are error terms, which we assume to be 
independent and identically Gumbel distributed. 
We specify a hierarchical model where observ-
able characteristics of restaurants, denoted by   
x i    , affect the mean of the distribution of latent 
restaurant characteristics   α i    and   β i   . This hier-
archy allows restaurants to share statistical 
strength, which helps to infer the latent variables 
of  low-frequency  restaurants. We estimate the 

posterior over the latent model parameters using 
variational inference. See online Appendix A.A3 
for details.

For comparison, we also consider a simpler 
model, a standard multinomial logit model 
(MNL), which is a restricted version of our 
proposed model: the term   λ i    is constant across 
restaurants,   α i    is set to be equal to the observable 
characteristics of items,   θ u    is constant across 
users,   δ w    is omitted (including it created prob-
lems with convergence of the estimation), and   
γ u   ·  β i    is restricted to be constant across users 
and restaurants.

II. Data, Estimation, and Model Fit

The dataset is from SafeGraph, a company 
that collects anonymous, aggregate locational 
information from consumers who have opted 
into sharing their location through mobile 
applications. The data consists of “pings” from 
consumer phones; each observation includes a 
unique device identifier that we associate with 
an anonymous consumer, the time and date of 
the ping, and the latitude, longitude and accu-
racy of the ping over a sample period from 
January through October 2017.

Using this data, we construct the approxi-
mate “typical” morning location of the con-
sumer, defined as the most common place the 
consumer is found from 9:00 am to 11:15 am 
on weekdays. We restrict attention to consum-
ers whose morning locations are consistent over 
the sample period, and for which these loca-
tions are in a subset of the San Francisco Bay 
Area. We determine that the consumer visited 
a restaurant for lunch if we observed at least 
two pings more than three minutes apart during 
the hours of 11:30 am to 1:30 pm in a location 
that we identify as a restaurant. Restaurants are 
identified using data from Yelp that includes 
geo-coordinates, star ratings, price range, and 
restaurant categories. We narrow the dataset to 
a subset of restaurants that appear sufficiently 
often in the data, and to consumers who visit a 
sufficient number of restaurants. This results in 
a final dataset of 106,889 lunch visits by 9,188 
users to 4,924 locations. Online Appendix A.A2 
gives details and summary statistics.

We divide the dataset into three parts, 70.6 
percent training, 5.0 percent validation, and 24.4 
percent testing. We use the validation dataset to 
select parameters such as the length of the latent 
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vectors   α i    and   β i   , 80 and 16, respectively), while 
we compare models and evaluate performance 
in the test dataset.

Across several measures evaluated on the test 
set, TTFM is a better model than MNL (see Table 
A2 for details). For example, Precision@5 is the 
percentage of times that a user’s chosen restau-
rant is in the set of the top five predicted restau-
rants. It is 35 percent for TTFM and 11 percent 
for MNL. Further, as shown in Figures A4 and 
A5, TTFM predictions improve significantly 
for high-frequency users and restaurants, while 
MNL does not exhibit that improvement. This 
highlights the benefits of personalization: When 
given enough data, TTFM learns user-specific 
preferences.

Figure A7 illustrates that both TTFM and 
MNL fit well the empirical probability of vis-
iting restaurants at varying distances from the 
consumer’s morning location. But Figure A8 
shows that TTFM outperforms MNL at fitting 
the variation in visit rates across restaurants.

III. Parameter Estimates

The distributions of estimated elasticities 
from TTFM are summarized in Table A4 and 
Figure A9. The elasticities in MNL vary only 
because the baseline visit probabilities vary. 
TTFM elasticities are more dispersed, reflect-
ing the personalization capabilities of the TTFM 
model. The average elasticity across consumers 
and restaurants (weighted by trip frequency) is  
− 1 . 41 . Thus, distance matters substantially, 
consistent with the fact that roughly 60 percent 
of visits are within two miles of the consum-
er’s morning location. Across users and restau-
rants, the standard deviation of elasticities in 
the TTFM model is −0.68, while the average 
within-user standard deviation of elasticities is 
−0.30 and the average within-restaurant stan-
dard deviation of elasticities is −0.60.

Willingness to travel is lower for low-priced 
restaurants (elasticity  −1.45  for price range $ 
(under $10) versus  −1.37  for price range $$ 
($11–$30)); lower for Mexican restaurants and 
pizza places than for Chinese and Japanese 
restaurants (elasticities of  −1.50  and  −1.50  
versus  −1.35  and  −1.32  , respectively). Cities 
with many work locations nearby retail districts, 
including San José, Sunnyvale, and Mountain 
View have a lower willingness to travel than 
cities that are more spread out like Daly City, 

Burlingame, San Bruno, and San Mateo. Online 
Appendix A.A5 provides further analysis of 
latent factors and model estimates.

IV. Counterfactuals

The TTFM model can predict how market 
share will be redistributed when restaurants 
open or close, and these predictions can be com-
pared to the actual changes. We focus on 221 
openings and 190 closings where, both before 
and after the change, there were at least 500 
restaurant visits by users with morning locations 
within a 3 mile radius of the relevant restaurant.

One challenge of analyzing market share 
redistribution is that for any given target restau-
rant that opens or closes, we would expect some 
baseline level of market share changes of com-
peting restaurants due to changes in the open sta-
tus of neighboring restaurants. We address this 
in an initial exercise where we hold the environ-
ment fixed in the following way. For each target 
restaurant that changed status, we first construct 
the predicted difference in market shares for each 
other restaurant between the “closed” and “open” 
regime (irrespective of which came first in time), 
and then subtract out the predicted change in 
market share that would have occurred for each 
restaurant if the target restaurant had been closed 
in both periods. We then sum the changes across 
restaurants in different groups defined by their 
distance from the target restaurant. Figure A11 
illustrates the average of the latter statistic across 
target restaurants. The TTFM model estimates 
imply that just over 50 percent of the market 
share impact of a closure accrues to restaurants 
within 2 miles of the target.

Figure A12 compares the actual changes in 
market share that occurred against the predic-
tions of the TTFM model. Our model’s pre-
dictions match well the actual changes that 
occurred, but there is substantial variation in the 
changes that occurred in the actual data.

Our final exercise considers the best choice 
of restaurant type for a location. For the set of 
restaurants that open or close, we look at how 
the demand for the restaurant that changed sta-
tus (the “target restaurant”) compares to the 
counterfactual demand the model predicts in 
the scenario where a different restaurant in our 
sample (as described by its mean latent charac-
teristics) is placed in the location of the target 
restaurant. For each target, we consider a set of 
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200 alternative restaurants, 100 from the same 
category as the target restaurant and 100 from a 
different category. We then compare the target 
restaurant’s estimated market share to the mean 
demand across the set of alternatives. Table 1 
illustrates that both the restaurants that opened 
and those that closed on average have higher 
predicted demand than either group of alterna-
tives (standard errors in parentheses). However, 
the restaurants that opened appear to be in more 
valuable locations, since for the 200 alternative 
restaurants, we predict higher average demand 
if they were (counterfactually) placed at the 
opening locations than at the locations of clos-
ing restaurants. As a further comparison, we 
split the set of alternatives into groups based on 
whether or not they are in the same broad cat-
egory as the restaurant that opened or closed. 
We find alternatives from the same category as 
the target would perform better on average than 
alternatives from a different category. Next, we 
consider the match between restaurant charac-
teristics and locations. In gridcells of roughly 
0.7 × 0.35 miles, we select one restaurant 
location at random and use the TTFM model 
to predict what total demand would have been 
if a different restaurant had been located in its 
place. Figure A13 shows, for example, that the 
most attractive location for Vietnamese restau-
rants is in a dense region southeast of San José. 
Figure A14 illustrates considerable spatial 

 heterogeneity in which restaurant category is 
predicted to perform best in each location.

Beyond these questions, the TTFM model can 
be used to evaluate a wide variety of counterfac-
tual scenarios, and the results can also contrib-
ute to urban planning debates about zoning and 
transportation. In future work we may consider 
a larger set of cities in order to enable more pre-
cise comparisons of the model’s predictions ver-
sus actual outcomes for the impact of restaurants 
opening and closing.
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Table 1—Alternative Restaurant Characteristics for 
Opening and Closing Restaurants

Mean predicted demand Closing Opening

Actual opening/closing
 restaurant

10.33
(0.83)

12.10
(1.14)

Alternative from same 
 category

10.08
(0.12)

10.53
(0.11)

Alternative from different 
 category

9.09
(0.08)

9.71
(0.08)
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