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Abstract. Data in the form of multiple matrices of relations among ob-
jects of a single type, representable as a collection of unipartite graphs,
arise in a variety of biological settings, with collections of author-recipient
email, and in social networks. Clustering the objects of study or situat-
ing them in a low dimensional space (e.g., a simplex) is only one of
the goals of the analysis of such data; being able to estimate relational
structures among the clusters themselves may be important. In [1], we
introduced the family of stochastic block models of mixed membership
to support such integrated data analyses. Our models combine features
of mixed-membership models and block models for relational data in a
hierarchical Bayesian framework. Here we present a nested variational in-
ference scheme for this class of models, which is necessary to successfully
perform fast approximate posterior inference, and we use the models and
the estimation scheme to examine two data sets. (1) a collection of socio-
metric relations among monks is used to investigate the crisis that took
place in a monastery [2], and (2) data from a school-based longitudinal
study of the health-related behaviors of adolescents. Both data sets have
recently been reanalyzed in [3] using a latent position clustering model
and we compare our analyses with those presented there.

1 Introduction

Relational information arise in a variety of settings, e.g., in scientific literature
papers are connected by citation, in the word wide web the webpages are con-
nected by hyperlinks, and in cellular systems the proteins are often related by
physical protein-protein interactions revealed in yeast-two-hybrid experiments.
These types of relational data violate the assumptions of independence or ex-
changeability of objects adopted in many conventional analyses. In fact, the
relationships themselves between objects are often of interest in addition to the
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object attributes. For example, one may be interested in predicting the citations
of newly written papers or the likely links of a web-page, or in clustering cellular
proteins based on patterns of interactions between them.

In many such applications, clustering the objects of study or projecting them
in a low dimensional space (e.g., a simplex) is only one of the goals of the analysis.
Being able to estimate the relational structures among the clusters themselves
is often as important as object clustering. For example, from observations about
email communications of a study population, one may be not only interested in
identifying groups of people of common characteristics or social states, but also
at the same time exploring how the overall communication volume or pattern
among these groups can reveal the organizational structures of the population.
A popular class of probabilistic models for relational data analysis are based on
the stochastic block model (SBM) formalism for psychometric and sociological
analysis pioneered by Holland and Leinhardt [4], and later extended in various
contexts [5,6,7,8,9]. In machine learning, Markov random networks have been
used for link prediction [10] and the traditional block models have been extended
to include nonparametric Bayesian priors [11,12] and to integrate relations and
text [13]. Typically, these models posit that every node in a study network is
characterized by a unary latent aspect that accounts for its interaction patterns
to peers in the networks; and conditioning on the observed network topology
one can reason about these latent aspects of nodes via posterior inference.

Largely disjoint from the network analysis literature, methodologies for latent
aspect modeling have also been widely investigated in the contexts of different
informational retrieval problems concerning modeling the high-dimensional non-
relational attributes such as text content or genetic-allele profile. In many of
these domains, variants of a mixed membership formalism have been proposed
to capture a more realistic assumption about the observed attributes, that the
observations are resulted from contributions from multiple latent aspects rather
than a unary aspects as assumed in most extant network models such as SBM.
The mixed membership models have emerged as a powerful and popular ana-
lytical tool for analyzing large databases involving text [14], text and references
[15,16], text and images [17], multiple disability measures [18,19], and genetics in-
formation [20,21,22]. These models often employ a simple generative model, such
as a bag-of-words model or a naive Bayes, embedded in a hierarchical Bayesian
framework involving a latent variable structure that combines multiples latents
aspects. This scheme induces dependencies among the objects’ relational behav-
iors in the form of probabilistic constraints over the estimation of what might
otherwise be an extremely large set of parameters.

In modern network analysis tasks described above, it is desirable to also re-
lax the unary-aspect assumption on each node imposed by extant models. We
have proposed a new class of stochastic network models based the principle of
stochastic block models of mixed membership [1], which combines features of the
mixed-membership models [18] and the block models [23,24,25,9] via a hierarchi-
cal Bayesian framework, and offers a flexible machinery to capture rich semantic
aspects of various network data. In this paper, we describe an instantiation of
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this class of model, referred to as admixture of latent blocks (ALB) [26] to rea-
sons to be explained shortly, for analyzing networks of objects with multiple
latent roles (e.g., social activities in case the objects refer to people, or biological
functions in case the objects refer to proteins). As mentioned above, classical
network models such as the stochastic block models only allow each nodes to
bear a single role. Our model alleviates this constraint, and furthermore posits
that each nodes can adopt different roles when interacting with different other
nodes.

Here is an outline of the rest of the paper. In Sections 2 we present the
statistical formulation of the Admixture of Latent Blocks model (ALB). Then, in
Section 3, we describe a variational inference algorithm for latent role inference
and approximate maximum likelihood parameter estimation. In Section 4, we
apply our model to two social networks widely studied in the literature, and we
compare results of our analysis with that from a latent space model recently
developed by Handcock, et al. [3].

2 The Statistical Model

We concern ourselves with modeling data represented as a collection of directed
unipartite graphs. A unipartite graph is a graph whose nodes are of a single
type, e.g., individual human beings in case of a person-to-person communication
network, as opposed to bipartite and multipartite graphs, where the nodes are of
two or multiple types (e.g., genes-to-experiments [14,27] or employees-to-tasks-
to-resources [28]).

Let G = (N,R) denote a graph with edge set R on node set N . We consider
situations where we observe a collection of M unipartite graphs, G = {Gm : r =
1, . . . ,M} defined on a common set of nodes N , of which the presence or absence
of edges between node-pair i and j in graph Gm is denoted by variable Rm(p, q).
For example, in our experiment presented in the sequel, N corresponds a group
of monks in a monestary [2], and {Rm(p, q)} correspond to the relationships
measured among these monks over a period. We observe typically asymmetric
binary relations such as “Do you like X?”, over a sequence of time.

Nodes &
Relations
(observable)

Clusters &
Mappings
(latent) Map π

not 1-to-1

Map B
not a tree

Inference
1:N

Fig. 1. The scientific problem at a glance. The goal of the analysis is to make inference
on two mappings; nodes-to-clusters (via π1:N ) and clusters-to-clusters (via B). The
facts that B does not necessarily encode a tree, and that π1:N is not necessarily one-
to-one distinguish our formulation from typical hierarchical and hard clustering.
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The analysis of such data typically focuses on the following objectives: (1)
identifying clustering of nodes; (2) determining the number of clusters; and (3)
estimating the probability distribution of interactions among actors within and
between clusters. Back to the example of the monestary social network, objective
1 translates to identifying the solid factions among monks, In addition one wants
to determine how many factions are likely to exist in the monastery, and how
the factions relate to one another.

2.1 The Model

Our approach detailed below employs a hierarchical Bayesian formalism that
encodes statistical assumptions underlying a network generative process. This
process generates the observed networks according to the latent distribution
of the hypothetical group-involvement of each monk, as specified by a mixed-
memembership multinomial vector π := [π1, . . . , πK ]′ where πi denote the proba-
bility of a monk belonging to group i; and the probabilities of having
interactions between different groups, as defined by a matrix of Bernoulli rates
B(K×K) = {Bij} where Bij represents the probability of having a link between
a monk from group i and a monk from group j. Each monk is associated with a
unique π, meaning that he can be simultaneously belonging to multiple groups,
and the degree of involvements in different groups is unique for each monk; and
π of different monks independently follow a Dirichlet distribution parameterized
by α.

More generally, for graph m and each node, let indicator vector 1 zm
p→q denote

the group membership of node p when it is to approach with node q; let zm
p←q

denote the group membership of node q when it is approached by node p; let
N := |N | denote the number of nodes in the graph; and letK denote the number
of distinct groups a node can belong to. An admixture of latent blocks (ALB)
model posit that a sequence of M networks can be instantiated according to the
following procedure:

– For each node p = 1, . . . , N :

• πp ∼ Dirichlet
(
α

)
sample a K dimensional mixed membership vector;

– for each network Gm, and each pair of nodes (p, q) ∈ [1, N ] × [1, N ] (denote p as
the initiator and q as the receiver) in Gm:

• zm
p→q ∼ Multinomial

(
πp

)
sample membership indicator for the initiator,

• zm
p←q ∼ Multinomial

(
πq

)
sample membership indicator for the receiver,

• Rm(p, q) ∼ Bernoulli
(

zm �
p→qB zm

p←q

)
sample the value of their interaction.

It is noteworthy that in the above model, the group membership of each node
is context dependent, that is, each nodes can assume different membership when
interacting to or being interacted by different peers. Therefore, each node is
statistically an admixture of group-specific interactions, and we denote the two
sets of latent group indicators corresponding to the m-th observed network by

1 An indicator vector of memberships in one of the K groups is defined as a
K-dimensional vector of which only one element whose index corresponds to the
id of the group to be indicated equals to one, and all other elements equal to zero.
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{zm
p→q : p, q ∈ N} =: Z→m and {zm

p←q : p, q ∈ N} =: Z←m . Marginalizing out the
latent group indicators, it is easy to show that the probability of observing an
interaction between node p and q across the M networks is σ̄pq = π �p B πq.

Under an ALB model outlined above, the joint probability distribution of the
data, R1:M , and the latent variables (π1:N , Z

→
1:M , Z←1:M ) can be written in the

following factored form:

p(R1:M ,π1:N , Z
→
1:M , Z←1:M |α, B) (1)

=
∏

m

∏

p,q

P (Rm(p, q)|zm
p→q, z

m
p←q, B)P (zm

p→q|πp)P (zm
p←q|πq)

∏

p

p3(πp|α).

To compute the likelihood of the observed networks, one needs to marginalize
out the hidden variables π and Z for all notes, which is intractable for even
for small graphs. In §3, we describe a variational scheme to approximate this
likelihood for parameter estimation.

2.2 Dealing with Sparsity

Most networks in real world are sparse, meaning that most pairs of nodes do not
have edges connecting them. But in many network analyses, observations about
interactions and non-interactions are equally important in terms of their contri-
butions to model fitness. In other words, they would compete for a statistical ex-
planation in terms of estimates for parameters (α, B), and would both influence
the distribution of latent variables such as π1:N . A non desirable consequence
of this, in scenarios where interactions are rare, is that parameter estimation
and posterior inference would explain patterns of non-interaction rather than
patterns of interaction.

In order to be able to calibrate the importance of rare interactions, we intro-
duce the sparsity parameter ρ ∈ [0, 1], which models how often a non-interaction
is due to measurement noise (which is common in certain experimentally derived
networks such as the protein-protein interaction networks) and how often it car-
ries information about the group memberships of the nodes. This leads to a small
extension of the generative process outlined in the last subsection. Specifically,
instead of drawing an edge directly from a Bernoulli with rate zm �

p→qB zm
p←q,

now we sample an interaction with probability σm
pq = (1 − ρ) · zm �

p→qB zm
p←q;

therefore the probability of having no interaction this pair of nodes is 1− σm
pq =

(1 − ρ) · zm �
p→q (1 − B) zm

p←q + ρ. This is equivalent to re-parameterizing the in-
teraction matrix B. During estimation and inference, a large value of ρ would
cause the interactions in the matrix to be weighted more than non-interactions
in determining the estimates of (α, B,π1:N ).

3 Parameter Estimation and Posterior Inference

We use an empirical Bayes framework for estimating the parameters (α, B), and
employ a mean-field approximation scheme [29] for posterior inference of the
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(latent) mixed-membership vectors, π1:N . Model selection can be performed to
determine the plausible value of K—the number of groups of nodes—based on
a strategy described in [30].

In order to estimate (α, B) and infer the posterior distributions of π1:N we
need to be able to evaluate the likelihood, which involves the non-tractable in-
tegral over Z and π1:N in Equation 1. Given the large amount of data available
for most networks, we focus on approximate posterior inference strategies in
the context of variational methods, and we find a tractable lower bound for the
likelihood that can be used as a surrogate for inference purposes. This leads to
approximate MLEs for the hyper-parameters and approximate posterior distri-
butions for the (latent) mixed-membership vectors.

3.1 Lower Bound for the Likelihood

According to the mean-field theory [29,31], one can approximate an intractable
distribution such as the one defined by Equation (1) by a fully factored distri-
bution q(π1:N , Z

→
1:M , Z←1:M ) defined as follows:

q(π1:N , Z
→
1:M , Z←1:M |γ1:N , Φ

→
1:M , Φ←1:M )

=
∏

p

q1(πp|γp)
∏

m

∏

p,q

(
q2(zm

p→q|φm
p→q, 1) q2(zm

p←q |φm
p←q, 1)

)
, (2)

where q1 is a Dirichlet, q2 is a multinomial, andΔ = (γ1:N , Φ
→
1:M , Φ←1:M ) represent

the set of free variational parameters need to be estimated in the approximate
distribution.

Minimizing theKulback-Leibler divergence between this q(π1:N , Z
→
1:M , Z←1:M |Δ)

and the original p(π1:N , Z
→
1:M , Z←1:M defined by Equation (1) leads to the following

approximate lower bound for the likelihood.

LΔ(q,Θ) = Eq

[
log

∏

m

∏

p,q

p1(Rm(p, q)|zm
p→q , z

m
p←q , B)

]

+ Eq

[
log

∏

m

∏

p,q

p2(z
m
p→q|πp, 1)

]
+Eq

[
log

∏

m

∏

p,q

p2(z
m
p←q|πq, 1)

]

+ Eq

[
log

∏

p

p3(πp|α)
] −Eq

[ ∏

p

q1(πp|γp)
]

− Eq

[
log

∏

m

∏

p,q

q2(z
m
p→q|φm

p→q, 1)
] −Eq

[
log

∏

m

∏

p,q

q2(z
m
p←q|φm

p←q, 1)
]
.

Working on the single expectations leads to the following expression,

LΔ(q,Θ) =
∑

m

∑

p,q

∑

g,h

φm
p→q,gφ

m
p←q,h · f (

Rm(p, q), B(g, h)
)

+
∑

m

∑

p,q

∑

g

φm
p→q,g

[
ψ(γp,g) − ψ(

∑

g

γp,g)
]

+
∑

m

∑

p,q

∑

h

φm
p←q,h

[
ψ(γp,h) − ψ(

∑

h

γp,h)
]
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+
∑

p

log Γ (
∑

k

αk) −
∑

p,k

log Γ (αk) +
∑

p,k

(αk − 1)
[
ψ(γp,k) − ψ(

∑

k

γp,k)
]

−
∑

p

log Γ (
∑

k

γp,k) +
∑

p,k

log Γ (γp,k) −
∑

p,k

(γp,k − 1)
[
ψ(γp,k) − ψ(

∑

k

γp,k)
]

−
∑

m

∑

p,q

∑

g

φm
p→q,g log φm

p→q,g −
∑

m

∑

p,q

∑

h

φm
p←q,h log φm

p←q,h

where

f
(
Rm(p, q), B(g, h)

)
= Rm(p, q) logB(g, h)+

(
1−Rm(p, q)

)
log

(
1−B(g, h)

)
;

m runs over 1, . . . ,M ; p, q run over 1, . . . , N ; g, h, k run over 1, . . . ,K; and ψ(x)
is the derivative of the log-gamma function, d log Γ (x)

dx .

3.2 The Expected Value of the Log of a Dirichlet Random Vector

The computation of the lower bound for the likelihood requires us to evaluate
Eq

[
log πp

]
for p = 1, . . . , N . Recall that the density of an exponential family

distribution with natural parameter θ can be written as

p(x|α) = h(x) · c(α) · exp
{ ∑

k

θk(α) · tk(x)
}

= h(x) · exp
{ ∑

k

θk(α) · tk(x) − log c(α)
}
.

Omitting the node index p for convenience, we can rewrite the density of the
Dirichlet distribution p3 as an exponential family distribution,

p3(π|α) = exp
{ ∑

k

(αk − 1) log(πk) − log
∏

k Γ (αk)
Γ (

∑
k αk)

}
,

with natural parameters θk(α) = (αk−1) and natural sufficient statistics tk(π) =
log(πk). Let c′(θ) = c(α1(θ), . . . , αK(θ)); using a well known property of the
exponential family distributions [32] we find that

Eq

[
log πk

]
= Eθ

[
log tk(x)

]
= ψ

(
αk

) −ψ ( ∑

k

αk

)
,

where ψ(x) is the derivative of the log-gamma function, d log Γ (x)
dx .

3.3 Variational E Step

The approximate lower bound for the likelihood LΔ(q,Θ) can be maximized
using exponential family arguments and coordinate ascent [33].

Isolating terms containing φm
p→q,g and φm

p←q,h we obtain Lφm
p→q,g

(q,Θ) and
Lφm

p→q,g
(q,Θ). The natural parameters gm

p→q and gm
p←q corresponding to the



64 E.M. Airoldi et al.

natural sufficient statistics log(zm
p→q) and log(zm

p←q) are functions of the other
latent variables and the observations. We find that

gm
p→q,g = log πp,g +

∑

h

zm
p←q,h · f (

Rm(p, q), B(g, h)
)
,

gm
p←q,h = log πq,h +

∑

g

zm
p→q,g · f (

Rm(p, q), B(g, h)
)
,

for all pairs of nodes (p, q) in the m-th network; where g, h = 1, . . . ,K, and

f
(
Rm(p, q), B(g, h)

)
= Rm(p, q) logB(g, h)+

(
1−Rm(p, q)

)
log

(
1−B(g, h)

)
.

This leads to the following updates for the variational parameters (φm
p→q,φ

m
p←q),

for a pair of nodes (p, q) in the m-th network:

φ̂m
p→q,g ∝ e Eq

[
gm

p→q,g

]
(3)

= e Eq

[
log πp,g

]
· e

∑
h φm

p←q,h· Eq

[
f
(
Rm(p,q),B(g,h)

)]

= e Eq

[
log πp,g

]
·
∏

h

(
B(g, h)Rm(p,q)· (

1 −B(g, h)
)1−Rm(p,q)

)φm
p←q,h

φ̂m
p←q,h ∝ e Eq

[
gm

p←q,h

]
(4)

= e Eq

[
log πq,h

]
· e

∑
g φm

p→q,g · Eq

[
f
(
Rm(p,q),B(g,h)

)]

= e Eq

[
log πq,h

]
·
∏

g

(
B(g, h)Rm(p,q)· (

1 −B(g, h)
)1−Rm(p,q)

)φm
p→q,g

for g, h = 1, . . . ,K. These estimates of the parameters underlying the distribu-
tion of the nodes’ group indicators φm

p→q and φm
p←q need be normalized, to make

sure
∑

k φ
m
p→q,k =

∑
k φ

m
p←q,k = 1.

Isolating terms containing γp,k we obtain Lγp,k
(q,Θ). Setting

∂Lγp,k

∂γp,k
equal to

zero and solving for γp,k yields:

γ̂p,k = αk +
∑

m

∑

q

φm
p→q,k +

∑

m

∑

q

φm
p←q,k, (5)

for all nodes p ∈ P and k = 1, . . . ,K.
The t-th iteration of the variational E step is carried out for fixed values of

Θ(t−1) = (α(t−1), B(t−1)), and finds the optimal approximate lower bound for
the likelihood LΔ∗(q,Θ(t−1)).

3.4 Variational M Step

The optimal lower bound LΔ∗(q(t−1), Θ) provides a tractable surrogate for the
likelihood at the t-th iteration of the variational M step. We derive empirical
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Bayes estimates for the hyper-parameters Θ that are based upon it.2 That is, we
maximize LΔ∗(q(t−1), Θ) with respect to Θ, given expected sufficient statistics
computed using LΔ∗(q(t−1), Θ(t−1)).

Isolating terms containing α we obtain Lα(q,Θ). Unfortunately, a closed form
solution for the approximate maximum likelihood estimate of α does not exist
[14]. We can produce a Newton-Raphson method that is linear in time, where
the gradient and Hessian for the bound Lα are

∂Lα

∂αk
= N

(
ψ

( ∑

k

αk

) −ψ(αk)
)

+
∑

p

(
ψ(γp,k) − ψ

( ∑

k

γp,k

)
)
,

∂Lα

∂αk1αk2

= N

(
I(k1=k2) · ψ′(αk1) − ψ′

( ∑

k

αk

)
)
.

Isolating terms containing B we obtain LB, whose approximate maximum is

B̂(g, h) =
1
M

∑

m

( ∑
p,q Rm(p, q) · φm

p→qg φ
m
p←qh∑

p,q φ
m
p→qg φ

m
p←qh

)
, (6)

for every index pair (g, h) ∈ [1,K] × [1,K].
In Section 2.2 we introduced an extra parameter, ρ, to control the relative

importance of presence and absence of interactions in likelihood, i.e., the score
that informs inference and estimation. Isolating terms containing ρ we obtain
Lρ. We may then estimate the sparsity parameter ρ by

ρ̂ =
1
M

∑

m

( ∑
p,q

(
1 −Rm(p, q)

) · ( ∑
g,h φ

m
p→qg φ

m
p←qh

)

∑
p,q

∑
g,h φ

m
p→qg φ

m
p←qh

)
. (7)

Alternatively, we can fix ρ prior to the analysis; the density of the interaction
matrix is estimated with d̂ =

∑
m,p,q Rm(p, q)/(N2M), and the sparsity param-

eter is set to ρ̃ = (1 − d̂). This latter estimator attributes all the information
in the non-interactions to the point mass, i.e., to latent sources other than the
block model B or the mixed membership vectors π1:N . It does however provide
a quick recipe to reduce the computational burden during exploratory analyses.3

3.5 Smoothing

In problems where the number of clusters is deemed to be likely large a-priori,
we can smooth the (consequently large number of) cluster-to-cluster relation
probabilities encoded in the block model B by positing that all the elements
B(g, h) of the block model are non-observable samples from a common (prior)
distribution. In the admixture of latent blocks model we posit that p(B|λ) is a
collection non-symmetric beta distributions, with a pair of hyper-parameters λ
common to all elements of B.
2 We could term these estimates pseudo empirical Bayes estimates, since they maxi-

mize an approximate lower bound for the likelihood, LΔ∗ .
3 Note that ρ̃ = ρ̂ in the case of single membership. In fact, that implies φm

p→qg =
φm

p←qh = 1 for some (g, h) pair, for any (p, q) pair.
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3.6 The Nested Variational EM Algorithm

The complete algorithm to perform variational inference in the model is de-
scribed in detail in Figure 2. To achieve fast convergence, we employed a highly
effective nested variational inference scheme based on a non-trivial scheduling of
variational parameters updating. The resulting algorithm is also parallelizable
on a computer cluster.

1. initialize γ0
pk = 2N

K
for all p, k

2. repeat
3. for p = 1 to N
4. for q = 1 to N
5. get variational φt+1

p→q and φt+1
p←q = f

(
R(p, q),γt

p,γ
t
q, B

t
)

6. partially update γt+1
p , γt+1

q and Bt+1

7. until convergence

1. initialize φ0
p→q,g = φ0

p←q,h = 1
K

for all g, h
2. repeat
3. for g = 1 to K
4. update φs+1

p→q ∝ f1
(

φs
p←q,γp, B

)

5. normalize φs+1
p→q to sum to 1

6. for h = 1 to K
7. update φs+1

p←q ∝ f2
(

φs
p→q,γq, B

)

8. normalize φs+1
p←q to sum to 1

9. until convergence

Fig. 2. Top: The two-layered variational inference for (γ, φp→q,g, φp←q,h) and M = 1.
The inner algorithm consists of Step 5. The function f is described in details in the
bottom panel. The partial updates in Step 6 for γ and B refer to Equation 5 of Section
3.3 and Equation 6 of Section 3.4, respectively. Bottom: Inference for the variational
parameters (φp→q,φp←q) corresponding to the basic observation R(p, q). This nested
algorithm details Step 5 in the top panel. The functions f1 and f2 are the updates for
φp→q,g and φp←q,h described in Equations 3 and 4 of Section 3.3.

In a näıve iteration scheme for variational inference, one would initialize the
variational Dirichlet parameters γ1:N and the variational multinomial parame-
ters (φp→q,φp←q) to non-informative values, and then iterate until convergence
the following two steps: (i) update φp→q and φp←q for all edges (p, q), and (ii)
update γp for all nodes p ∈ N . In such algorithm, at each variational inference
cycle we need to allocate NK + 2N2K scalars. In our experiments [1] the näıve
variational algorithm often failed to converge, or converged after a large number
of iterations. We attribute this behavior to a dependence that our two main
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assumptions (block model and mixed membership) induce between γ1:N and B,
which is not satisfied by the näıve algorithm. Some intuition about why this may
happen follows. From a purely algorithmic perspective, the näıve variational EM
algorithm instantiates a large coordinate ascent algorithm, where the parame-
ters can be semantically divided into coherent blocks. Blocks are processed in a
specific order, and the parameters within each block get all updated each time.4

At every new iteration the näıve algorithm sets all the elements of γt+1
1:N equal

to the same constant. This dampens the likelihood by suddenly breaking the
dependence between the estimates of parameters in γ̂t

1:N and in B̂t that was
being inferred from the data during the previous iteration.

Instead, the nested variational inference algorithm maintains some of this
dependence that is being inferred from the data across the various iterations.
This is achieved mainly through a different scheduling of the parameter updates
in the various blocks. To a minor extent, the dependence is maintained by always
keeping the block of free parameters, (φp→q,φp←q), optimized given the other
variational parameters. Note that these parameters are involved in the updates
of parameters in γ1:N and in B, thus providing us with a channel to maintain
some of the dependence among them, i.e., by keeping them at their optimal value
given the data. Further, the nested algorithm has the advantage that it trades
time for space thus allowing us to deal with large graphs; at each variational
cycle we need to allocate NK + 2K scalars only. The increased running time
is partially offset by the fact that the algorithm can be parallelized and leads
to empirically observed faster convergence rates. This algorithm is also better
than MCMC variations (i.e., blocked and collapsed Gibbs samplers) in terms of
memory requirements and convergence rates.

4 Experiments: Applications to Social Networks

We illustrate our model and algorithm in the context of two examples that
have recently been reanalyzed in [3] using a latent position clustering model and
[34].

4.1 Example 1: Crisis in a Cloister

Sampson [2] surveyed 18 novice monks in a monastery and asked them to rank
the other novices in terms of four sociometric relations: like/dislike, esteem,
personal influence, and alignment with the monastic credo. Sampson’s original
analysis strongly suggested the existence of tight factions among the novices,
and the events that took place during his stay at the monastery supported his
observations. Briefly, novices of one faction left the monastery or were expelled
over religious differences. The factions identified by Sampson provide a credible
gold standard, to which we compare our results.

4 Within a block, the order according to which (scalar) parameters get updated is not
expected to affect convergence.
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Fig. 3. The approximate BIC (left panel) suggests the relations among monks are best
explained by a model with three factions. The faction-to-faction estimated relational
patterns B̂ (right panel) suggest that the Outcasts are an isolated faction, whereas
Young Turks like members of the Loyal Opposition, although the sentiment is not
reciprocated.

We consider Breiger’s collation of Sampson’s data [35]. Briefly, for each of
the four sociometric relations above, only the top three choices of each novice
were recorded as positive relations—the edges in the graph. We use the following
approximation to BIC for model selection:

BIC = 2 · log p(R) ≈ 2 · log p(R|π̂, Ẑ, α̂, B̂) − |α, B| · log |R|,

where |α, B| is the number of hyper-parameters in the model, and |R| is the
number of positive relations observed—following arguments in [3]. The approx-
imate BIC value suggests that the relations among monks in the monastery
studied by Sampson are best explained by a model with three factions, indepen-
dently of the number of hyper-parameters in the ALB model we fit. Hence we
fixed K̂ = 3 in subsequent analyses, which involved ALB models with increasing
degree of complexity. In the left panel of Figure 3 we show the approximate
BIC for a model with a single hyper-parameter, α scalar. In the right panel of
Figure 3 we show the estimated faction-to-faction block model, B̂, corresponds
to a full model (i.e., no constraints on B). This estimate suggests that the Out-
casts are an isolated faction, whereas Young Turks like members of the Loyal
Opposition, although the sentiment is not reciprocated. In Figure 5 we investi-
gate the the posterior means of the mixed membership scores, E[π|R], for the
18 monks in the monastery (α = 0.058 scalar, B := I3). We have a panel for
each monk, and the subscripts associated with the names of the monks spec-
ify the order according to which they left the monastery, e.g., John left first.
The three factions on the X axis are the Outcast, the Young Turks , and the
Loyal Opposition (from left to right); and on the Y axis we measure the de-
gree of membership of monks to factions. From these panels, the centrality of
the role played by John and Greg, first to leave the monastery, as well as the
uncertain affiliations of Romul, and Victor to a minor extent, unequivocally
emerge. The mixed membership vectors, π1:18, provide us with low-dimensional
representations of monks. In Figure 6 we plot them in their natural space, that
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Fig. 4. Original matrix of sociometric relations (left), and estimated relations obtained
by thresholding the posterior expectations πp

′B πq |R (center), and φp
′B φq|R (right)

Fig. 5. The posterior mixed membership scores, π, for the 18 monks in the monastery.
Each panel correspond to a monk; on the Y axis we measure the grade of membership,
corresponding to the Outcast (left bar), to the Young Turks (center bar), and to the
Loyal Opposition (right bar), on the X axis. The subscripts associated with the names
of the monks specify the order according to which they left the monastery.

is, the(3-dimensional) simplex. Dots correspond to monks; the red circles were
obtained by fixing B = I3 and α = 0.01, whereas the blue triangles correspond
to fixing B := I3, but estimating α̂ = 0.058.

4.2 Example 2: Health-Related Behaviors of Adolescents

The National Longitudinal Study of Adolescent Health [36,37] includes question-
naire administered to a sample of students, who were allowed to nominate up
to 10 friends. Following [3], we focus on friendship nominations collected among
71 students in grades 7 to 12 at one school. Two students did not nominate any
friends, so we analyzed the network of (binary, asymmetric) friendship relations
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Fig. 6. Mixed membership vectors, π1:18, plotted in the simplex. Points correspond to
monks; the red circles correspond to an ALB model with (B = I3, α = 0.01), whereas
the blue triangles correspond to an ALB model with (B := I3, α̂ = 0.058).

among the remaining 69 students. The left panel of Figure 8 shows the raw
relations, and we contrast this to the estimated networks in the central and
right panels based on our model estimates using the full model. We proceeded
with the analysis as in the previous study, but we fitted a full model in this
case. Salient features of the analysis are: (i) the posterior mixed membership of
the 69 students—shown in Figure 7; (ii) the correspondence of latent clusters
to student grade levels—shown in Table 1; and (iii) the hyper-parameters were
estimated with an empirical Bayes strategy; we obtained α̂ = 0.0487, ρ̂ = 0.936,
and a practically diagonal matrix that encodes the cluster-to-cluster relations,

B̂ =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

0.3235 0.0 0.0 0.0 0.0 0.0
0.0 0.3614 0.0002 0.0 0.0 0.0
0.0 0.0 0.2607 0.0 0.0 0.0002
0.0 0.0 0.0 0.3751 0.0009 0.0
0.0 0.0 0.0 0.0002 0.3795 0.0
0.0 0.0 0.0 0.0 0.0 0.3719

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

.

4.3 Discussion

There is a tight relationship between ALB and the latent space models in [8,3].
In the latent space models, the latent vectors are drawn from Gaussian distribu-
tions and the interaction data is drawn from a Gaussian with mean πp

′
Iπq. In

ALB, the marginal probability of an interaction takes a similar form, πp
′Bπq,



Combining Stochastic Block Models and Mixed Membership 71

Fig. 7. The posterior mixed membership scores, π, for the 69 students in a school. Each
panel correspond to a student; on the Y axis we measure the grade of membership,
corresponding to the six grade levels from 7 to 12, on the X axis.

Fig. 8. Original matrix of friensdhip relations (left), and estimated relations obtained
by thresholding the posterior expectations πp

′B πq |R (center), and φp
′B φq|R (right)

where B is the matrix of probabilities of interactions for each pair of latent fac-
tions. In contrast to the latent space model, the relations can be modeled by an
arbitrary distribution, in our model. With binary relations we can use a collec-
tion of Bernoulli parameters; with continuous relations, we can use a collection of
Gaussian parameters. While more flexible, ALB does not subsume latent space
models; they make different assumptions about the data.
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Table 1. Grade levels versus (highest) expected posterior membership

Clusters
Grade 1 2 3 4 5 6

7 13 1 0 0 0 0
8 0 9 2 0 0 1
9 0 0 16 0 0 0

10 0 0 0 10 0 0
11 0 0 1 0 11 1
12 0 0 0 0 0 4
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