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Abstract
Variational inference is a powerful approach for
approximate posterior inference. However, it is
sensitive to initialization and can be subject to
poor local optima. In this paper, we develop prox-
imity variational inference (pvi). pvi is a new
method for optimizing the variational objective
that constrains subsequent iterates of the varia-
tional parameters to robustify the optimization
path. Consequently, pvi is less sensitive to initial-
ization and optimization quirks and finds better
local optima. We demonstrate our method on four
proximity statistics. We study pvi on a Bernoulli
factor model and sigmoid belief network fit to real
and synthetic data and compare to deterministic
annealing (Katahira et al., 2008). We highlight the
flexibility of pvi by designing a proximity statis-
tic for Bayesian deep learning models such as the
variational autoencoder (Kingma and Welling,
2014; Rezende et al., 2014) and show that it gives
better performance by reducing overpruning. pvi
also yields improved predictions in a deep genera-
tive model of text. Empirically, we show that pvi
consistently finds better local optima and gives
better predictive performance.

1 Introduction

Variational inference (vi) is a powerful method for prob-
abilistic modeling. vi uses optimization to approximate
difficult-to-compute conditional distributions (Jordan et al.,
1999). In its modern incarnation, it has scaled Bayesian
computation to large data sets (Hoffman et al., 2013), gener-
alized to large classes of models (Kingma andWelling, 2014;
Ranganath et al., 2014; Rezende and Mohamed, 2015), and
has been deployed as a computational engine in probabilistic
programming systems (Mansinghka et al., 2014; Kucukelbir
et al., 2015; Tran et al., 2016).
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Despite these significant advances, however, vi has draw-
backs. For one, it tries to iteratively solve a difficult noncon-
vex optimization problem and its objective contains many
local optima. Consequently, vi is sensitive to initialization
and easily gets stuck in a poor solution. We develop a new
optimization method for vi and show that it finds better
optima.

Consider a probability model p(z,x) and the goal of calcu-
lating the posterior p(z | x). The idea behind vi is to posit
a family of distributions over the hidden variables q(z;λ)
and then fit the variational parameters λ to minimize the
Kullback-Leibler (kl) divergence between the approximat-
ing family and the exact posterior, kl(q(z;λ)||p(z | x)).
The kl is not tractable so vi optimizes a proxy. That proxy
is the evidence lower bound (elbo),

L(λ) = E[log p(z,x)]− E[log q(z;λ)], (1)

where expectations are taken with respect to q(z;λ). Maxi-
mizing the elbo with respect to λ is equivalent to minimiz-
ing the kl divergence.

The issues around vi stem from the elbo and the iterative
algorithms used to optimize it. When the algorithm zeroes
(or nearly zeroes) some of the support of q(z;λ), it becomes
hard to later “escape,” i.e., to add support for the configu-
rations of the latent variables that have been assigned zero
probability (MacKay, 2003; Burda et al., 2015). This leads
to poor local optima and to sensitivity to the starting point,
where a misguided initialization will lead to such optima.
These problems happen in both gradient-based and coordi-
nate ascent methods. We address these issues with proximity
variational inference (pvi), a variational inference algorithm
that is specifically designed to avoid poor local optima and
to be robust to different initializations.

pvi builds on the proximity perspective of gradient ascent.
The proximity perspective views each step of gradient ascent
as a constrained minimization of a Taylor expansion of the
objective around the previous step’s parameter (Spall, 2003;
Boyd and Vandenberghe, 2004). The constraint, a proximity
constraint, enforces that the next point should be inside a
Euclidean ball of the previous. The step size relates to the
size of that ball.
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(a) Variational inference
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(b) Proximity variational inference, Algorithm 2

Figure 1: Proximity variational inference (pvi) is robust to bad initialization. We study a Bernoulli factor model. Model
parameters are randomly initialized on a ring around the known true parameters (in red) used to generate the data. The
arrows start at these parameter initializations and end at the final parameter estimates (shown as green dots). (a) Variational
inference with gradient ascent suffers from multiple local optima and cannot reliably recover the truth. (b) pvi with an
entropy proximity statistic reliably infers the true parameters using Algorithm 2.

In vi, a constraint on the Euclidean distance means that
all dimensions of the variational parameters are equally
constrained. We posit that this leads to problems; some
dimensions need more regularization than others. For exam-
ple, consider a variational distribution that is Gaussian. A
good optimization will change the variance parameter more
slowly than the mean parameter to prevent rapid changes
to the support. The Euclidean constraint cannot enforce
this. Furthermore, the constraints enforced by gradient de-
scent are transient; the constraints are relative to the previous
iterate—one poor move during the optimization can lead to
permanent optimization problems.

To this end, pvi uses proximity constraints that are more
meaningful to variational inference and to optimization of
probability parameters. A constraint is defined using a prox-
imity statistic and distance function. As one example, we
consider a constraint based on the entropy proximity statistic.
This limits the change in entropy of the variational approxi-
mation from one step to the next. Consider again a Gaussian
approximation. The entropy is a function of the variance
alone and thus the entropy constraint counters the patholo-
gies induced by the Euclidean proximity constraint. We also
study constraints built from other proximity statistics, such
as those that penalize the rapid changes in the mean and
variance of the approximate posterior.

Figure 1 provides an illustration of the advantages of pvi.
Our goal is to estimate the parameters of a factor analysis
model with variational inference, i.e., using the posterior
expectation under a fitted variational distribution. We run
variational inference 100 times, each time initializing the

estimates (the model parameters) to a different position on a
ring around the truth.

In the figure, red points indicate the true value. The start lo-
cations of the green arrows indicate the initialized estimates.
Green points indicate the final estimates, after optimizing
from the initial points. Panel (a) shows that optimizing the
standard elbo with gradients leads to poor local optima
and misplaced estimates. Panel (b) illustrates that regardless
of the initialization, pvi with an entropy proximity statistic
finds estimates that are close to the true value.

The rest of the paper is organized as follows. Section 2
reviews variational inference and the proximity perspec-
tive of gradient optimization. Section 3 derives pvi; we
develop four proximity constraints and two algorithms for
optimizing the elbo. We study four models in Section 4:
a Bernoulli factor model, a sigmoid belief network (Mnih
and Rezende, 2016), a variational autoencoder (Kingma and
Welling, 2014; Rezende et al., 2014), and a deep exponential
family model of text (Ranganath et al., 2015). pvi outper-
forms classical methods for variational inference.

Related work. Recent work has proposed several related al-
gorithms. Khan et al. (2015) and Theis and Hoffman (2015)
develop a method to optimize the elbo that imposes a soft
limit on the change in kl of consecutive variational approx-
imations. This is equivalent to pvi with identity proximity
statistics and a kl distance function. Khan et al. (2016)
extend both prior works to other divergence functions. Their
general approach is equivalent to pvi identity proximity
statistics and distance functions given by strongly-convex
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divergences. Compared to prior work, pvi generalizes to a
broader class of proximity statistics. We develop proximity
statistics based on entropy, kl, orthogonal weight matrices,
and the mean and variance of the variational approxima-
tion.

The problem of model pruning in variational inference has
also been studied and analytically solved in a matrix fac-
torization model in Nakajima et al. (2013)—this method
is model-specific, whereas pvi applies to a much broader
class of latent variable models. Finally, deterministic anneal-
ing (Katahira et al., 2008) consists of adding a temperature
parameter to the entropy term in the elbo that is annealed to
one during inference. This is similar to pvi with the entropy
proximity statistic which keeps the entropy stable across
iterations. Deterministic annealing enforces global penaliza-
tion of low-entropy configurations of latent variables rather
than the smooth constraint used in pvi, and cannot accom-
modate the range of proximity statistics we design in this
work.

2 Variational inference

Consider a model p(x, z), where x is the observed data and
z are the latent variables. As described in Section 1, vi
posits an approximating family q(z;λ) and maximizes the
elbo in Equation (1). Solving this optimization is equiva-
lent to finding the variational approximation that minimizes
kl divergence to the exact posterior (Jordan et al., 1999;
Wainwright and Jordan, 2008).

2.1 Gradient ascent has Euclidean proximity

Gradient ascent maximizes the elbo by repeatedly following
its gradient. One view of this algorithm is that it repeatedly
maximizes the linearized elbo subject to a proximity con-
straint on the current variational parameter (Spall, 2003).
The name ‘proximity’ comes from constraining subsequent
parameters to remain close in the proximity statistic. In
gradient ascent, the proximity statistic for the variational pa-
rameters is the identity function f(λ) = λ, and the distance
function is the square difference.

Let λt be the variational parameters at iteration t and ρ be
a constant. To obtain the next iterate λt+1, gradient ascent
maximizes the linearized elbo,

U(λt+1) =L(λt) +∇L(λt)
>(λt+1 − λt)

− 1

2ρ
(λt+1 − λt)

>(λt+1 − λt).
(2)

Specifically, this is the linearized elbo around λt, sub-
ject to λt+1 being close to λt in squared Euclidean dis-
tance.

Finding the λt+1 which maximizes Equation (2)

yields

λt+1 = λt + ρ∇L(λt). (3)

This is the familiar gradient ascent update with a step size of
ρ. The step size ρ controls the radius of the Euclidean ball
which demarcates valid next steps for the parameters. Note
that the Euclidean constraint between subsequent iterates is
implicit in all gradient ascent algorithms.

2.2 An example where variational inference
fails

We study a setting where variational inference suffers from
poor local optima. Consider a factor model, with Bernoulli
latent variables and Gaussian likelihood:

zik ∼ Bernoulli(π) (4)
xi ∼ Gaussian

(
µ =

∑
k zikµk, σ

2 = 1
)
. (5)

This is a “feature” model of real-valued data x; when one
of the features is on (i.e., zik = 1), the ith mean shifts
according the that feature’s mean parameter (i.e., µk). Thus
the binary latent variables zik control which cluster means
µk contribute to the distribution of xi.

The Bernoulli prior is parametrized by π;
we choose a Bernoulli approximate posterior
q(zk;λk) = Bernoulli(λk). A common approach
to vi is coordinate ascent (Bishop, 2006), where we
iteratively optimize each variational parameter. The optimal
variational parameter for zik is

λik ∝ exp

E−zik

− 1

2σ2
(xi −

∑
j

zijµj)
2

 . (6)

We can use this update in a variational expectation-
maximization setting. The corresponding gradient for µk

is

∂L
∂µk

= − 1

σ2

∑
i

−xiλik + λikµk + λik
∑
j 6=k

λijµj

 .

(7)

Meditating on these two equations reveals a deficiency in
mean-field variational inference. First, if the mean param-
eters µ are initialized far from the data then q∗(zik = 1)
will be very small. The reason is in Equation (6), where
the squared difference between the data xi and the expected
cluster mean will be large and negative. Second, when the
probability of cluster assignment is close to zero, λik is small.
This means that the norm of the gradient in Equation (7) will
be small. Consequently, learning will be slow. We see this
phenomenon in Figure 1 (a). Variational inference arrives
at poor local optima and does not recover the correct cluster
means.
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Algorithm 1: Proximity variational inference
Input: Initial parameters λ0, proximity statistic f(λ),

distance function d
Output: Parameters λ of variational q(λ) that maximize

the elbo objective
while L not converged do

λt+1 ← λt + Noise
while U not converged do

Update λt+1 ← λt+1 + ρ∇λU(λt+1)
end
λt ← λt+1

end
return λ

3 Proximity variational inference

We now develop proximity variational inference (pvi), a vari-
ational inference method that is robust to initialization and
can consistently reach good local optima (Section 3.1). pvi
alters the notion of proximity. We further restrict the iterates
of the variational parameters by deforming the Euclidean
ball implicit in classical gradient ascent. This is done by
choosing proximity statistics that are not the identity func-
tion, and distance functions that are different than the square
difference. These design choices help guide the variational
parameters away from poor local optima (Section 3.2). One
drawback of the proximity perspective is that it requires an
inner optimization at each step of the outer optimization. We
use a Taylor expansion to avoid this computational burden
(Section 3.3).

3.1 Proximity constraints for variational
inference

pvi enriches the proximity constraint in gradient ascent of
the elbo. We want to develop constraints on the iterates
λt to counter the pathologies of standard variational infer-
ence.

Let f(·) be a proximity statistic, and let d be a differentiable
distance function that measures distance between proximity
statistic iterates. A proximity constraint is the combination
of a distance function d applied to a proximity statistic f .
(Recall that in classical gradient ascent, the Euclidean prox-
imity constraint uses the identity as the proximity statistic
and the square difference as the distance.) Let k be the scalar
magnitude of the proximity constraint. We define the prox-
imity update equation for the variational parameters λt+1 to
be

U(λt+1) =L(λt) +∇L(λt)
>(λt+1 − λt)

− 1

2ρ
(λt+1 − λt)

>(λt+1 − λt)

− k · d(f(λ̃), f(λt+1)),

(8)

Algorithm 2: Fast proximity variational inference
Input: Initial parameters λ0, adaptive learning rate

optimizer, proximity statistic f(λ), distance d
Output: Parameters λ of the variational distribution q(λ)

that maximize the elbo objective
while Lproximity not converged do

λt+1 =
λt + ρ(∇L(λt)− k · (∇d(f(λ̃), f(λt))∇f(λt)).
λ̃ = αλ̃+ (1− α)λt+1

end
return λ

where λ̃ is the variational parameter to which we are mea-
suring closeness. In gradient ascent, this is the previous
parameter λ̃ = λt, but our construction can enforce proxim-
ity to more than just the previous parameters. For example,
we can set λ̃ to be an exponential moving average1—this
adds robustness to one-update optimization missteps.

The next parameters are found by maximizing Equation (8).
This enforces that the variational parameters between up-
dates will remain close in the proximity statistic f(λ). For
example, f(λ) might be the entropy of the variational ap-
proximation; this can avoid zeroing out some of its support.
This procedure is detailed in Algorithm 1. The magnitude k
of the constraint is a hyperparameter. The inner optimization
loop optimizes the update equation U at each step.

3.2 Proximity statistics for variational inference

We describe four proximity statistics f(λ) appropriate for
variational inference. Together with a distance function,
these proximity statistics yield proximity constraints. (We
study them in Section 4.)

Entropy proximity statistic. Consider a constraint built
from the entropy proximity statistic, f(λ) = H(q(z;λ)).
Informally, the entropy measures the amount of randomness
present in a distribution. High entropy distributions look
more uniform across their support; low entropy distributions
are peaky.

Using the entropy in Equation (8) constrains all updates to
have entropy close to their previous update. When the vari-
ational distributions are initialized with large entropy, this
statistic balances the “zero-forcing” issue that is intrinsic
to variational inference (MacKay, 2003). Figure 1 demon-
strates how pvi with an entropy constraint can correct this
pathology.

kl proximity statistic. We can rewrite the elbo to in-
clude the kl between the approximate posterior and the

1The exponential moving average of a variable λ is denoted λ̃
and is updated according to λ̃ ← αλ̃+ (1 − α)λ, where α is a
decay close to one.
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prior (Kingma and Welling, 2014),

L(λ) = E[log p(x | z)]−KL(q(z | x;λ)||p(z)).

Flexible models tend to minimize the kl divergence too
quickly and get stuck in poor optima (Bowman et al., 2016;
Higgins et al., 2016). The choice of kl as a proximity
statistic prevents the kl from being optimized too quickly
relative to the likelihood.

Mean/variance proximity statistic. A common theme in
the problems with variational inference is that the bulk of the
probability mass can quickly move to a point where that di-
mension will no longer be explored (Burda et al., 2015). One
way to address this is to restrict the mean and variance of the
variational approximation to change slowly during optimiza-
tion. This constraint only allows higher order moments of
the variational approximation to change rapidly. The mean
µ = Eq(z;λ)[z] and variance Var(z) = Eq(z;λ)[(z−µ)2] are
the statistics f(λ) we constrain.

Orthogonal proximity statistic. In Bayesian deep learn-
ing models such as the variational autoencoder (Kingma
and Welling, 2014; Rezende et al., 2014) it is common to
parametrize the variational distribution with a neural net-
work. Orthogonal weight matrices make optimization easier
in neural networks by allowing gradients to propagate fur-
ther (Saxe et al., 2013). We can exploit this fact to design
an orthogonal proximity statistic for the weight matricesW
of neural networks: f(W ) = WW>. With an orthogonal
initialization for the weights, this statistic enables efficient
optimization.

We gave four examples of proximity statistics that, together
with a distance function, yield proximity constraints. We
emphasize that any function of the variational parameters
f(λ) can be designed to ameliorate issues with variational
inference. We discuss how to select a proximity statistic in
Section 5.

3.3 Linearizing the proximity constraint for fast
proximity variational inference

pvi in Algorithm 1 requires optimizing the update equation,
Equation (8), at each iteration. This rarely has a closed-form
solution and requires a separate optimization procedure that
is computationally expensive.

An alternative is to use a first-order Taylor expansion of the
proximity constraint. Let∇d be the gradient with respect to
the second argument of the distance function, and f(λ̃) be
the first argument to the distance. We compute the expansion

Inference method elbo Likelihood

Variational inference −121.4 −113.7
Deterministic annealing −116.8 −108.8
pvi, Entropy constraint −113.3 −106.7
pvi, Mean/variance constraint −114.9 −107.4

Table 1: Proximity variational inference improves on
deterministic annealing (Katahira et al., 2008) and vi in
a one-layer sigmoid belief network. We report the test set
evidence lower bound (elbo) and marginal likelihood on the
binary MNIST dataset (Larochelle and Murray, 2011). The
model has one stochastic layer of 200 latent variables. pvi
outperforms deterministic annealing (Katahira et al., 2008)
and the classical variational inference algorithm.

around λt (the variational parameters at step t),

U(λt+1) =L(λt) +∇L(λt)
>(λt+1 − λt)

− 1

2ρ
(λt+1 − λt)

>(λt+1 − λt)

− k · (d(f(λ̃), f(λt))

+∇d(f(λ̃), f(λt))∇f(λt)
>(λt+1 − λt)).

This linearization enjoys a closed-form solution for the vari-
ational parameters λt+1,

λt+1 = λt + ρ(∇L(λt)− k · (∇d(f(λ̃), f(λt))∇f(λt)).
(9)

Note that setting λ̃ to the current parameter λt removes the
proximity constraint. Distance functions are minimized at
zero so their derivative is zero at that point.

Fast pvi is detailed in Algorithm 2. Unlike pvi in Algo-
rithm 1, the update in Equation (9) does not require an inner
optimization. Fast pvi is tested in Section 4. The complexity
of fast pvi is similar to standard vi because fast pvi opti-
mizes the elbo subject to the distance constraint in f . (The
added complexity comes from computing the derivative of
f ; no inner optimization loop is required.)

Finally, note that fast pvi implies a global objective which
varies over time. It is
Lproximity(λt+1) =Eq[log p(x, z)]− Eq[log q(λt+1)]

− k · d(f(λ̃), f(λt+1)).

Because d is a distance, this remains a lower bound on the
evidence, but where new variational approximations remain
close in f to previous iterations’ distributions.

4 Experiments

We developed proximity variational inference (pvi). We
now empirically study pvi, variational inference, and deter-
ministic annealing (Katahira et al., 2008).
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Inference method elbo Likelihood

Variational inference −116.2 −104.9
Deterministic annealing −102.0 −94.2
pvi, Entropy constraint −99.7 −93.2
pvi, Mean/variance constraint −100.7 −93.3

Table 2: Proximity variational inference improves over
deterministic annealing and vi in a three-layer sigmoid
belief network. The model has three layers of 200 latent
variables. We report the evidence lower bound (elbo) and
marginal likelihood on the MNIST test set (Larochelle and
Murray, 2011).

We first study sigmoid belief networks and find that pvi
improves over deterministic annealing and vi in terms of
held-out values of the elbo and marginal likelihood. We
then study a variational autoencoder model of images. Using
an orthogonal proximity statistic, we show that pvi improves
over classical vi by reducing overpruning. Finally, we study
a deep generative model fit to a large corpus of text, where
pvi yields better predictive performance with little hyperpa-
rameter tuning.2

Hyperparameters. For pvi, we use the inverse Huber
distance for d.3 The inverse Huber distance penalizes smaller
values than the square difference. For pvi Algorithm 2, we
set the exponential moving average decay constant for λ̃ to
α = 0.9999. We set the constraint scale k (or temperature
parameter in deterministic annealing) to the initial absolute
value of the elbo unless otherwise specified. We explore
two annealing schedules for pvi and deterministic annealing:
a linear decay and an exponential decay. For the exponential
decay, the value of the magnitude at iteration t of T total
iterations is set to k·γ t

T where γ is the decay rate. We use the
Adam optimizer (Kingma and Ba, 2015) unless otherwise
specified.

4.1 Sigmoid belief network

The sigmoid belief network is a discrete latent variablemodel
with layers of Bernoulli latent variables (Neal, 1992; Ran-
ganath et al., 2015). It is used to benchmark variational
inference algorithms (Mnih and Rezende, 2016). The ap-
proximate posterior is a collection of Bernoullis, parameter-
ized by an inference network with weights and biases. We fit

2We also compared pvi to Khan et al. (2015). Specifically,
we tested pvi on the Bayesian logistic regression model from that
paper and with the same data. Because Bayesian logistic regres-
sion has a single mode, all methods performed equally well. We
note that we could not apply their algorithm to the sigmoid belief
network because it would require approximating difficult iterated
expectations.

3We define the inverse Huber distance d(x, y) to be |x− y| if
|x−y| < 1 and 0.5(x−y)2+0.5 otherwise. The constants ensure
the function and its derivative are continuous at |x− y| = 1.

these variational parameters with vi, deterministic anneal-
ing (Katahira et al., 2008), or pvi, and learn the model pa-
rameters (weights and biases) using variational expectation-
maximization.

We learn the weights and biases of the model with gradient
ascent. We use a step size of ρ = 10−3 and train for 4× 106

iterations with a batch size of 20. For pvi Algorithm 2 and
deterministic annealing, we grid search over exponential de-
cays with rates γ ∈ {10−5, 10−6, ..., 10−10, 10−20, 10−30}
and report the best results for each algorithm. (We also
explored linear decays but they did not perform as well.)
To reduce the variance of the gradients, we use the leave-
one-out control variate of Mnih and Rezende (2016) with 5
samples. (This is an extension to the black box variational
inference algorithm in Ranganath et al. (2014).)

Results on MNIST. We train a sigmoid belief network
model on the binary MNIST dataset of handwritten dig-
its (Larochelle and Murray, 2011). For evaluation, we com-
pute the elbo and held-out marginal likelihood with im-
portance sampling on the validation set of 104 digits (using
5000 samples, as in Rezende et al. (2014)). In Table 1 we
show the results for a model with one layer of 200 latent
variables. Table 2 displays similar results for a three-layer
model with 200 latent variables per layer. In both one and
three-layer models the kl proximity statistic performs worse
than the mean/variance and entropy statistics; it requires
different decay schedules. Overall, pvi with the entropy and
mean/variance proximity statistics yields improvements in
the held-out marginal likelihood in comparison to determin-
istic annealing and vi.

4.2 Variational autoencoder

To demonstrate the value of designing proximity statistics
tailored to specific models, we study the variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014).
This model is difficult to optimize, and current optimization
techniques yield solutions that do not use the full model
capacity (Burda et al., 2015). In Section 3.2 we designed an
orthogonal proximity statistic to make backpropagation in
neural networks easier. We show that this statistic enables
us to find a better approximate posterior in the variational
autoencoder by reducing overpruning.

We fit the variational autoencoder to binary MNIST
data (Larochelle and Murray, 2011) with variational
expectation-maximization. The model has one layer of 100
Gaussian latent variables. The inference network and gen-
erative network are chosen to have two hidden layers of
size 200 with rectified linear units (ReLUs). We use an
orthogonal initialization for the inference network weights.
The learning rate is set to 10−3 and we run vi and pvi
for 5 × 104 iterations. The orthogonal proximity statistic
changes rapidly during optimization, so we use constraint
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Inference method elbo Likelihood

Variational inference −101.0 −94.2
pvi, Orthogonal constraint −100.4 −93.9

Table 3: Proximity variational inference with an orthog-
onal proximity statistic makes optimization easier in a
variational autoencoder model (Kingma and Welling,
2014; Rezende et al., 2014). We report the held-out evi-
dence lower bound (elbo) and estimates of the marginal
likelihood on the binarized MNIST (Larochelle and Murray,
2011) test set.

magnitudes k ∈ {1, 10−1, 10−2, ..., 10−5}, with no decay,
and report the best result.

We compute the elbo and importance-sampled marginal
likelihood estimates on the validation set. In Table 3 we
show that pvi with the orthogonal proximity statistic on the
weights of the inference network enables easier optimization
and improves over vi.

Why does pvi improve upon vi in the variational autoen-
coder? The choice of rectified linear units in the infer-
ence network allows us to study overpruning of the latent
code (MacKay, 2001; Burda et al., 2015). We study the frac-
tion of ‘dead ReLUs’— the fraction of rectified linear units
in each layer of the inference neural network whose input
is below zero. With pvi Algorithm 2 and the orthogonal
proximity constraint, the inference network has 1.6% fewer
dead ReLUs in the hidden layer and shows a 3.2% reduction
in the output layer than in the same model learned using
classic variational inference.

Once the input to a ReLU drops below zero, the unit stops
receiving gradient updates. The output layer parametrizes
the latent variable distribution, so this means pvi reduced
the pruning of the approximate posterior and led to the uti-
lization of 3 additional latent variables. This is the reason it
outperformed a variational autoencoder fit with vi.

4.3 Deep generative model of text

Deep exponential family models, Bayesian analogues to neu-
ral networks, represent a flexible class of models (Ranganath
et al., 2015). However, black box variational inference is
commonly used to fit these models, which requires variance
reduction (Ranganath et al., 2014). Deep exponential family
models with Poisson latent variables present a challenging
approximate inference problem because they are discrete and
high-variance. We demonstrate that pvi with the mean/vari-
ance proximity constraint improves predictive performance
in such an unsupervised model of text.

The generative process for a 1-layer deep exponential family
model of text, with Poisson latent variables and Poisson

Inference method Perplexity

Variational inference 2329
pvi, Mean/variance constraint 2294

Table 4: Proximity variational inference with a mean/-
variance proximity statistic improves predictive perfor-
mance in a deep exponential family model with Poisson
latent variables. We report the held-out perplexity on the
Science corpus of journal articles.

likelihood, is

z ∼ Poisson(λ) (10)
x ∼ Poisson(z>g(W )), (11)

whereW are real-valued model parameters and g is an ele-
mentwise function that maps to the positive reals (we use the
softplus function). The dimension of z isK, so the model
parameters must have shape (K,V ) where V is the cardi-
nality of the count-valued observations x. We use this as a
model of documents, so x is the bag-of-words representa-
tion of word counts,W represents the common factors in
documents, and the per-document latent variable z captures
which factors are prevalent in the language used in each
document.

We study the performance of our method on a corpus of
articles from the academic journal Science. The corpus
contains 138K documents in the training set, 1K documents
in the test set, and 5.9K terms. We set the latent dimension to
100, and fit the variational Poisson parameters using black
box variational inference (Ranganath et al., 2014) using
minibatches of size 64 and 32 samples of the latent variables
to estimate the gradients.

Poisson variables have high variance, so we use the opti-
mal control variate scaling developed in Ranganath et al.
(2014) and estimate this scaling in a round-robin fashion as
in Mnih and Rezende (2016) for efficiency. We use the RM-
SProp adaptive gradient optimizer (Tieleman and Hinton,
2012) with a step size of 0.01. For pvi Algorithm 2 with
the mean/variance proximity statistic, we use an exponential
decay for the constraint and test decay rates γ of 10−5 and
10−10. We train for 106 iterations on the Science corpus, us-
ing variational expectation-maximization to learn the model
parameters.

For evaluation, we keep the model parameters fixed and hold
out 90% of the words in each document in the test set. Using
the 10% of observed words in each document, we learn the
variational parameters using pvi or variational inference
with 300 iterations per document. We compute perplexity
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university fig disease
new dna virus

department protein hiv
york cells aids

research cell human
science gene patients
state binding diseases

laboratory two cases
national sequence infection
california proteins infected

Table 5: The top ten words for three factors of a deep
exponential family model with Poisson latent variables
fit to the Science corpus of scientific articles. We show
topics from a model fit with proximity variational inference;
the topics for the same model fit with variational inference
are similar.

on the held-out documents, which is given by

exp

(−∑d∈docs
∑

w∈d log p(w | # held-out in d)
Nheld-out words

)
.

(12)

Conditional on the number of held-out words in a document,
the distribution over held-out words is multinomial. The
mean of the conditional multinomial is the normalized Pois-
son rate of the document matrix-multiplied with the softplus
of the weights. This is the same evaluation metric as in
Ranganath et al. (2015).

The results of fitting the model to the corpus of Science
documents are reported in Table 4 and Table 5. While the
topics found by models fit with both pvi and vi are similar,
pvi gives significantly better predictive performance in terms
of held-out perplexity.

5 Discussion

We presented proximity variational inference, a flexible
method designed to avoid bad local optima. We showed
that classic variational inference gets trapped in these lo-
cal optima and cannot recover. The choice of proximity
statistic f and distance d enables the design of a variety
of constraints that improve optimization. As examples of
proximity statistics, we gave the entropy, kl divergence, or-
thogonal proximity statistic, and the mean and variance of
the approximate posterior. We evaluated our method in four
models to demonstrate that it is easy to implement, readily
extensible, and leads to beneficial statistical properties of
variational inference algorithms.

The empirical results also yield guidelines for choosing prox-
imity statistics. The entropy is useful for models with dis-
crete latent variables which are prone to quickly getting stuck

in local optima or flat regions of the objective. We also saw
that the kl statistic gives poor performance empirically, and
that the orthogonal proximity statistic reduces pruning in
deep generative models such as the variational autoencoder.
In models like the deep exponential family model of text,
the entropy is not tractable so the mean/variance proximity
statistic is a natural choice.

Future work. Simplifying optimization is necessary for
truly black-box variational inference. An adaptivemagnitude
decay based on the value of the constraint should further
improve the technique (this could be done per-parameter).
New proximity constraints are also easy to design and test.
For example, the variance of the gradients of the variational
parameters is a valid proximity statistic—which can be used
to avoid variational approximations that have high-variance
gradients. Another set of interesting proximity statistics are
empirical statistics of the variational distribution, such as the
mean, for when analytic forms are unavailable. We also leave
the design and study of constraints that admit coordinate
updates to future work.
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