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Abstract

We marry ideas from deep neural networks
and approximate Bayesian inference to derive
a generalised class of deep, directed genera-
tive models, endowed with a new algorithm
for scalable inference and learning. Our
algorithm introduces a recognition model
to represent approximate posterior distribu-
tions, and that acts as a stochastic encoder
of the data. We develop stochastic back-
propagation – rules for back-propagation
through stochastic variables – and use this to
develop an algorithm that allows for joint op-
timisation of the parameters of both the gen-
erative and recognition model. We demon-
strate on several real-world data sets that the
model generates realistic samples, provides
accurate imputations of missing data and is
a useful tool for high-dimensional data visu-
alisation.

1. Introduction

There is an immense effort in machine learning and
statistics to develop accurate and scalable probabilistic
models of data. Such models are called upon whenever
we are faced with tasks requiring probabilistic reason-
ing, such as prediction, missing data imputation and
uncertainty estimation; or for those tasks requiring the
ability to quickly generate samples from the model, al-
lowing for confabulation and simulation-based analysis
used in many scientific fields such as genetics, robotics
and control.

Recent efforts to develop generative models have fo-
cused on directed models, since samples are easily ob-
tained by ancestral sampling from the generative pro-
cess. Directed models such as belief networks and sim-
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ilar latent variable models (Dayan et al., 1995; Frey,
1996; Saul et al., 1996; Bartholomew & Knott, 1999;
Uria et al., 2013; Gregor et al., 2013) can be easily
sampled from, but in most cases, efficient inference
algorithms have remained elusive. These efforts, com-
bined with the demand for accurate probabilistic in-
ferences and fast simulation lead us to seek generative
models that are i) deep, since hierarchical structure al-
lows us to capture higher moments of the data, ii) are
non-linear, allowing for complex structure in the data
to be modelled, iii) allow for fast sampling of fantasy
data from the inferred model, and iv) are tractable and
scalable to large amounts of data.

We meet these desiderata by introducing a class of
deep, directed generative models with Gaussian la-
tent variables at each layer. To allow for efficient and
tractable inference, we also introduce a correspond-
ing recognition model, which can be interpreted as a
stochastic encoder of the data, and represents an ap-
proximate posterior distribution. For the generative
model, we derive the objective function for optimisa-
tion using variational principles; for the recognition
model, we specify its structure and regularisation by
exploiting recent advances in deep learning. Using this
construction, we can train the entire model by a mod-
ified gradient back-propagation, which allows for opti-
misation of the parameters of both the generative and
recognition models jointly.

We build upon the large body of prior work (contex-
tualised in section 5) and make the following contribu-
tions:
• We marry ideas from deep neural networks and

probabilistic latent variable modelling to derive a
general class of deep, non-linear latent Gaussian
models (section 2).

• We present a new approach for scalable varia-
tional inference that allows for joint optimisation
of both variational and model parameters by ex-
ploiting the properties of latent Gaussian distri-
butions and gradient back-propagation (sections
3 and 4).
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• We provide a comprehensive and systematic eval-
uation of the model demonstrating its applicabil-
ity to problems in simulation, visualisation, pre-
diction and missing data imputation (section 6).

2. Deep Latent Gaussian Models

Deep latent Gaussian models (DLGM) are a general
class of deep directed graphical models that consist of
Gaussian latent variables at each layer of a processing
hierarchy. The model consists of L layers of latent vari-
ables. To generate a sample from the model, we begin
at the top-most layer (L) by drawing from a Gaus-
sian distribution. The activation hl at any lower layer
is formed by a non-linear transformation of the layer
above hl+1, perturbed by Gaussian noise. We then
generate observations v by sampling from the likeli-
hood using the activation h1. This process is described
graphically in figure 1.

This generative process is described by the following
equations:

ξl = N (ξ|0, I), l = 1, . . . , L (1)

hL = GLξL, (2)

hl = Tl(hl+1) + Glξl, l = 1 . . . L− 1 (3)

v ∼ π(v|T0(h1)), (4)

where ξl are Gaussian variables. The transformations
Tl are represented by multi-layer perceptrons (MLPs)
and Gl are matrices. At the visible layer, the data
is generated from any appropriate distribution π(v|·)
whose parameters are specified by a transformation of
the first latent layer. This allows us to deal with data
that may be of any type, such as binary, categorical,
counts, real-values, or a heterogeneous combination of
these data types. We typically make use of distribu-
tions in the exponential family, such as the Bernoulli
distribution for binary data, but we are not restricted
to this set of likelihood functions.

The joint probability distribution of this model can be
expressed in two equivalent ways:

p(v,h) = p(v|h1)p(hL)p(θg)

L−1∏
l=1

pl(hl|hl+1), (5)

p(v, ξ) = p(v|h1(ξ1...L))p(θg)

L∏
l=1

N (ξl). (6)

A graphical model corresponding to these two views
is shown in figure 1(a),(b). The conditional distribu-
tion p(hl|hl+1) is a distribution implicitly defined by
equation (3) and are Gaussian distributions with mean
µl = Tl(hl+1) and covariance Sl = GlG
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Figure 1. (a) Graphical model for deep latent Gaussian
models. (b) Graphical model corresponding to the equiva-
lent representation (6). (c) The computational diagram in-
dicating the connectivity of the generative and recognition
models. Black arrows indicate the forward pass of sam-
pling from the recognition and generative models, and red
arrows indicate the backward pass for gradient computa-
tion. The dashed arrows indicates points where stochastic
rather than deterministic back-propagation is used.

(6) makes explicit that this generative model works by
applying a highly non-linear transformation to a spher-
ical Gaussian distribution such that the transformed
distribution tries to match the empirical distribution.
We discuss this in more detail in appendix A. Through-
out the paper we refer to the set of parameters in Tl
and Gl by θg. We adopt a weak Gaussian prior over
θg, p(θg) = N (θ|0, κI).

This specification for deep latent Gaussian models gen-
eralises a number of well known models. When we have
only one layer of latent variables and use a linear map-
ping T (·), we recover factor analysis (Bartholomew &
Knott, 1999) – more general mappings allow for a non-
linear factor analysis. When the mappings are of the
form Tl(h) = Alf(h) + bl, for simple element-wise
non-linearities f such as the probit function or the
rectified linearity, we recover the non-linear Gaussian
belief network (Frey & Hinton, 1999). We describe
the relationship to other existing models in section 5.
Given this specification, our key task is to develop
a method for tractable inference. A number of ap-
proaches are known and currently used, in particular
algorithms based on mean-field variational EM (Beal,
2003), the wake-sleep algorithm (Dayan, 2000), policy-
gradient methods such as REINFORCE (Williams,
1992), or stochastic gradient methods (Hoffman et al.,
2012). We develop an alternative to these inference
algorithms that overcomes many of their limitations,
and that is both scalable and efficient.

3. Stochastic Back-propagation

The key tool we develop to allow for efficient inference
is the set of rules to allow for gradient computations

more neural net like than DEFs
closely related; this appears to be a type of DEF
the likelihood is just as a DEF
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in models with random variables. We develop these
identities and refer to them as the rules for stochastic
back-propagation.

Gradient descent methods in latent variable mod-
els typically require computations of the form:
∇θEqθ [f(ξ)], where θ is a set of parameters of a distri-
bution qθ(ξ) and f is a loss function, which we assume
to be integrable and smooth. Of special interest here
are cases where the distribution q is a K-dimensional
Gaussian N (ξ|µ,C) with parameters θ = {µ,C}.
In this setting, gradients can be computed using the
Gaussian gradient identities:

∇µiEN (µ,C) [f(ξ)] = EN (µ,C) [∇ξif(ξ)] (7)

∇CijEN (µ,C) [f(ξ)] =
1

2
EN (µ,C)

[
∇2
ξi,ξjf(ξ)

]
, (8)

which are due to the theorems by Bonnet (1964) and
Price (1958), respectively. This allows us to write a
general rule for Gaussian gradient computation.

Gaussian back-propagation (GBP). Com-
bining equations (7) and (8) and using the chain rule
we can derive the full gradient

∇θEN (µ,C)[f(ξ)]=EN (0,I)

[
g>
∂µ

∂θ
+ 1

2Tr

(
H
∂C

∂θ

)]
, (9)

where g and H are the gradient and the Hessian of the
function f(ξ), respectively. Equation (9) can be inter-
preted as a modified back-propagation rule for Gaus-
sian distributions that takes into account the gradients
through the mean and covariance and that reduces to
the standard back-propagation rule when C is con-
stant. Unfortunately this rule requires knowledge of
the Hessian matrix of f(ξ), which has an algorithmic
complexity O(K3). For inference in DLGMs, we later
introduce an unbiased though higher variance estima-
tor that requires only quadratic complexity.

We can also derive general back-propagation rules for
q-distributions other than the Gaussian. Such rules
can be derived in two ways:

1. Using the product rule for integrals.
For many exponential family distributions, it is pos-
sible to use the product rule for integrals to express
the gradient with respect to the parameters (mean or
natural) as an expectation of gradients with respect
to the random variables itself:

∇θEp(ξ|θ)[f(ξ)]== −Ep(ξ|θ)[∇ξ[B(ξ)f(ξ)]] (10)

We can thus reduce the problem to searching for a
suitable transformation function B(ξ) that allows us

to compute the required derivatives directly. This ap-
proach can be used to derive rules for many other
distributions e.g., the Gaussian, inverse Gamma, log-
Normal and Wald distributions. We discuss this in
more detail in appendix B.

2. Using suitable co-ordinate transformations.
We can also derive stochastic back-propagation rules
for any distribution that can be written as an smooth,
invertible transformation of a canonical base distribu-
tion. For example, any Gaussian distribution N (µ,C)
can be obtained as transformation of a spherical Gaus-
sian ε ∼ N (0, I), using the transformation y = µ+Rε
and C = RR>. This co-ordinate transformation al-
lows the gradient of the expectation with respect to R
to be written as:

∇REN(µ,C)[f(ξ)] =∇REN(0,I)[f(µ+Rε)]

=EN(0,I)
[
εg>
]
, (11)

where g is the gradient of f evaluated at µ + Rε and
provides a lower-cost alternative to Price’s theorem
(8). The estimator (11) will in general have higher
variance than the estimators based on (8). A short
analysis of the variance of these estimators is discussed
section 5 and in appendix C.

This approach can be more general than the first
approach, and such transformations are well known
for many distributions, especially those with a self-
similarity property or location-scale formulations, such
as the Gaussian, Student’s t-distribution, the class of
stable distributions, and the class of generalised ex-
treme value distributions. We provide further discus-
sion in appendix B.

4. Scalable Inference in DLGMs

4.1. Free Energy Objective

To perform inference in DLGMs we integrate out the
effect of the latent variables, requiring us to compute
the integrated or marginal likelihood. In general, this
will be an intractable integration and instead we op-
timise a lower bound on the marginal likelihood. We
introduce an approximate posterior distribution q and
applying Jensen’s inequality, following the variational
principle (Zemel, 1993; Beal, 2003) to obtain:

log p(V) = log

∫
p(V|ξ,θg)p(ξ,θg)dξ

= log

∫
q(ξ)

q(ξ)
p(V|ξ,θg)p(ξ,θg)dξ (12)

≥L(V)=−DKL[q(ξ)‖p(ξ)]+Eq [log p(V|ξ,θg)p(θg)] .

We use the variational free energy, defined as F(V) =
−L(V), as our objective function. This objective con-
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sists of two terms: the first is the KL-divergence be-
tween the variational distribution and the prior distri-
bution (which acts a regulariser), and the second is a
reconstruction error. We refer to the approximate pos-
terior distribution q(ξ) as a recognition model, and its
design is important for the success of such variational
methods.

We use a variational distribution q(ξ) that factorises
across the L layers, but not necessarily within a layer:

q(ξ|V,θr) =

N∏
n=1

L∏
l=1

N
(
ξn,l|µl(vn),Cl(vn)

)
, (13)

where µl(v) and Cl(v) are generic maps represented
by MLPs corresponding to the mean vector and co-
variance matrix of the units in layer l respectively. We
refer to the parameters of the recognition model q(ξ|v)
as θr.

For a Gaussian prior and a Gaussian recognition
model, the KL term in the free energy (12) can be
computed analytically and the free energy becomes:

F(V) = −
∑
n

Eq [log p(vn|h(ξn))] + 1
2κ‖θ

g‖2

+
1

2

∑
n,l

[
‖µn,l‖2+Tr(Cn,l)−log |Cn,l|−1

]
,

(14)

where Tr(C) and |C| indicate the trace and the deter-
minant of the covariance matrix C, respectively.

4.2. Parameterising the Recognition
Covariance

There are a number of approaches for parameterising
the covariance matrix of the recognition model. Main-
taining a full covariance matrix C in equation (14)
would entail an algorithmic complexity O(LK3) where
K is the number of latent variables per layer and L is
the number of latent layers.

The simplest approach is to use a diagonal covariance
matrix C = diag(d), where d is a K-dimensional vec-
tor. This approach is appealing since it allows for
linear-time computation and sampling, but only allows
for axis-aligned posterior distributions.

We can improve upon the diagonal approximation by
considering a structured covariance parameterised by
two independent vectors d and u. We parameterise
the precision matrix C−1 (Magdon-Ismail & Purnell,
2010):

C−1 = D + uuT , (15)

where D = diag(d). This representation allows for
arbitrary rotations of the Gaussian distribution along
one principal direction, with relatively few additional
parameters.

By application of the matrix inversion lemma, we ob-
tain the covariance matrix in terms of d and u as:

C = D−1 + ηD−1uuTD−1, η = 1

uTD−1u+1
,

log |C| = log η − log |D|. (16)

This allows both the trace Tr(C) and the log |C|
needed in the computation of the Gaussian KL to be
computed in O(KL) time.

In addition, we can factorise the covariance matrix as
the product of two matrices C = RRT . R is a square
matrix of the same size as C and can be computed
directly in terms of the vectors d and u. One solution
for R is:

R = D−
1
2 −

[
1−√η
uTD−1u

]
D−1uuTD−

1
2 . (17)

Due to this structure, the product of R with an arbi-
trary vector can be computed in O(K) without having
to compute R explicitly. This allows us to also sam-
ple efficiently from this low-rank Gaussian, since any
Gaussian random variable ξ with mean µ and covari-
ance matrix C = RRT can be written as ξ = µ+Rε,
where ε is a standard Gaussian variate.

4.3. Gradients of the Free Energy

We wish to minimise the free energy F(V) (14) using
stochastic gradient descent methods. For this, we need
efficient estimators of the gradients of all terms in (14)
with respect to both the parameters of the generative
model θg and the recognition model θr.

The gradients with respect to the jth generative pa-
rameter θgj can computed using:

∇θgjF(V) = −Eq
[
∇θgj log p(V|h)

]
+

1

κ
θgj . (18)

An unbiased estimator of ∇θgjF(V) is obtained by ap-

proximating (18) with a small number of samples from
q (or even a single sample).

To obtain gradients with respect to the recognition
parameters θr, we use the rules for Gaussian back-
propagation developed in section 3. To address the
complexity of the Hessian in the general rule (9), we
use the co-ordinate transformation for the Gaussian to
write the gradient with respect to the matrix R instead
of the covariance C (recalling C = RR>) derived in

note their q distribution

they call the variational distribution the recognition model.
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equation (11), where derivatives are computed for the
function f(ξ) = log p(v|h(ξ)).

The gradients of F(v) with respect to the variational
mean µl(v) and the matrices Rl(v) are given by

∇µlF(v) = −Eq
[
∇ξl log p(v|h(ξ))

]
+ µl (19)

∇Rl,i,jF(v) = −1

2
Eq
[
εl,j∇ξl,i log p(v|h(ξ))

]
+

1

2
∇Rl,i,j [TrCn,l − log |Cn,l|] , (20)

where the gradients ∇Rl,i,j [TrCn,l − log |Cn,l|] are
computed by back-propagation.

Unbiased estimators of the gradients (19) and (20) are
then obtained jointly by sampling from the recognition
model ξ ∼ q(ξ|v) (bottom-up pass) and updating the
values of the generative model layers using equation
(3) (top-down pass).

Finally the gradients ∇θrjF(v), obtained from equa-

tions (19) and (20), are:

∇θrF(v)=∇µF(v)>
∂µ

∂θr
+Tr

(
∇RF(v)

∂R

∂θr

)
. (21)

We can now use the gradients (18) and (21) to de-
scend the free-energy surface with respect to both the
generative and recognition parameters in a single op-
timisation step.

4.4. Algorithm Summary and Complexity

Figure 1 (c) shows the flow of computation in the
model. Our algorithm proceeds by performing a
forward pass (black arrows): consisting of bottom-
up (recognition) phase and a top-down (generation
phase), which updates the hidden activations of the
recognition model and parameters of any Gaussian dis-
tributions; and a backward pass (red arrows) in which
gradients are computed using the appropriate back-
propagation rule for deterministic and stochastic lay-
ers.

We take a gradient descent step using:

∆θg,r = −Γg,r∇θg,rF(V), (22)

where Γg,r are diagonal pre-conditioning matrices
computed using the RMSprop heuristic1. The learning
procedure is summarised in algorithm (1).

The computational complexity for producing S sam-
ples from the generative model is O(SLK̄2) where K̄

1Described by G. Hinton, RMSprop: Divide the gradient
by a running average of its recent magnitude, in Coursera
online course: Neural networks for machine learning, lec-
ture 6e, 2012.

Algorithm 1 Learning in DLGMs

while hasNotConverged() do
V← getMiniBatch()
ξn ∼ q(ξn|vn) (bottom-up pass) eq. (13)
h← h(vξ) (top-down pass) eq. (3)
updateGradients() eqs (19), (18), (20)
θg,r ← ∆θg,r

end while

is the average number of neurons per layer, L is the
number of layers (counting together deterministic and
stochastic layers). The computational complexity per
training sample during training is O(LK̄2) , and is the
same as that of an auto-encoder with a decoder and
encoder of same size as the generative and recognition
models, respectively.

5. Related Work

Directed Graphical Models. There is a broad
existing literature on directed graphical models with
depth. Our model is directly related to non-linear
Gaussian belief networks (NLGNBN) (Frey & Hinton,
1999), which also use latent Gaussian distributions
throughout a multi-layer hierarchy, but whose means
are simple non-linear transformations of higher layers.
Sigmoid belief networks (SBN) (Saul et al., 1996) are
closely related and are models with Bernoulli variables
at every layer. Both these models are trained by a
mean-field variational EM algorithm. More recently,
Gregor et al. (2013) described Deep Auto-regressive
Networks (DARN), which also form a directed graph-
ical model that uses auto-regressive Bernoulli dis-
tributions at each layer. The Gaussian process la-
tent variable model (GPLVM) (Lawrence, 2005) is
the non-parametric analogue of our model, and em-
ploys Gaussian process priors over the non-linear func-
tions between each layer. Some of the best results us-
ing directed models are provided by the neural auto-
regressive density estimator (NADE) (Larochelle &
Murray, 2011; Uria et al., 2013), which uses func-
tion approximation to model conditional distributions
within a directed acyclic graph. We will also see this
performance on the benchmark tests we present, but
major drawbacks exist, such as its inability to allow
for deep representations and difficulties in extending
to locally connected models (e.g., through the use of
convolutional layers) that allow for high-dimensional
scaling.

Relation to denoising auto-encoders. Denoising
auto-encoders (DAE) (Vincent et al., 2010) introduce
a random corruption to the encoder network and at-
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tempt to minimize the expected reconstruction error
under this corruption noise with additional regularisa-
tion terms. Bengio et al. (2013) show how these models
can be used as generative models, but since the gener-
ative process underlying the denoising auto-encoder is
unknown, simulation from the model requires a slow
Markov chain sampling procedure. In the model we
describe, the recognition distribution q(ξ|v) can be in-
terpreted as a stochastic encoder in the DAE setting.
We can readily see the correspondence between the ex-
pression for the free energy (12) and the reconstruction
error and regularization terms used in denoising auto-
encoders (c.f. equation (4) of Bengio et al. (2013)).

It is possible to now see denoising auto-encoders in the
framework for variational learning in latent variable
models. The key difference is that the form of encod-
ing ‘corruption’ and regularisation terms used in our
model have been derived from the variational principle
to provide a strict bound on the data log-likelihood of
a known directed generative model and that allows for
easy generation of samples.

Alternative Gradient Estimates. Other ap-
proaches for gradient estimation are typically used
in the literature. The most general approaches
are policy-gradient methods such as REINFORCE
(Williams, 1992) that are simple to implement and ap-
plicable to both discrete and continuous models. This
estimator can be written as:

∇θEp[f(ξ)] = Ep[(f(ξ)− b)∇θ log p(ξ|θ)], (23)

where b is a baseline typically chosen to reduce the
variance of the estimator; we use draws ξ ∼ p(ξ|θ).

Unfortunately the variance of (23) scales poorly
with the number of random variables (Dayan
et al., 1995). To see this limitation, consider

functions of the form f(ξ) =
∑D
i=1 f(ξi), where

each individual term has a bounded variance, i.e.,
Var[f(ξi)] ≤ κ∀i for some κ > 0, and consider
independent or weakly correlated random vari-
ables. Given these assumptions we have the following
bounds for the variances of (7) and REINFORCE (23):

GBP: Var[∇ξf(ξ)] ≤ κ
REINFORCE: Var

[
(ξ−µ)
σ2 (f(ξ)− E[f(ξ)])

]
≤ Dκ.

Thus, the REINFORCE estimator has the unde-
sirable property that its variance scales linearly with
the number of independent random variables in the
target function, while the variance of GBP is bounded
by a constant.

Any correlation between the different terms in f(ξ)
would reduce the absolute value of the variance (5).
The assumption of weakly correlated terms is relevant

for variational learning in larger generative models
where variables tend to depend strongly only on other
variables in their Markov blanket (i.e. only neigh-
bouring nodes in the graphical model tend to display
strong correlations). Moreover, due to independence
assumptions and structure in the variational distribu-
tion, the resulting free energies are often summations
over weakly correlated or independent terms, further
supporting this view. We provide a second view on
the issue in appendix C.

Another very general alternative to REINFORCE is
the wake-sleep algorithm (Dayan et al., 1995). The
wake-sleep algorithm fails to optimise a single consis-
tent objective function and there is thus no guarantee
that it leads to a decrease of the free energy (12). But
it has been shown to work well in some small practical
examples. In figure 2(c) we provide a comparison of
the performance achieved by our model and the wake-
sleep algorithm.

Stochastic back-propagation in other contexts.
The key theorems for the Gaussian stochastic back-
propagation were first exploited by Opper & Archam-
beau (2009) for variational learning in Gaussian pro-
cess regression, and subsequently by Graves (2011) for
learning the parameters of large neural networks.

Opper & Archambeau (2009) make use of an uncondi-
tional variational approximation, which typically re-
quires several iterations for every visible pattern v
in order to converge to a local minimum of the free
energy. In contrast, we use a parametric recognition
model (eq. (13)) which can produce a one-shot sample
from the approximate posterior distribution (similar to
the procedure in Dayan et al. (1995); Dayan (2000)).
Using a conditional, parametric recognition model also
provides a cheap probabilistic encoding of the dataset
and provides a framework for treating generative mod-
els and classes of auto-encoders on the same princi-
pled ground (as described above). Recently, Kingma
& Welling (2013) also make the connection between
stochastic back-propagation, generative auto-encoders
and variational inference that we describe here. This
work was developed simultaneously with ours and pro-
vides an additional perspective on the use and deriva-
tion of stochastic back-propagation rules.

6. Results

Generative models, such as the deep latent Gaussian
model that we focus on, have a number of applications
in simulation, prediction, data visualisation, missing
data imputation and other forms of probabilistic rea-
soning. We describe the testing methodology we use
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and present results on a number of these tasks.

6.1. Testing Methodology

We use training data of various types including binary
and count-based data sets. In all cases, we train using
mini-batches, which requires the introduction of scal-
ing terms in the free energy objective function (14) in
order to maintain the correct scale between the prior
over the parameters and the remaining terms (Ahn
et al., 2012; Welling & Teh, 2011). We make use of
the objective:

F(V) = −λ
∑
n

Eq [log p(vn|h(ξn))] + 1
2κ‖θ

g‖2

+
λ

2

∑
n,l

[
‖µn,l‖2 + Tr(Cn,l)− log |Cn,l| − 1

]
, (24)

where n is an index over observations in the mini-batch
and λ is equal to the ratio between the data-set and
the mini-batch size. At each iteration, a random mini-
batch of size 200 observations is chosen.

All parameters of the model were initialized using sam-
ples from a Gaussian distribution with mean zero and
variance 1× 106; the prior variance of the parameters
was κ = 1× 106. We compute the marginal likelihood
on the test data by importance sampling using samples
from the recognition model; we describe our estimator
in appendix D.

Since the recognition model is parameterised by a
deep neural network, careful regularisation is needed
to ensure that it provides useful inferences for unseen
data. We regularise by introducing additional noise to
the recognition model, specifically, bit-flip or drop-out
noise at the input layer and small additional Gaussian
noise to samples generated by the recognition model.
We also use rectified non-linearities for any hidden lay-
ers.

6.2. Analysing the Approximate Posterior

The specification of the recognition model affects how
well we are able to capture the statistics of the data
and the accuracy and efficiency of the learning.

We examine the quality of the approximate posterior
distribution learnt by the recognition model in com-
parison to the true posterior distribution by training
a deep latent Gaussian model on the MNIST data set
of handwritten images. The images are of size 28×28,
and we use the binarised data set from Larochelle &
Murray (2011).

We use sampling to evaluate the true posterior distri-
bution for a number of MNIST digits under the diago-

nal and the structured covariance parameterisation of
the recognition model, described in section 4.2. We vi-
sualise the posterior distribution for a model with two
Gaussian latent variables in figure 2. The true pos-
terior distribution is shown by the grey regions and
was computed by importance sampling with a large
number of particles aligned in a grid between -5 and
5. In figure 2(a) we see that many posterior distribu-
tions are elliptical or spherical in shape and thus, it is
reasonable to assume that they can be well described
by a Gaussian approximation. Samples from the prior
(shown in green) are spread widely over the space and
very few samples fall in the region of significant pos-
terior mass, explaining the inefficiency of estimation
methods that rely on samples from the prior. Sam-
ples from the recognition model (shown in blue) are
concentrated on the posterior mass, indicating that
the recognition model has learnt the correct posterior
statistics and should lead to efficient learning.

In figure 2(a) we see that samples from the recognition
model are aligned to the axis and cannot capture any
correlation in the posterior. Using the low-rank co-
variance model, we see in figure 2(b) that we are able
to capture the posterior correlation. Not all posteri-
ors are Gaussian in shape, but the recognition places
mass in the best location possible to provide a reason-
able approximation. This aspect emphasises the im-
portance of posterior approximation, and one we con-
tinue to investigate. The performance in terms of test
log-likelihood on the MNIST data is shown for four al-
gorithms on the same model architecture. We compare
factor analysis (FA), the wake-sleep algorithm, and our
approach using a diagonal and low-rank covariance.

6.3. Simulation and prediction

We evaluate the performance of a three layer latent
Gaussian model on the MNIST data set. The model
consists of two deterministic layers with 200 hidden
units and a stochastic layer of 200 latent variables.
We use mini-batches of 200 observations and trained
the model using stochastic back-propagation. Samples
from this model are shown in figure 3. We also com-
pare the test log-likelihood to a large number of exist-
ing approaches in table 1. We used exactly the data set
used in Uria et al. (2013) and quote the log-likelihoods
in the lower part of the table from this work. These
results show that we are able to compete with some
of the best models currently available. The generated
digits also match the true data well and visually ap-
pear as good as some of the best visualisations from
these competing approaches.

We also analysed the performance of our model on

these look like hacks. what are their inferential interpretations?

what does this mean?
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Figure 2. (a),(b) Analysis of the exact posterior vs. our recognition model for 6 MNIST digits. The grey regions show the
true posterior distribution, green markers indicate samples from the prior distribution, blue markers are samples from the
recognition model, and the red marker indicates the MAP estimate. Within each image we show four views of the same
posterior, zooming in on the region of high posterior mass. (c) Comparison of test log likelihoods for different inference
algorithms.

Figure 3. Performance on the MNIST dataset. Top left: Samples from the training data. Top right: Samples from the
learned model. Bottom right: sampled pixel probabilities

Table 1. Comparison of negative log-probabilities on the
test set for the binarised MNIST data.
Model − ln p(v)

Factor Analysis 106.00
NLGBN (Frey & Hinton, 1999) 95.80
Wake-Sleep (Dayan, 2000) 91.3
DLGM diagonal covariance 87.30
DLGM rank-one covariance 86.60

Results below from Uria et al. (2013)

MoBernoullis K=10 168.95
MoBernoullis K=500 137.64
RBM (500 h, 25 CD steps) approx. 86.34
DBN 2hl approx. 84.55
NADE 1hl (fixed order) 88.86
NADE 1hl (fixed order, RLU, minibatch) 88.33
EoNADE 1hl (2 orderings) 90.69
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (2 orderings) 87.96
EoNADE 2hl (128 orderings) 85.10

three high-dimensional real image data sets. The
NORB object recognition data set consists of 24, 300
images that are 96×96 pixels. We use a model consist-
ing of 1 deterministic layer of 400 hidden units and one
stochastic layer of 100 latent variables. Samples pro-
duced from this model are shown in figure 4(a). The
CIFAR10 natural images data set consists of 50, 000
RGB images that are 32 × 32 pixels, which we split
into 8× 8 patches. We use the same model as used for
the MNIST experiment and show samples from the
model in figure 4(b). The Frey faces data set con-
sists of almost 2, 000 images of different facial expres-
sions2 of size 28 × 20 pixels. In all cases we see that
the model has learnt the different image statistics and
produces recognisable samples. Results of this kind are
extremely promising and suggest that performance can
be improved greatly by scaling the model to more re-
alistic scenarios by considering locally connected and
convolutional architectures.

6.4. Missing Data Imputation and Denoising

The generative models we describe are often used for
problems in missing data imputation that form the
core of applications in recommender system, bioinfor-

2Images of Brendan Frey. Data from http://www.cs.
nyu.edu/~roweis/data.html

http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
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(a) NORB (b) CIFAR (c) Frey

Figure 4. a) Performance on the NORB dataset. Left: Samples from the training data. Right: sampled pixel means from
the model. b) Performance on CIFAR10 patches. Left: Samples from the training data. Right: Sampled pixel means
from the model. c) Frey faces data. Left: data samples. Right: model samples.

Figure 5. Imputation results on MNIST digits. The first
column shows the true data. Column 2 shows pixel loca-
tions set as missing in grey. The remaining columns show
imputations and denoising of the images for 15 iterations,
starting left to right. Top: 60% missingness. Middle: 80%
missingness. Bottom: 5x5 patch missing.

matics and experimental design. We show the ability
of the model to impute missing data using the MNIST
data set in figure 5. We test the imputation ability
under two different missingness types (Little & Rubin,
1987): Missing-at-random (MAR), where we consider
60% and 80% of the pixels to be missing randomly, and
Not Missing-at-random (NMAR), where we consider a
square region of the image to be missing. The model
produces very good completions in both test cases.
There is uncertainty in the identity of the image. This
is expected and reflected in the errors in these comple-
tions as the resampling procedure is run, and further
demonstrates the ability of the model to capture the
diversity of the underlying data. We do not integrate
over the missing values in our imputation procedure,
but use a procedure that simulates a Markov chain
that we show converges to the true marginal distribu-
tion. The procedure to sample from the missing pixels
given the observed pixels is explained in appendix E.

Figure 6. Two dimensional embedding of the MNIST data
set. Each colour corresponds to one of the digit classes.

6.5. Data Visualisation

Latent variable models such as DLGMs are often used
for visualisation of high-dimensional data sets. We
project the MNIST data set to a 2-dimensional latent
space and use this 2-D embedding as a visualisation of
the data. A 2-dimensional embedding of the MNIST
data set is shown in figure 6. The classes separate
into different regions indicating that such a tool can
be useful in gaining insight into the structure of high-
dimensional data sets.

7. Discussion

Our algorithm generalises to a large class of models
with continuous latent variables, which include Gaus-
sian, non-negative or sparsity-promoting latent vari-
ables. For models with discrete latent variables (e.g.,
sigmoid belief networks), policy-gradient approaches
that improve upon the REINFORCE approach remain
the most general, but intelligent design is needed to
control the gradient-variance in high dimensional set-
tings.

These models are typically used with a large number
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of latent variables. In this setting, and under the ap-
propriate conditions, the required expectations for in-
ference could be well approximated by Gaussian inte-
grals. Thus, we believe that our approach is applicable
even in the high-dimensional discrete setting: we can
apply the gradient estimators derived in section 4 as
an approximation in high-dimensional discrete latent
variable models, and potentially obtain new learning
rules for these models.

An additional feature of our approach is that it can
easily be combined with convolutional architectures
and computation using GPUs to allow for scaling to
the large-data settings we are now routinely faced
with. More investigation is required to fully explore
the impact of the structure of the recognition model
and to allow more accurate covariance estimation.
This is particularly important in the high-dimensional
setting where we lack intuition regarding the charac-
teristics of the posterior distribution. This and other
extensions form the basis of much future work.

8. Conclusion

We have developed a class of general-purpose and flex-
ible generative models with Gaussian latent variables
at each layer. Our approach introduces a recognition
model, which can be seen as a stochastic encoding of
the data, to allow for efficient and tractable inference.
We derived a lower bound on the marginal likelihood
for the generative model and specified the structure
and regularisation of the recognition model by exploit-
ing recent advances in deep learning. By developing
modified rules for back-propagation through stochastic
layers, we derived an efficient inference algorithm that
allows for joint optimisation of all parameters, i.e. pa-
rameters of the generative and recognition models. We
have demonstrated on several real-world data sets that
the model generates realistic samples, provides accu-
rate imputations of missing data and can be a useful
tool for high-dimensional data visualisation.
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A. Additional Model Details

In equation (6) we showed an alternative form of
the joint log likelihood that makes explicit that the
generative model works by applying a highly non-
linear transformation to a spherical Gaussian distri-
bution N (ξ) such that the transformed distribution
best matches the empirical distribution. We provide
more details on this view here for clarity.

From the model description (3), (4), we can interpret
the variables hl as deterministic functions of the noise
variables ξl. This can be formally introduced as a
coordinate transformation of the probability density
in equation (5): we perform a change of coordinates
hl → ξl. The density of the transformed variables
ξ can be expressed in terms of the density (5) times
the determinant of the Jacobian of the transformation
p(ξ) = p(h(ξ))| ∂h

∂ξ
|. Since the coordinate transforma-

tion is linear we have | ∂h
∂ξ
| = |Gl| and the distribution

of ξ is:

p(ξ)=p(hL)|GL|
L−1∏
l=1

|Gl|pl(hl|hl+1)=

L∏
l=1

|Gl||Sl|−
1
2N (ξl)

=

L∏
l=1

|Gl||GlGTl |−
1
2N (ξl) =

L∏
l=1

N(ξl), (25)

where N (ξ) is a Gaussian with mean zero and
covariance equal to the identity matrix. Using this
view, we rewrite the joint probability as in (6).

A simple recognition model that can be used,
consists of a single deterministic layer and a stochastic
Gaussian layer with the rank-one covariace structure
and is constructed as:

q(ξ|v) = N
(
ξ|µ; (diag(d) + uu>)−1

)
(26)

µ = Wµz + bµ (27)

d = Wdz + bd; u = Wuz + bu (28)

z = f(Wvv + bv) (29)

where the function f is a rectified non-linearity (but
other non-linearities such as tanh can be used.)

B. Deriving Stochastic
Back-propagation Rules

In section 3 we described two ways in which to derive
stochastic back-propagation rules. We show specific
examples and provide some more discussion in this sec-
tion.

B.1. Using the Product Rule for Integrals

We can derive rules for stochastic back-propagation
for many distributions by finding a appropriate non-
linear function that allows us to express the gradient
with respect to the parameters of the distribution as a
gradient with respect to the random variable directly.
The approach we described in the main text was:

∇θEp[f(x)]=

∫
∇θp(x|θ)f(x)dx=

∫
∇xp(x|θ)B(x)f(x)dx

= [B(x)f(x)p(x|θ)]supp(x) −
∫
p(x|θ)∇x[B(x)f(x)]

= −Ep(x|θ)[∇x[B(x)f(x)]] (30)

where we have introduced the non-linear function B(x)
to allows the transformation of the gradients and have
applied the product rule for integrals (rule for inte-
gration by parts) to rewrite the integral in two parts
in the second line, and the supp(x) indicates that the
term is evaluated at the boundaries of the support. To
use this approach, we require that the density we are
analysing be zero at the boundaries of the support to
ensure that the first term in the second line is zero.

As an alternative, we can also write this differently
and find an non-linear function of the form:

∇θEp[f(x)]== −Ep(x|θ)[B(x)∇xf(x)]. (31)

Consider general exponential family distributions of
the form:

p(x|θ) = h(x) exp(η(θ)>φ(x)−A(θ)) (32)

where h(x) is the base measure, θ is the set of mean
parameters of the distribution, η is the set of natural
parameters, and A(θ) is the log-partition function. We
can express the non-linear function in (30) using these
quantities as:

B(x) =
[∇θη(θ)φ(x)−∇θA(θ)]

[∇x log[h(x)] + η(θ)T∇xφ(x)]
. (33)

This can be derived for a number of distributions such
as the Gaussian, inverse Gamma, Log-Normal, Wald
(inverse Gaussian) and other distributions. We show
some of these below:

The B(x) corresponding to the second formulation can
also be derived and may be useful in certain situa-
tions, requiring the solution of a first order differential
equation. This approach of searching for non-linear
transformations leads us to the second approach for
deriving stochastic back-propagation rules.
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Family θ B(x)

Gaussian

(
µ
σ2

) ( −1
(x−µ−σ)(x−µ+σ)

2σ2(x−µ)

)
Inv. Gamma

(
α
β

) (
x2(− ln x−Ψ(α)+ln β)

−x(α+1)+β

( x2

−x(α+1)+β
)(− 1

x
+ α

β
)

)
Log-Normal

(
µ
σ2

) ( −1
(ln x−µ−σ)(ln x−µ+σ)

2σ2(ln x−µ)

)

B.2. Using Alternative Co-ordinate
Transformations

There are many distributions outside the exponential
family that we would like to consider using. A sim-
pler approach is to search for a co-ordinate transfor-
mation that allows us to separate the deterministic
and stochastic parts of the distribution. We described
the case of the Gaussian in section 3. Other distri-
butions also have this property. As an example, con-
sider the Levy distribution (which is a special case of
the inverse Gamma considered above). Due to the
self-similarity property of this distribution, if we draw
X from a Levy distribution with known parameters
X ∼ Levy(µ, λ), we can obtain any other Levy distri-
bution by rescaling and shifting this base distribution:
kX + b ∼ Levy(kµ+ b, kc).

Many other distributions hold this property, allow-
ing stochastic back-propagation rules to be determined
for distributions such as the Student’s t-distribution,
Logistic distribution, the class of stable distributions
and the class of generalised extreme value distributions
(GEV). Examples of co-ordinate transformations T (·)
and the resulsting distributions are shown below for
variates X drawn from the standard distribution listed
in the first column.

Std Distr. T (·) Gen. Distr.

GEV (µ, σ, 0) mX+b GEV (mµ+b,mσ, 0)
Exp(1) µ+βln(1+exp(−X)) Logistic(µ, β)

Exp(1) λX
1
k Weibull(λ, k)

C. Univariate variance analysis

In analysing the variance properties of many estima-
tors, we showed the general scaling of likelihood ratio
approaches in section 5. As an example to further em-
phasise the high-variance nature of these alternative
approaches, we present a short analysis in the univari-
ate case.

Consider a random variable p(ξ) = N (ξ|µ, σ2) and a
simple quadratic function of the form

f(ξ) = c
ξ2

2
. (34)

For this function we immediately obtain the following
variances

V ar[∇ξf(ξ)] = c2σ2 (35)

V ar[∇ξ2f(ξ)] = 0 (36)

V ar[
(ξ − µ)

σ
∇ξf(ξ)] = 2c2σ2 + µ2c2 (37)

V ar[
(ξ − µ)

σ2
(f(ξ)− E[f(ξ)])] = 2c2µ2 +

5

2
c2σ2 (38)

Equations (35), (36) and (37) correspond to the vari-
ance of the estimators based on (7), (8), (11) respec-
tively whereas equation (38) corresponds to the vari-
ance of the REINFORCE algorithm for the gradient
with respect to µ.

From these relations we see that, for any parameter
configuration, the variance of the REINFORCE esti-
mator is strictly larger than the variance of the estima-
tor based on (7). Additionally, the ratio between the
variances of the former and later estimators is lower-
bounded by 5/2. We can also see that the variance
of the estimator based on (8) is zero for this specific
function whereas the variance of the estimator based
on (11) is not.

The high variance nature of the policy gradient ap-
proaches are undesirable and is magnified in multi-
varate settings, leading to the variance estimates that
scale with the dimensionality of the latent variables
that were discussed in section 5

D. Estimating the Marginal Likelihood

We compute the marginal likelihood by importance
sampling by generating S samples from the recognition
model and using the following estimator:

p(v) ≈ 1

S

S∑
s=1

p(v|h(ξ(s)))p(ξ(s))

q(ξs)
; ξ(s) ∼ q(ξ|v)

(39)

E. Missing Data Imputation

Image completion can be approximatively achieved by
a simple iterative procedure which consists of (i) ini-
tializing the non-observed pixels with random values;
(ii) sampling from the recognition distribution given
the resulting image; (iii) reconstruct the image given
the sample from the recognition model; (iv) iterate the
procedure.

We denote the observed and missing entries in an ob-
servation as vm,vo, respectively. The imputation pro-
cedure can be written formally as a Markov chain with
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transition kernel T q(vm → v′m) given by

T q(vm → v′m) =

∫
p(v′|ξ)q(ξ|v)dξ, (40)

where v = (vm,vo) and v′ = (v′m,vo).

Provided that the recognition model q(ξ|v) constitutes
a good approximation of the true posterior p(ξ|v), (40)
can be seen as an approximation of the Kernel

T (vm → v′m) =

∫
p(v′|ξ)p(ξ|v)dξ. (41)

The kernel (41) has two important properties: (i)
it has as eigen-distribution the model’s marginal
p(vm|vo); (ii) T (v → v′) > 0∀v,v′. The prop-
erty (i) can be derived by applying the kernel (41) to
the marginal p(vm|vo) and noting that it is an fixed
point. Property (ii) is an immediate consequence of
the smoothness of the model.

We apply the fundamental theorem for Markov chains
(Neal, 1993, pp. 38) and conclude that given the above
properties, a Markov chain generated by (41) is guar-
anteed to generate samples from the correct marginal
p(vm|vo).

In practice, the stationary distribution of the com-
pleted pixels will not be exactly the model’s marginal
p(vm|vo), since we can only use the approximated ker-
nel (40). We can nevertheless provide a bound on the
L1 norm of the difference between the resulting sta-
tionary marginal and the target marginal p(vm|vo) by
the following proposition.

Proposition E.1 (L1 bound on marginal error ). If
the recognition model q(ξ|v) is such that for all ξ

∃ε > 0 s.t.

∫ ∣∣∣∣q(ξ|v)p(v)

p(ξ)
− p(v|ξ)

∣∣∣∣ dv ≤ ε (42)

then the marginal p(v) is a weak fixed point of the
kernel (40) in the following sense:

∫ ∣∣∣∣∫ [T q(vm → v′m)− T (v→ v′)] p(v)dv

∣∣∣∣ dv′ < ε.

(43)

Proof.∫ ∣∣∣∣∫ [T q(vm → v′m)− T (v→ v′)] p(v)dv

∣∣∣∣ dv′
=

∫ ∣∣∣∣∫ p(v′|ξ)p(v)[q(ξ|v)− p(ξ|v)]dvdξ

∣∣∣∣ dv′
=

∫ ∣∣∣∣∫ p(v′|ξ)p(v)[q(ξ|v)− p(ξ|v)]
p(v)

p(ξ)

p(ξ)

p(v)
dvdξ

∣∣∣∣ dv′
=

∫ ∣∣∣∣∫ p(v′|ξ)p(ξ)[q(ξ|v)
p(v)

p(ξ)
− p(v|ξ)]dvdξ

∣∣∣∣ dv′
≤
∫ ∫

p(v′|ξ)p(ξ)
∫ ∣∣∣∣q(ξ|v)

p(v)

p(ξ)
− p(v|ξ)

∣∣∣∣ dvdξdv′
≤ ε.

where we apply the condition (42) to obtain the last
statement. That is, if the recognition model is suffi-
ciently close to the true posterior to guarantee that
(42) holds for some acceptable error ε than (43) guar-
antees that the fixed point of the Markov chain in-
duced by (40) is not further and ε away from the true
marginal with respect to the L1 norm.

F. Variational Bayes for Deep Directed
Models

In the main test we focussed on the variational prob-
lem of specifying an posterior on the latent variables
only. It is natural to consider the variational Bayes
problem in which we specify an approximate posterior
for both the latent variables and model parameters.

Following the same construction and considering an
Gaussian approximate distribution on the model pa-
rameters θg, the free energy becomes:

F(V) = −
∑
n

reconstruction error︷ ︸︸ ︷
Eq[log p(vn|h(ξn))]

+
1

2

∑
n,l

[
‖µn,l‖2 + TrCn,l − log |Cn,l| − 1

]
︸ ︷︷ ︸

latent regularization term

+
1

2

∑
j

[
m2
j

κ
+
τj
κ

+ log κ− log τj − 1

]
︸ ︷︷ ︸

parameter regularization term

, (44)

which now includes an additional term for the cost of
using parameters and their regularisation. We must
now compute the additional set of gradients with re-
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spect to the parameter’s mean mj and variance τj are:

∇mjF(v) = −Eq
[
∇θgj log p(v|h(ξ))

]
+mj (45)

∇τjF(v) = − 1
2Eq

[
θj −mj

τj
∇θgj log p(v|h(ξ))

]
+

1

2κ
− 1

2τj

(46)

G. Additional Related Work

There are a number of other aspects of related work,
which due to space reasons were not included in the
main text, but are worth noting.

General Classes of Latent Gaussian Models.
The model class we describe here builds upon other
widely-used models with latent Gaussian distributions
and provides an inference mechanism for use within
this diverse model class. Recognising the latent Gaus-
sian structure shows the connection to models such
as generalised linear regression, Gaussian process re-
gression, factor analysis, probabilistic principal com-
ponents analysis, stochastic volatility models, and
other latent Gaussian graphical models (such as log-
Gaussian Cox processes and models for covariance se-
lection).

Alternative Inference Approaches.
The most common approach for inference in deep di-
rected models has been variational EM. The alternat-
ing minimisation often suffers from slow convergence,
expensive parameter learning steps, and typically re-
quires the specification of additional local bounds to
allows for efficient computation of the required expec-
tations. The wake-sleep algorithm (Dayan, 2000) is a
further alternative, but fails to optimise a single con-
sistent objective function and has had limited success
in the past. For latent Gaussian models, other alterna-
tive inference algorithms have been proposed: the In-
tegrated Nested Laplace Approximation (INLA) has
been popular, but it is limited to models with very
few hyperparameters (Rue et al., 2009). Alternative
variational algorithms such as expectation propaga-
tion (EP) (Minka, 2001) can also be used, but are nu-
merically difficult to implement and have performance
similar to approaches based on the variational lower
bound.


