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Jun S. 

The Collapsed Gibbs Sampler in Bayesian 
Computations With Applications to a 

Gene Regulation Problem 
LlU * 

~~ 

This article describes a method of “grouping” and “collapsing” in using the Gibbs sampler and proves from an operator theory 
viewpoint that the method is in general beneficial. The norms oftheforward operators associated with the corresponding nonreversible 
Markov chains are used to discriminate among different simulation schemes. When applied to Bayesian missing data problems, the 
idea ofcollapsing suggests skipping the steps of sampling parameter(s) values in standard data augmentation. By doing this, we obtain 
a predictive update version of the Gibbs sampler. A procedure of calculating the posterior odds ratio via the collapsed Gibbs sampler 
when incomplete observations are involved is presented. As an illustration of possible applications, three examples, along with a 
Bayesian treatment for identifying common protein binding sites in unaligned DNA sequences, are provided. 
KEY WORDS: Data augmentation; Importance sampling; Markov chain; Metropolis algorithm; Missing data; Maximal correlation; 

Predictive distribution. 

1. INTRODUCTION 

Integrating out irrelevant (nuisance) parameters is a stan- 
dard practice in conducting Bayesian inference. In this article 
we call this integration the “collapsing-down” procedure for 
reducing random components. The idea can also be camed 
through in Monte Carlo computations. In applying impor- 
tance sampling, the collapsing-down idea is known as the 
dimension-reduction technique (Rubinstein 198 1, sec. 4.3.7). 
In Markov chain Monte Carlo, especially the Gibbs sampler, 
similar treatments have also been applied explicitly or im- 
plicitly by many authors. 

The Gibbs sampler is an iterative simulation scheme for 
generating samples that converge to draws from a target dis- 
tribution a(X) of a random variable X .  To simplify notation, 
all marginal or conditional distributions derivable from the 
target density are denoted by a( ) or a( I )  throughout the 
article. The basic idea of the Gibbs sampler is to construct 
a Markov chain with a(X) as its equilibrium distribution. 
For example, let X = ( xI , x2, x3) be a random variable with 
three components. The Gibbs sampler is easy to implement 
when the set of three conditional distributions a(x, I Xr-,]), 
i = 1,2,3, are easy to draw samples from, where Xr-,l denotes 
{x,, j # i}. The chain is initiated by a draw from some 
starting density p o ( X )  (or a fixed point); then each compo- 
nent x, is visited and updated by a sample drawn from the 
conditional distribution a(x, 1 XI-,]). The most widely used 
visiting scheme, for example, is a systematic one that visits 
each variate in turn. Detailed descriptions and extensive dis- 
cussions have been provided by Gelfand and Smith ( 1990), 
Smith and Roberts (1 993), and others. 

Now suppose that we are able to draw x2 and x3 together 
from the conditional distribution T( x2, x3 1 xI ). This would 
be true if we are able to draw x2 from a(x2 I xI ) and then 
draw x3 from a( x3 I xI , x2). Should we use the original Gibbs 
sampler or a modified version obtained by grouping x2 and 

* Jun S. Liu is Assistant Professor, Department of Statistics, Harvard 
University, Cambridge, MA 02 138. The author thanks Ye Ding for suggesting 
the DNA problem, Charles Lawrence for insightful discussions, and Hal 
Stern, Ralph Dagostino Jr., and Andrew Neuwald for a critical reading of 
the paper and many helpful suggestions. Two referees and an associate editor 
made many valuable suggestions that helped improve this article greatly. 

x3 together? The latter procedure is referred as grouping (or 
blocking). Furthermore, suppose that we can draw x1 directly 
from A(XI 1 x2) and x2 directly from 7r(x2 1 xl) (i.e., with x3 
integrated out) ; then the Gibbs sampler can be applied di- 
rectly to (xI , x2). After the chain converges, the third com- 
ponent x3 can be drawn from a( x3 I x1 , x2). This procedure 
is called collapsing. Is this new sampler even better? Liu, 
Wong, and Kong (1994) compared such schemes with no 
more than three components based on operator theory. In 
this article, we extend their arguments to the general Gibbs 
sampler and apply the ideas especially to Bayesian compu- 
tations. 

Treatment similar to collapsing was implicitly used by 
Escobar (1994) to skip the step of sampling an infinite di- 
mensional parameter involved in a nonparametnc Bayesian 
problem. Rubin and Schafer ( 1990) presented the proposal 
for effectively producing multiple imputations for multivar- 
iate normal data with missingness as a special usage of the 
grouping and collapsing methodology. Besag ( 1974)’s coding 
set method is a primitive version of grouping in spatial sta- 
tistics. Although in some particular settings, carefully choos- 
ing an auxiliary variable to augment can help to speed up 
the convergence (see, for example, Besag and Green 1993 
and Swendsen and Wang 1987), we believe that mere ad- 
dition of extra variables with no other changes slows con- 
vergence and increases sample autocovariances. This article 
provides numerical as well as theoretical evidences to support 
our belief. 

The article is organized as follows. Section 2 concentrates 
on Bayesian missing data problems. Its first part presents 
the general procedure for collapsing in data augmentation 
and discusses some advantages of doing it. The latter part 
addresses a problem of calculating the posterior odds ratio 
when null space 00 is degenerate with respect to the alter- 
native space Q I  . Section 3 gives three examples to illustrate 
and support the ideas. Section 4 provides the theoreticaljus- 
tification for the general methodology, and Section 5 pro- 
poses a collapsed Gibbs-Metropolis algorithm for a DNA 
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sequence alignment problem. The Appendix presents theo- 
retical proofs. 

2. BAYESIAN MISSING DATA PROBLEMS 

A standard Bayesian problem is usually formulated as fol- 
lows. Let 0 be the parameter of interest, and let X = { x l ,  
. . . , x, } be a set of complete iid observations from a density 
that depends on 8: ~(x l I9 ) .  Here the iid assumption is not 
crucial for implementing our method but will be useful to 
keep the arguments simple. A prior distribution T( 0 )  is in- 
corporated, and the inference is based on the posterior dis- 
tribution of I9 calculated from the Bayes theorem, 

n 

T(0lx) = n 4x1 I 0 > ~ ( ~ ) / 4 v ,  
I =  1 

where r ( X )  = 

of x. 
after observing xI , . . . , x, can be easily computed as 

n :=I ~ ( x ,  1 0 ) r (  0 )  dI9 is the marginal density 

For a future observation x,+~, its predictive distribution 

T(X,+I I X )  = J *(x,+lle) ri 4x1 IO40) /4X)  
I =  I 

= ..( { X ,  & + I  1 >/a(X) (1) 

(see, for example, Aitchison and Dunsmore 1975). When 
the model is in an exponential family with a conjugate prior, 
the posterior distribution typically has a nice form. Further- 
more, if the family has a quadratic variance function, then 
the Bayesian predictive distribution can be written out ex- 
plicitly (Moms 1983). For example, in multivariate normal 
problems, the predictive distribution is usually a multivariate 
t distribution. In multinomial problems with Dirichlet priors, 
the predictive distribution is again multinomial. 

In many practical situations, however, x, may not be 
completely observed. Let us assume that the unobserved val- 
ues are missing completely at random (Little and Rubin 
1987). Let x, = (y, , z,  ), i = 1, . . . , n, where y ,  is the observed 
part, and z, is the missing part. We also write X = ( Y ,  Z ), 
where Y = (yl ,  . . . , y,,) and Z = ( z I ,  . . . , z,). Based on a 
simple formula, 

a(0( Y )  = s n(0( Y ,  Z)a(ZI  Y )  d Z ,  (2) 

the idea of multiple imputations can be applied to deal with 
missingness. That is, multiple values, Z(I) ,  . . . , z ( ~ )  are 
drawn from T(Z I Y )  so as to form m complete data sets. 
With these imputed data sets and the ergodicity theorem, 
we can approximate the posterior distribution of 0 by a mix- 
ture of the complete data posterior distributions; that is, 

Many related computations are then simplified. 
A difficulty of doing this “exact imputation,” however, is 

that in most applied problems it is impossible to draw 2 
from T( - I Y )  directly. Tanner and Wong (1 987)’s data aug- 
mentation (DA), which can regarded as a two-component 
Gibbs sampler applied to draw multiples of 0’s and multiples 
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of Z’s jointly from ~ ( 0 ,  Z I Y ) ,  manages to cope with the 
difficulty by evolving a Markov chain. Here we point out 
that the standard DA method can be improved by collapsing 
down the parameter 0 in many Bayesian missing data prob- 
lems. 

2.1 Collapsing in Data Augmentation 

We assume that with colnplete observations X = (Y, Z ) ,  
the posterior distribution of I9 is easy to compute or to draw 
samples from. By iterating between drawing I9 from ?r( 0 I Y ,  
Z )  and drawing Z from T(Z 18, Y), DA constructs a Markov 
chain whose equilibrium distribution is a( 0, Z I Y )  (see Gel- 
fand and Smith 1990 and Tanner and Wong 1987 for de- 
tails). 

If we treat Z as a random variable with n components 
instead of one [i.e., 2 = ( z l ,  . . . , z , )] ,  we find that the 
standard DA procedure is also equivalent to the general 
Gibbs sampler applied to a random variable with n + 1 com- 
ponents: { 0, zI , . . . , z, } . This fact is made clear by noting 
that the step of drawing Z from ~ ( 2  18, Y )  is the same as 
the n steps of drawing z, from P ( Z ,  10, Z[-,l, Y )  = T ( Z ,  IS, 
Y), i = 1, . . . , n , because of the conditional independence 
between any z,  and z, for a given 0. Furthermore, we note 
that the parameter 0 can be collapsed down in the foregoing 
procedure, and consequently each z, can be drawn from its 
Bayesian predictive distribution conditioned on the current 
value of Z[ -, In doing this, we collapse a ( n + 1 )-component 
Gibbs sampler to a n-component one. More precisely, be- 

d0 = T ( Y ,  Z ) ,  

where r ( Y ,  Z )  is the marginal density for the augmented 
complete data. Without loss of generality, suppose that we 
want to draw z, conditioned on Z[-,]. Then, as displayed 
in ( l ) ,  the complete data predictive distribution ~ ( x ,  I x1 , 
. . . , x,-~ ) usually has a nice explicit form, and consequently 
the conditional predictive distribution of z,, 

4z,IZ[-,],  Y )  a a(Y ,  Z[-,l, z,) a 4 y f l ,  z,IX~-,]) ,  

is often easy. This implies that conditioned on the imputed 
values of zI , . . . , z , -~  and the observed value Y ,  the value 
of z ,  can be easily updated by a draw from its conditional 
predictive distribution. Hence we can go through zI ,  . . . , 
z,, updating the corresponding predictive distributions and 
then drawing from them to finish one iteration of this pre- 
dictive update version of the Gibbs sampler. 

There are two advantages of collapsing down 0. Within 
each iteration, the time-consuming step of drawing I9 from 
T( 0 I Y ,  Z ) is skipped; between iterations, the sample auto- 
correlations are usually reduced. Examples in Section 3 show 
numerically how this method is an improvement over the 
standard DA procedure. Theoretical justifications are de- 
ferred to Section 4. 
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2.2 Computing Posterior Odds Ratios via 
Collapsed Gibbs Sampling 

Let X = ( Y ,  Z )  follow from r ( X l 8 ) ,  where Y is the ob- 
served part and Z is the missing part. Let Q be a general 
space for 8. We want to do a Bayesian test on the hypothesis 
Ho: 8 E Go, where Qo is degenerate with respect to Q, versus 
H A  : 8 4 no. Let rl (8) be a density function on the general 
space Q, and let ao(8) be a density function on the degen- 
erated space no. A Bayesian usually uses a prior distribution 
of the form 

aro(W,(fl) + (1 - a)rl(a), (3) 
where a / ( l  - a )  is the prior odds ratio of HO to H A  and 
6, is the Dirac delta function indicating that we put mass 1 
on Qo. Then the posterior odds ratio, defined as 

arO(Y) = (L) J , r ( Y I W o ( Q  dB 
r =  

( I  - ~ Y ) T , ( Y )  1 - J,r(y18)r,(e) de ' 

is of interest for testing purposes. Without loss of generality, 
we take a = f ,  in which case r is also called the Bayes factor 
by Berger and Sellke (1987). 

With complete observations, exact computation of r is 
manageable. When missing data occur, however, there is 
generally no cheap way of carrying out the necessary com- 
putations. Noting that it is easy to compute both marginal 
densities ro( Y ,  Z )  and T ]  ( Y ,  Z )  when Z is augmented, where 

r n  

and 

~ l ( y ,  2 )  = J n r ( y i ,  zi 1 8 ) ~ 1 ( 8 )  do, 
Q j - 1  

we seek our solution from Markov chain Monte Carlo. It is 
observed, however, that a brute force application of DA or 
the Gibbs sampler does not work, because the degeneracy 
of Qo will result in a reducible Markov chain if a prior dis- 
tribution of the form (3) is used for 8. That is, if one starts 
with 8 E Q ,  the chain will have zero probability of moving 
into the subspace Qo, and vice versa. In other words, the 
posterior distributions ro( 8, Z I Y )  and rl ( 8 ,  Z I Y )  do not 
have the same support. In contrast, once the parameter 8 is 
collapsed down, the resulting chain is irreducible and 
r o ( Z  I Y )  and rl ( Z  I Y )  have the same support. From these 
observations, we are able to derive two Gibbs samplers for 
approximating the posterior odds ratio. 

Draw Z ( k ) ,  k = 1, . . . , m from the distri- 
bution r1 ( Z  I Y )  by running a collapsed Gibbs sampler de- 
scribed in Section 2.1, where r I ( Z I  Y )  a r l ( Y ,  Z ) .  Then 
for each sampled Z ' k ) ,  we can compute 

Method I .  

k =  1, . . . ,  m .  
Thus we obtain m such ratios, r$ ' ) ,  . . . , T $ ~ ) .  Then i 
= ( r ; ' )  + - - - + r!")) /m is a consistent estimate of the true 

posterior odds ratio r ,  because, by the ergodicity theorem of 
Markov chain, the foregoing quantity converges to 

In other words, we only need to run the Gibbs sampler under 
one hypothesis, say HA, to compute the odds ratio. It is also 
valid to run the sampler to draw samples from ro ( Z  I Y )  and 
to approximate l / r  using the same procedure. But some 
numerical experiences given by Chen and Liu ( 1993), where 
this idea was applied to testing a hidden Markov structure 
in a time series, show that it is generally better to run the 
chain under a]. An example is presented in Section 3 to 
illustrate the method. 

Method 2. Let the prior of 8 be [ao(8)6,(8) + r l ( 8 ) ] /  
2. Then, after integrating out 8, we have a distribution of Z 
as r ( Z / Y )  cc r o ( Y ,  2 )  + r l ( Y ,  Z ) .  Thus 

T(zi  I Y ,  a ro(zi  I Y ,  Z[-I ] )  

So each step of the collapsed Gibbs sampler is just a draw 
from a mixture of the two predictive distributions, provided 
that the ratio rl (  Y ,  Z r - i l ) / a o (  Y ,  Z [ - i l )  can be easily com- 
puted, where we note that 

After drawing Z ' k ) ,  k = 1 ,  . . . , m ,  from this chain, we can 
compute u ( ~ )  = r0(y ,  z ( ~ ) ) / [ ~ , ( Y ,  z ' ~ ) )  + r l ( y ,  291 
for each k .  Then, by a similar argument as in Method 1 ,  the 
average of the u ( ~ ) ' s  is an unbiased estimate of r / (  1 + r ) .  

3. SOME EXAMPLES 

3.1 Data from Multivariate Normal Distribution 
with Missingness 

For a Normal covariance inference problem with missing 
observations, a natural tool of computation is DA (Tanner 
and Wong 1987). To implement the standard DA, one needs 
to sample from an inverse Wishart distribution, which is 
computationally intensive. We propose here that this step 
can be collapsed down to iterate only among the missing 
parts using the corresponding predictive distributions. 

Table 1 
contains 12 observations that are assumed drawn from a 
bivariate normal distribution with known means pI = p 2  = 0 
and unknown covariance structure. The data were created 
by Murray in a discussion of work by Dempster, Laird, and 
Rubin (1977) and were used later by Tanner and Wong 

Multivariate Normal Data of Murray (1977). 

Table 1. 12 Bivariate Normal Observations 

1 1 - 1  -1 2 2 - 2  -2 * * * * 
1 - 1  1 - 1 * * *  * 2 2 -2 -2 

NOTE: t indicates that the value is missing. 
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(1987). For notation, let p denote the correlation coefficient 
and let a: and a; denote the marginal variances. The original 
interest is in the posterior distribution of p given the incom- 
plete data. We are only interested in comparing different 
posterior sampling schemes here. 

Using Jeffreys's prior n( 2 )  cc 1 2 1 -3 /2 ,  the predictive dis- 
tribution for the nth observation conditioned on x l ,  . . . , 
x,-~, all of which are two-dimensional, is 

~ ( x n l x t ~  . . . 9 xn-1) - f2(0, S n - l / ( n  - 2), n - 2), 

where t2( ) indicates a bivariate t distribution and S,-, 
= Z:Z,' x,xT is the 2 X 2 sample covariance matrix. Hence 
if part of x, (i.e., y,) is observed, then the conditional dis- 
tribution a( z, 1 x I  , . . . , x , - ~ ,  y,)-whose accurate form has 
been provided by Kong, Liu, and Wong (1994, sec. 3.1)- 
is a noncentral t distribution, as was shown by Box and Tiao 
(1973). Therefore, conditioned on the currently imputed 
values of zl, . . . , z,-*], we can easily update z, by a draw 
from the noncentral t distribution. The collapsed Gibbs 
sampler can be implemented as indicated in Section 2.1. 

To compare the collapsed and the standard schemes, we 
compute autocovariance curves for each of the imputed 
samples, z,, i = 1, . . . , 8. Figure 1 contains two groups of 
autocovariance curves, each group with eight curves for eight 
missing values. The curves are estimated from simulations 
of 100 independent chains and 100 iterations for each chain. 
Because both chains are geometrically mixing, we fit model 
auto( n )  = Cp' + c to the autocovariances for the two bundles, 
where auto( n )  denotes the lag-n autocovariance. It is seen 
that the f i  estimated from the standard scheme is about 
2.5 times larger than the fi  estimated from the collapsed 
scheme. 

3.2 Bayes Factor for a Discrete Data Example 

Let us consider an example of simple graphical model 
with three variables, x,, xb, and x,, each of which is binary 
(0 or 1).  We assume that x, and x, are conditional indepen- 
dent given xb, and that 

T ( X b  = 1 [ x u  = 0) = T ( X b  = O I X ,  = 1) = a, 

n(xc = 1 J X b  = 0) = n(x, = O l X b  = 1) = p. 
This structure can be intuitively expressed by  the diagram 
xu xb + x,. Observations involving incomplete configu- 
rations o f X  = (xu ,  xb, x,) are (1, 1, 0), (1, ?, 1) and (1, ?, 
l ) ,  where "?' indicates missing. We are interested in com- 
puting the Bayes factor r for Ho: a = b versus HA:  a # p. 
Because the likelihood function of the observations is (1 
- a)/3[ap + ( 1  - a) (  1 - / 3 ) 1 2 ,  the Bayes factor can be com- 
puted explicitly through tedious integrations, provided that 
the priors are conjugate. With flat priors, the Bayes factor is 
computed as 39 / 35 = 1.1 14. But this computation will be 
infeasible if the number of incomplete observations is, say, 
10 times larger. 

Based on the approach described in Section 2.2, a Monte 
Carlo method is available to compute r and is applicable to 
much more complicated situations. Let Y denote the ob- 
served data and let zI  and z2 denote the missing parts. Then 
the complete data likelihood is 

0 

5 10 15 20 

Lag 

Figure 1. Autocovariance Plot for Both the Standard and the Collapsed 
Gibbs Sampling Schemes. The upper group represents the standard; the 
lower group, the collapsed. 

a(Y, 2 1 9  Z21% P )  

(4) 

Therefore, if z, , z2 were known, then the Bayes factor with 
flat priors for Ho versus HA would be 

Ly2-zl-z2 ( 1  - a)I+.7~+~2p3-z~-.72(1 - p ) z 1 + , 2 .  

r (6  -- 2z1 - 2z2)r(2 + 2z1 + 2 ~ ~ ) r ( 5 ) ~  
r ( 3  - z1 - z2)r(2 + z1 + z2) 

x r (4  - z1 - z2)r(1 + zI + ~ 2 ) r ( 8 )  

r, = 

By integrating out a and 
(4), we obtain the predictive distribution 

(in space [0, I] X [0, I]) from 

4 ~ 2  = 0 1 ~ 1 ,  Y )  - - (2 - z1)(3 - Z I )  

n(z* = 1 IZI, Y )  (2 + Zl)(l + z1) ' 

and the same for a( zI  I z2, Y )  . A collapsed Gibbs sampler is 
run based on these conditional distributions; after station- 
arity, we compute ?as indicated in Method 1 of Section 2.2. 
With rn = 400 consecutive samples from the chain, we es- 
timate i = 1.1 17. It is also easy to figure out the exact dis- 
tribution of r, without actually running the sampler; that is, 
the r, equals 817 with probability .75 and 36/35 with prob- 
ability .25. So the ergodic average of the r,'s is equal to r 
= 1.1 14, which verifies the first method in Section 2.2. 

The neat expression of the predictive distributions in the 
foregoing example is not an accident. With complete data 
and conjugate priors, Dawid and Lauritzen (1993) and Spie- 
gelhalter and Lauritzen ( 1990) demonstrated the simplicity 
of the posterior and predictive distributions in both undi- 
rected and directed decomposable graphical models. 

3.3 Nonparametric Bayesian Analysis 

Many theoretical developments have been made on non- 
parametric Bayesian methods in the past two decades, by 
Ferguson (1 974), Antoniak ( 1974), and many others. A ma- 
jor obstacle to widespread use of the method is computa- 
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tional. Recent developments of the Markov chain Monte 
Carlo seem to have rejuvenated the area, however. 

To illustrate, we consider a binomial model for n unknown 
coins, 

yJ - Binomial(&, 5;) 1 s j  I n ,  

where 1, is the total number of flips for coinj  and rJ is its 
probability of landing heads up. The lJ’s are assumed to be 
independently drawn from a common population with dis- 
tribution F. Our interest is in drawing inference about F 
and the SJ based on the observed data y , ,  j = 1 ,  . . . , n. 
Taking a Bayesian nonparametric approach, we assume that 
F, which is an infinite-dimensional parameter, is a priori 
drawn from a Dirichlet process a) (a), where a is a finite 
measure on interval [0, 1 1 .  Note that a)( a) is a probability 
measure on P, where P is the space of all probability mea- 
sures on [0, l J .  (Readers not familiar with this area are re- 
ferred to Ferguson 1974 for more details.) 

If S;’s are actually observed, Ferguson ( 1974) explained 
that the posterior distribution of F is simply a)( a’) with a‘ 
= a + Cy=l aG, where aG is a Dirac delta function. Thus this 
can be regarded as a missing data problem where 2 = ( lI, 
. . . , rfl) plays the role of the missing values and F corresponds 
to the parameter 6 in a standard setting. Because F is infinite- 
dimensional, it is difficult to directly apply the traditional 
DA procedure to iterate between the “missing data” and the 
“parameter,” because the latter cannot be drawn correctly. 
Kong et al. ( 1994) found a noniterative method to overcome 
the difficulty, and Escobar (1994) described a Gibbs sampling 
approach. Both methods use the simple form of the Bayes- 
ian predictive distribution of 5; conditioned on the other 
rs. Precisely, because the likelihood a(y, I r,) a S?( 1 
- 3; )‘i-yi and 

(Antoniak 1974), applying the Bayes theorem we obtain the 
predictive distribution of 5; as 

~ ( C I Y , ,  4 - , 1 )  a - L)‘i-yia(L) 

+ c l?(l - l J ) ’ - y J 6 G (  5; ) *  
J + ,  

Hence a collapsed Gibbs sampler (with F collapsed down) 
can be applied to iteratively sample 5; using the foregoing 
simple predictive distribution. 

4. 

Let X = ( x I  , . . . , x d )  be a random variable that can be 
partitioned into d components, with density a(X) . We con- 
sider a systematic scan Gibbs sampler applied to sample from 
this target distribution. That is, a Markov chain 
= ( X I  , . . . , xd ), k = 0, 1 ,  . . . } is constructed with its 
transition function defined by the d-component Gibbs sam- 

K ( X ( k ) ,  ~ ( k + l ) )  

COLLAPSING IN A GENERAL GIBBS SAMPLER 

( k )  ( k )  

pler, 

d 
- n a { X ; k + l )  I X l k + l )  ( k + l )  ( k )  ( k )  , . . . , XI-1 9 X/+I, . . ., X d  } .  ( 5 )  - 

I= I 

It is easy to check that T ( X )  is invariant under this transition. 
Now suppose that the last two components, x ~ - ~ ,  Xd, can 

be drawn together; then we have a reduced Gibbs sampler 
on a new partition of the random variable X *  = { x1 , . . . , 
X A - ~  } ,where x i p l  = { & - I ,  x d }  , by grouping. Furthermore, 
suppose that the component xd can be integrated out; then 
an even more reduced sampler on X -  = { x1 , . . . , xdPl  } , 
with its marginal density x ( X - )  = a(X) dxd, results from 
collapsing. We will compare the original scheme and the two 
new ones. 

To argue rigorously, we introduce some concepts con- 
cerning a Markov chain and its associated function spaces. 
Let L2( a) denote the set of all functions t that are square 
integrable with respect to a; that is, var { t ( X ) }  < a. This 
set is a Hilbert space with an inner product defined by ( 2 ,  
s) = E {  t ( X ) s ( X ) } .  Let X(O), X ( I ) ,  . . . , be a general state- 
space Markov chain with transition function K ( X ,  Y )  
= P ( X ( I )  = Y I X(O) = X). We define a conditional expec- 
tation operator F on L2( a) for the Markov chain as 

F t ( X )  = K ( X ,  Y ) t ( Y ) d Y = E { t ( X ‘ ” ) ~ ~ ‘ o ’ = X } .  s 
We observe immediately that the norm of the operator is at 
most 1 ,  where the norm is defined as llFll = sup IIFt(X)II 
with the supremum taken over all functions with E( 2 ’ )  = 1 .  
On the other hand, because the constant function c is an 
eigenfunction of the operator corresponding to eigenvalue 
1 ,  we know that the norm of F is exactly 1 .  When the chain 
is reversible (i.e., the detailed balance condition a( X )  K( X ,  
Y )  = a( Y ) K (  Y, X) is satisfied), F is a self-adjoint operator. 
When F is compact and self-adjoint (which is true when the 
state space is finite and the chain is reversible), the second 
largest eigenvalue (in absolute value) of F characterizes the 
mixing rate, or convergence rate, of the Markov chain. Many 
methods are available for bounding the second largest ei- 
genvalue and finding the actual rate of convergence for this 
case (see Diaconis 1988 and Diaconis and Strook 1991 for 
details). Methods for dealing with nonreversible chain have 
been rare, however. (See Fill 199 1 for the “reversibilization” 
method in treating nonreversible chains.) 

Now we consider a subspace of L2( a). Let L$( a) = { t ( X )  
E L2(1r) : E {  t ( X ) }  = 0}, which is a space of mean 0 func- 
tions with finite variance. Clearly, this is again a Hilbert space 
with the same inner product and is invariant under the o p  
erator F . We use Fo, called the forward operator, to denote 
the operator on L$(a )  induced by F. Then the largest ei- 
genvalue of Fo is exactly the same as the second largest ei- 
genvalue of F. Typically, the spectral radius of Fo charac- 
terizes the rate of convergence of the Markov chain in both 
reversible and nonreversible cases. When the chain is re- 
versible, the spectral radius of Fo is the same as its norm. A 
general relationship between the norm and the spectral radius 
of an operator is 

lim IlFaII I ”  = r ,  
n+m 

where r is the spectral radius. This suggests that one can 
compare different Markov chains by comparing the norms 
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Table 2. DNA Sequences From 18 Loci, Each 105 Bases Long 

taatgtttgtgctggtTTTTGTGGCATCGGGCGAGAATagcgcgtggtgtgaaagactgttt t t t tgatcgttt tcacaaaaatggaagtccacagtcttgacag 
gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataag 
acaaatcccaataacttaattattgggatttgttatatataactttataaattcctaaaattacacaaagttaataactgtgagcatggtcatatttttatcaat 
cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgtatgcaaaggacgtcacattaccgtgcagtacagttgatagc 
acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagcatggtgttaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaacc 
agtgaattatttgaaccagatcgcattacagtgatgcaaacttgtaagtagatttccttaattgtgatgtgtatcgaagtgtgttgcggagtagatgttagaata 
gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattccatgtcacacttttcgcatctttgttatgctatggttatttcataccataagcc 
gctccggcggggttttttgttatctgcaattcagtacaaaacgtgatcaacccctcaattttccctttgctgaaaaattttccattgtctcccctgtaaagctgt 
aacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcac 
acattaccgccaattctgtaacagagatcacacaaagcgacggtggggcgtaggggcaaggaggatggaaagaggttgccgtataaagaaactagagtccgttta 
ggaggaggcgggaggatgagaacacggcttctgtgaactaaaccgaggtcatgtaaggaatttcgtgatgttgcttgcaaaaatcgtggcgattttatgtgcgca 
gatcagcgtcgttttaggtgagttgttaataaagatttggaattgtgacacagtgcaaattcagacacataaaaaaacgtcatcgcttgcattagaaaggtttct 
gctgacaaaaaagattaaacataccttatacaagacttttttttcatatgcctgacggagttcacacttgtaagttttcaactacgttgtagactttacatcgcc 
ttttttaaacattaaaattcttacgtaatttataatctttaaaaaaagcatttaatattgctccccgaacgattgtgattcgattcacatttaaacaatttcaga 
cccatgagagtgaaattgttgtgatgtggttaacccaattagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagc 
ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctc 
ctgtgacggaagatcacatcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaatgagacgttgatcggcacg 
gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatttgtgagtggtcgcacatatcctgtt 

of the corresponding forward operators. It is interesting to 
note here that 11 Foil equals the second largest eigenvalue of 
the transition operator for the reversibilized chain, which 
ties in with the method of Fill ( 1  99 1). 

Let F, denote the forward operator for the standard Gibbs 
sampler, corresponding to the transition function (5) ; let Fg 
denote the forward operator corresponding to the grouping 
procedure, and let F, denote the collapsed Gibbs sampler 
with x d  integrated out. The three samplers can be illustrated 
by the diagrams of their respective visiting schemes: 

F,: X I  --* ~2 + * * x d  

F,: X I  + X2 + ’ ’ ’ --f ( X d - 1 ,  X d }  

F,: x I + x ~ +  * * *  X d - 1 .  (6) 
Theorem 1 (Three-schemes Theorem). The norms of the 

three forward operators are ordered as 

and Reilly (1990) using an EM algorithm, that contain cyclic 
AMP receptor protein (CRP) binding sites. CRP is a positive 
control factor necessary for the expression of catabolite re- 
pressable genes. The location of the CRP binding sites in 
these sequences have been experimentally determined (see 
Lawrence and Reilly 1990 for references), so that using this 
set allows us to test the ability of our method (versus the EM 
algorithm) to locate the sites. Two obvious advantages of 
the Gibbs sampling approach over the EM approach are (1) 
the stochastic nature of the Gibbs sampler makes it more 
able to escape from a local mode, and ( 2 )  the idea of con- 
sidering one random variable a time with the rest of the 
variables held fixed enables us to build more sophisticated 
and realistic models. Elsewhere we show (Lawrence et al. 
1993) that the Bayesian models and the Gibbs sampling ap- 
proach provide flexibility in describing biological sequences 
and power for finding subtle motifs and, unlike the EM al- 
gorithm, can identify multiple motifs. We first develop a 
simple collapsed Gibbs sampling scheme, and then build in 

Generally, the Gibbs sampler itself does not specify exactly a Metropolis step to cope with the special mu1timodalitY 
feature of the problem. how the random variable should be partitioned. This is a 

Eighteen DNA sequences from different loci are given, decision that users have to make, providing an opportunity 
each L = 105 bases long (Table 2). It is known that there is to their ingenuity. A good Gibbs sampling algorithm must at least one binding site (maybe more) of J = 22 bases long meet two conflicting criteria: (1) drawing one component in each of the 18 sequences. For example, a binding site in conditioned on the others must be computationally simple, the first sequence of Table 2 starts at the 17th position and and (2) the Markov chain induced by the Gibbs sampler stops at the 38th position (indicated by capital letters). We with such partitioning components must converge reasonably are interested in designing a computational method to aid 
in determining positions and base frequencies of the binding fast to its equilibrium distribution. For example, drawing 

the variables jointly with no partitioning at all is optimal for sites (thereby allowing the experimenter to more quickly 
convergence but is formidable; this is the reason why the characterize such sites). 
Gibbs sampler was invented. Theorem 1 provides a theo- Because regulatory DNA binding proteins typical,y rec- 
retical confirmation of such a confliction. It seems to be a ognize conserved sites, we adopt the strategy of looking for 
reasonable strategy to “group” or “collapse” whenever it is similar regions among the DNA sequences. Following 
computationally feasible, like those examples in Section 3. Lawrence and Reilly ( 1990), we treat the starting positions 
But as a whole, it is left to the reader to make compromises of all the binding sites as missing data and the actual residue 

frequencies in each binding site as a sample from a product to balance all the aforementioned factors. 

multinomial model parameterized by 0. Then a data aug- 
mentation scheme (Tanner and Wong 1987) can be applied 
to find the posterior distribution of 0 as well as the posterior 
mode of ~ ( 2  1 Y ) ;  that is, the most probable positions of the 
binding sites a posteriori. 

5. REGULATORY BINDING SITE PROBLEM 

The collapsed Gibbs sampler was applied to a set of un- 
aligned DNA fragments, previously analyzed by Lawrence 
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More precisely, a 4 X 22 dimensional parameter 0 is 
needed to characterize the residue frequencies of the binding 
sites, where 

0 = ( e l , .  . . , e,), 

in which 19, = ( O J a ,  e,,, Ojg,  eJc)T represents the frequencies of 
the four nucleotides A, T, G, and C at thejth position of a 
binding site. For example, the probability of observing the 
nucleotide T at the j th  base of a binding site is Oj, .  For a 
given 0, all bases in a binding site are assumed to be mutually 
independent. So the probability of seeing a binding site as 
the one indicated in the first sequence of Table 2 is 81J2,. . . 
f121a19221. The bases in all the DNA sequences are also assumed 
independent. Therefore, for example, for a given 0 and an 
observed DNA sequence B = ( bl , b2, . . . , bL), the probability 
that the starting position for the binding site is 17, condi- 
tioned on the knowledge that there is a site in the sequence 
and that all starting positions are equally likely, is propor- 
tional to 

Here J i s  22. Therefore, it is easy to sample a starting position 
of a binding site in a sequence for a given 0. On the other 
hand, had we known the actual binding sites, we would have 
been able to update the posterior distribution of 0, which 
would be a product of J independent Dirichlet distributions 
had a Dirichlet prior been used. A usual data augmentation 
scheme is then easy to implement. 

For the sake of a simple argument, the prior distribution 
on 0 is assumed to be 

a(@) = aI(e1). . . T J ( e J ) ,  

where a,(O,) is a Dir( 1, 1, 1, 1) distribution. Let B I ,  . . . , B I 8  
denote the 18 DNA sequences, each of length L = 105; that 
is, B, = (b, . . . , brL) .  Let 2 = (zI , . . . , zI8) denote the 
vector of starting positions of binding sites in 18 DNA se- 
quences that cannot be observed and are treated as missing 
values. Imagine a data augmentation scheme applied to it- 
eratively draw @ conditioned on Z and then Z conditioned 
on 0 (all steps are conditioned on the observed sequences). 
For this problem, the step of drawing 0 involves sampling 
from 22 four-dimensional Dirichlet distributions and is time 
consuming. For a problem with protein sequences (Lawrence 
et al. 1993), the corresponding Dirichlet distributions will 
be 20-dimensional, which will further increase the compu- 
tational burden. But we can apply collapsing, as discussed 
in Section 2.1, to design a more efficient algorithm. 

With known Z,-,,, the posterior distribution of 0 is a 
product of independent Dirichlet distributions, 

J 

fl Dir( cJ,a + 2 cJ,r + 7 c,g + 7 c],C + 9 

1=1 

where qa, for example, is the count of nucleotide type A 
among all thejth base of the 17 “known” sites. Hence the 
predictive distribution for the starting position z; in sequence 
B; is 

J 

p ( z l  = slz[-L], B 1 ,  . . - B 1 8 )  Oc n (cJ,b,(s+,-i) + l)  
J=I 

s = l ,  . . . ,  L - J + l .  (7)  

This predictive distribution can be used to implement a col- 
lapsed Gibbs sampling algorithm. 

Now we observe a special feature of the problem. Let 2’ 
= ( z ? ,  . . . , zyg) be the starting positions of the true sites, 
and suppose that it is the true mode of the distribution. Then 
those sites 2 = 2’ + 6 = (27 + 6, . . . , zyg + 6) ,  where 6 is 
small, are also local modes of the distribution. We call them 
shift modes because they differ from the true mode by a 
common shift. The reason for this is that shifting 6 bases for 
all the z’s simultaneously still results in 22 - 6 correctly 
aligned bases. Thus when zI ,  . . . , 217  are shifted from the 
true mode by 6, the 18th position predicted by formula (7) 
is also highly likely to have the same amount of shift. In this 
way, all the sites are still aligned. Thus the Gibbs sampler 
will not enable a global change for all random components 
simultaneously. This feature suggests a combination with 
another kind of transition to encourage a global “shifting.” 

For an integer 6, let Z +  6 = (zI + 6 , .  . . , z18 + 6) .  Ifone 
of the z, equals 1, we assume that Z - 1 = Z; if one of the 
z, is L - J + 1 = 84, then Z + 1 = Z. We construct a hybrid 
algorithm by inserting the following Metropolis step (Me- 
tropolis et al. 1953) after a few Gibbs sampling iterations: 

Suppose that the current state is 2 ( k )  = Z; first choose 6 
= + 1 or - 1 with probability 1 /2 each, and compute 

a(2 + 6 )  

42) 
P =  

using formula (8). If p 2 1, then update the chain by 2 
= Z + 6: if p < 1, then let Z ( k + l )  = 2 + 6 with probability 
p and 2 ( k + l )  = 2 with probability 1 - p. 

Here T ( Z )  can be easily computed up to a normalizing 
constant after collapsing down 0; that is, 

= ( Z I ,  * .  ., Z18)) 

22 

Oc n { n]a(z )!nJ,(z ) ! n J g ( z  I!} 9 ( 8 )  
/=I  

where, for example, n,,(Z) is the number of counts of nu- 
cleotide type A among the ( z ,  + j - 1)th base of sequence 
B,, for all i = 1, . . . , 18. An important fact to note is that 
this step involves little extra computation, because there are 
many cancellations between the common parts of T( 2 + 6 )  
and a( 2). Simulation results show that whereas the ordinary 
Gibbs sampler may be easily stuck in a shift mode even with 
more than 3,000 iterations, the new Gibbs-Metropolis al- 
gorithm reaches the global mode within 400 steps for all of 
the different starting points (about 20) that we have tried. 

Applying only a simple model similar to the mononucle- 
otide model of Lawrence and Reilly (1 990), we can identify 
18 of the 24 footprinting sites. A comparison of the experi- 
mentally determined sites with sites located using Lawrence 
and Redly’s EM algorithm and our method is shown in Table 
3. As pointed out by Lawrence and Reilly, more sophisticated 
models can be built to improve the ability of identifying the 
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Table 3. Starting Positions of the Sites 

Two most likely sites 

EM GM 
Footprint 

Sequence sites First Second First Second 

Cole 1 
eco arabop 
eco bglrl 
eco crp 
eco cya 
eco deop 
eco gale 
eco ilvbpr 
eco lac 
eco male 
eco malk 
eco malt 
eco ompa 
eco tnaa 
eco uxul 
pbr-p4 
trn9cat 
(tdc) 

17, 61 
17,55 

76 
63 
50 

7, 60 
42 
39 

9, 80 
14 

29, 61 
41 
48 
71 
17 
53 
1, 84 
78 

61 
55 
76 
63 
50 
7 

24 
39 
9 

14 
61 
41 
48 
71 
17 
53 
5 

78 

45 
76 
40 
73 
15 
39 
76 
20 
73 
12 
29 
11 
12 
34 
26 
84 
66 
76 

61 
55 
76 26 
63 45 
50 15 
7 60 

42 24 
39 20 
9 75 

14 
61 35,29 
41 51 
48 12 
71 26 
17 48 
53 27 

78 76 
5 84,66 

sites. The proposed Gibbs-Metropolis method is also appli- 
cable in those cases. More details have been reported by 
Lawrence et al. ( 1993). 

APPENDIX: MATHEMATICAL PROOFS 

For any two random variables X and Y, both of which can be 
multidimensional, we define the maximal correlation between them 
as 

def 

p ( X ,  Y ) =  sup cov{ t ( X ) ,  s(Y)} 

= sup \ l v a r [ ~ { t ( ~ ) ~ ~ } ] ,  (A.I)  

where the supremum is taken over all functions t ( X )  and s( Y) with 
variances equal to 1. Clearly, it is always true that 0 I p( X ,  Y)  I 1. 
Under certain regularity conditions (e.g., compactness), one has 
p ( X ,  Y) < I .  Lancaster (1958) and Csiki and Fischer (1960) gave 
such conditions. 

Lemma 1. If Y’ = (Y, 2)  where Z is another random variable, 
then p(X, Y ’ )  2 p(X, Y). 

Proof Because for any function t ( X )  it is true that 

E{t (X)IY)  = E[E{ t (X) IY,Z j lYl ,  
it is obvious that var[E{t(X)IY’}] 2 var[E{t(X)IY}]. Hence 
the statement is true. 

For a time-homogeneous and stationary Markov 
chain X‘’), X ( I ) ,  . . . , the norm of its forward operator Fo is equal 
to the maximal correlation between the two consecutive states. That 
is, IIFoll = p(X(O) ,  X ( ’ ) ) .  

Proof By definition, 

Lemma 2. 

which is equal to p(X(’) ,  X ( ’ ) )  as indicated in (A. 1). 

Lemma 3. Suppose that X = ( xI , . . . , xd) and that the transition 
function for the Gibbs sampling chain is the one defined in (5). 
Then, under the stationarity of the chain, the joint distribution 
between two consecutive states X and Y is 

* ( X ,  Y) = *(X)* (Y ,  I Xr-ll)*(Yzl Y I ,  X[-{l.2)1) 

. . . * ( Y d l  yl, . . . 9 Yd-1). 

Proof By definition of the Gibbs sampler. 

Lemma 4. Under the same setting as Lemma 3, the norm of 
the forward operator corresponding to the standard Gibbs sampler 
F, is equal to the maximal correlation between X[-ll and Y[-dl. 

Proof By Lemma 2 ,  it is understood that llF,ll = p ( X ,  Y ) .  Be- 
cause, given xI is conditionally independent of Y ,  and given 
Y[-d l ,  yd  is conditionally independent of X ,  it is intuitively true 
that Xand Yare dependent only through X[-,] and Y[-d~. Mathe- 
matically, because of the conditional independence, it is true that 
for any function t of X ,  

E{t(X)I Y )  = E[E{t(X)IX[-lI)IYl = ~ ~ ~ l ~ ~ [ - l l ~ l ~ ~ ,  

where fl(X[-ll) = E { t ( X ) l X [ - l l } .  Therefore, var[E{t(X)l Y}] 
= var[E{ tl(X[-ll)l Y}] I ~ a r ( t ~ ) p ~ ( X [ - ~ ] ,  Y). Because var(tl) 
I var(t), it shows that 

P(X, Y) 5 AX[-11, Y). 
On the other hand, for any function t ( X )  not involving the first 
component, that is, tl(Xc-ll) = t ( X ) ,  

~ a r [ ~ { t ( X [ - ~ l ) l  Y ) l  = var[E{t(x)l Y11 

5 P 2 W ,  Y)var{t(&1)}, 

which shows that P ( X ~ - ~ ] ,  Y )  I p(X,  Y) as well. As a consequence 
p ( X ,  Y)  = P ( X [ - ~ ~ ,  Y).  In the same manner, one can proceed to 
show that P ( X [ - ~ I ,  Y)  = P ( ~ [ - I I ,  Y[-dl). 

Proof of the three-schemes theorem 

Proof The difference between the two operators F, and Fg is 
illustrated by diagram (6). By Lemmas 2 and 4, it is enough to 
compare the two maximal correlations between consecutive states. 
Let X = (xl ,  . . . , x ~ - ~ ,  xd) ,  and X -  = Then for the two 
schemes, 

llFcII = dX-11, y ~ - { d - l ) l )  

and 

IlFgll = p(X[-I], Y[-{d-l,d)l). 
From the scheme arrangement, it is seen that X C - ~ I  = ( X  r-ll, x d )  

and Y ~ - ~ d - l l l  = Y[- (d - l , d ) l .  By Lemma 1, itisconcluded that IIF,II 

To compare Fg and F,, we let X *  = (XI,  . . . , { xd- I ,  x d }  ) and 
let Y* be a consecutive follower of X *  in the chain. Then X[-ll 
= Xf-ll,  and Y[-dl = (Yr-{d-l,dll, 

I IlFgll. 

By Lemmas I and 4, 

IlFgll = dXf-I], YT-dI) I P(X[-II, Y1-4) = IlFsll. 

The theorem is proved. 

Comment. Monotonicity of the norms corresponding to the 
three operators can not guarantee the same result for the spectral 
radii. An example of this was provided by Liu, Wong and Kong 
(1994). 

[Received April 1992. Revised September 1993.1 
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