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Introduction

The inner circle in Figure 1 represents normal theory, the preferred venue of classical applied

statistics. Exact inference — t tests, F tests, chi-squared statistics, ANOVA, multivariate analysis

— were feasible within the circle. Outside the circle was a general theory based on large-sample

asymptotic approximation involving Taylor series and the central limit theorem.
 

NORMAL THEORY
(exact calculations)

EXPONENTIAL FAMILIES
(partly exact)

GENERAL THEORY
(asymptotics)

Figure 1.1: Three levels of statistical modeling

Figure 1: Three levels of statistical modeling

A few special exact results lay outside the normal circle, relating to specially tractable dis-

tributions such as the binomial, Poisson, gamma and beta families. These are the figure’s green

stars.

A happy surprise, though a slowly emerging one beginning in the 1930s, was that all the special

iii



iv

cases were examples of a powerful general construction: exponential families. Within this super-

family, the intermediate circle in Figure 1, “almost exact” inferential theories such as generalized

linear models (GLMs) are possible. This course will examine the theory of exponential families in

a relaxed manner with an eye toward applications. A much more rigorous approach to the theory

is found in Larry Brown’s 1986 monograph, Fundamentals of Statistical Exponential Families, IMS

series volume 9.

Our title, “Exponential families in theory and practice,” might well be amended to “. . . between

theory and practice.” These notes collect a large amount of material useful in statistical appli-

cations, but also of value to the theoretician trying to frame a new situation without immediate

recourse to asymptotics. My own experience has been that when I can put a problem, applied

or theoretical, into an exponential family framework, a solution is imminent. There are almost

no proofs in what follows, but hopefully enough motivation and heuristics to make the results

believable if not obvious. References are given when this doesn’t seem to be the case.



Part 1

One-parameter Exponential Families

1.1 Definitions and notation (2–4) General definitions; natural and canonical parameters; suf-

ficient statistics; Poisson family

1.2 Moment relationships (4–7) Expectations and variances; skewness and kurtosis; relations-

hips; unbiased estimate of ⌘

1.3 Repeated sampling (7–8) I.i.d. samples as one-parameter families

1.4 Some well-known one-parameter families (8–13) Normal; binomial; gamma; negative bino-

mial; inverse Gaussian; 2⇥2 table (log-odds ratio) ulcer data; the structure of one-parameter

families

1.5 Bayes families (13–16) Posterior densities as one-parameter families; conjugate priors; Twee-

die’s formula

1.6 Empirical Bayes (16–19) Posterior estimates from Tweedie’s formula; microarray example

(prostate data); false discovery rates

1.7 Some basic statistical results (19–23) Maximum likelihood and Fisher information; functions

of µ̂; delta method; hypothesis testing

1.8 Deviance and Hoe↵ding’s formula (23–30) Deviance; Hoe↵ding’s formula; repeated sam-

pling; relationship with Fisher information; deviance residuals; Bartlett corrections; example

of Poisson deviance analysis

1.9 The saddlepoint approximation (30–32) Hoe↵ding’s saddlepoint formula; Lugananni–Rice

formula; large deviations and exponential tilting; Cherno↵ bound

1.10 Transformation theory (32–33) Power transformations; table of results

One-parameter exponential families are the building blocks for the multiparameter theory de-

veloped in succeeding parts of this course. Useful and interesting in their own right, they unify a

vast collection of special results from classical methodology. Part I develops their basic properties

and relationships, with an eye toward their role in the general data-analytic methodology to follow.
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2 PART 1. ONE-PARAMETER EXPONENTIAL FAMILIES

1.1 Definitions and notation

This section reviews the basic definitions and properties of one-parameter exponential families. It

also describes the most familiar examples — normal, Poisson, binomial, gamma — as well as some

less familiar ones.

Basic definitions and notation

The fundamental unit of statistical inference is a family of probability densities G, “density” here

including the possibility of discrete atoms. A one-parameter exponential family has densities g⌘(y)

of the form

G = {g⌘(y) = e⌘y� (⌘)g0(y), ⌘ 2 A, y 2 Y}, (1.1)

A and Y subsets of the real line R1.

Terminology

• ⌘ is the natural or canonical parameter; in familiar families like the Poisson and binomial, it

often isn’t the parameter we are used to working with.

• y is the su�cient statistic or natural statistic, a name that will be more meaningful when we

discuss repeated sampling situations; in many cases (the more interesting ones) y = y(x) is a

function of an observed data set x (as in the binomial example below).

• The densities in G are defined with respect to some carrying measure m(dy), such as the

uniform measure on [�1,1] for the normal family, or the discrete measure putting weight

1 on the non-negative integers (“counting measure”) for the Poisson family. Usually m(dy)

won’t be indicated in our notation. We will call g0(y) the carrying density.

•  (⌘) in (1.1) is the normalizing function or cumulant generating function; it scales the den-

sities g⌘(y) to integrate to 1 over the sample space Y,

Z

Y
g⌘(y)m(dy) =

Z

Y
e⌘yg0(y)m(dy)

�
e (⌘) = 1.

• The natural parameter space A consists of all ⌘ for which the integral on the left is finite,

A =

⇢
⌘ :

Z

Y
e⌘yg0(y)m(dy) < 1

�
.

Homework 1.1. Use convexity to prove that if ⌘1 and ⌘2 2 A then so does any point in the

interval [⌘1, ⌘2] (implying that A is a possibly infinite interval in R1).

Homework 1.2. We can reparameterize G in terms of ⌘̃ = c⌘ and ỹ = y/c. Explicitly describe

the reparameterized densities g̃⌘̃(ỹ).
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We can construct an exponential family G through any given density g0(y) by “tilting” it

exponentially,

g⌘(y) / e⌘yg0(y)

and then renormalizing g⌘(y) to integrate to 1,

g⌘(y) = e⌘y� (⌘)g0(y)

✓
e (⌘) =

Z

Y
e⌘yg0(y)m(dy)

◆
.

It seems like we might employ other tilting functions, say

g⌘(y) /
1

1 + ⌘|y|g0(y),

but only exponential tilting gives convenient properties under independent sampling.

If ⌘0 is any point on A we can write

g⌘(y) =
g⌘(y)

g⌘0(y)
g⌘0(y) = e(⌘�⌘0)y�[ (⌘)� (⌘0)]g⌘0(y).

This is the same exponential family, now represented with

⌘ �! ⌘ � ⌘0,  �!  (⌘)�  (⌘0), and g0 �! g⌘0 .

Any member g⌘0(y) of G can be chosen as the carrier density, with all the other members as

exponential tilts of g⌘0 . Notice that the sample space Y is the same for all members of G, and that

all put positive probability on every point in Y.

The Poisson family

As an important first example we consider the Poisson family. A Poisson random variable Y having

mean µ takes values on the non-negative integers Z+ = {0, 1, 2, . . . },

Pr
µ
{Y = y} = e�µµy/y! (y 2 Z+).

The densities e�µµy/y!, taken with respect to counting measure on Y = Z+, can be written in

exponential family form as

g⌘(y) = e⌘y� (⌘)g0(y)

8
>>><

>>>:

⌘ = log(µ) (µ = e⌘)

 (⌘) = e⌘ (= µ)

g0(y) = 1/y! (not a member of G).

Homework 1.3. (a) Rewrite G so that g0(y) corresponds to the Poisson distribution with µ = 1.

(b) Carry out the numerical calculations that tilt Poi(12), seen in Figure 1.1, into Poi(6).
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Figure 1.2. Poisson densities for mu=3,6,9,12,15,18; 
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Figure 1.1: Poisson densities for µ = 3, 6, 9, 12, 15, 18; heavy curve with dots for µ = 12.

1.2 Moment relationships

Expectation and variance

Di↵erentiating exp{ (⌘)} =
R
Y e⌘yg0(y)m(dy) with respect to ⌘, indicating di↵erentiation by dots,

gives

 ̇(⌘)e (⌘) =

Z

Y
ye⌘yg0(y)m(dy)

and

h
 ̈(⌘) +  ̇(⌘)2

i
e (⌘) =

Z

Y
y2e⌘yg0(y)m(dy).

(The dominated convergence conditions for di↵erentiating inside the integral are always satisfied in

exponential families; see Theorem 2.2 of Brown, 1986.) Multiplying by exp{� (⌘)} gives expressi-

ons for the mean and variance of Y ,

 ̇(⌘) = E⌘(y) ⌘ “µ⌘”

and

 ̈(⌘) = Var⌘{Y } ⌘ “V⌘”;

V⌘ is greater than 0, implying that  (⌘) is a convex function of ⌘.
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Notice that

µ̇ =
dµ

d⌘
= V⌘ > 0.

The mapping from ⌘ to µ is 1 : 1 increasing and infinitely di↵erentiable. We can index the family G
just as well with µ, the expectation parameter, as with ⌘. Functions like  (⌘), E⌘, and V⌘ can just

as well be thought of as functions of µ. We will sometimes write  , V , etc. when it’s not necessary

to specify the argument. Notations such as Vµ formally mean V⌘(µ).

Note. Suppose

⇣ = h(⌘) = h (⌘(µ)) = “H(µ)”.

Let ḣ = @h/@⌘ and H 0 = @H/@µ. Then

H 0 = ḣ
d⌘

dµ
= ḣ/V.

Skewness and kurtosis

 (⌘) is the cumulant generating function for g0 and  (⌘)�  (⌘0) is the CGF for g⌘0(y), i.e.,

e (⌘)� (⌘0) =

Z

Y
e(⌘�⌘0)yg⌘0(y)m(dy).

By definition, the Taylor series for  (⌘)�  (⌘0) has the cumulants of g⌘0(y) as its coe�cients,

 (⌘)�  (⌘0) = k1(⌘ � ⌘0) +
k2
2
(⌘ � ⌘0)

2 +
k3
6
(⌘ � ⌘0)

3 + . . . .

Equivalently,

 ̇(⌘0)= k1,  ̈(⌘0) = k2,
...
 (⌘0) = k3,

....
 (⌘0) = k4

h
= µ0 = V0 = E0{y0 � µ0}3 = E0{y0 � µ0}4 � 3V 2

0

i

etc., where k1, k2, k3, k4, . . . are the cumulants of g⌘0 .

By definition, for a real-valued random variable Y ,

SKEW(Y ) =
E(Y � EY )3

[Var(Y )]3/2
⌘ “�” =

k3

k3/22

and

KURTOSIS(Y ) =
E(Y � EY )4

[Var(Y )]2
� 3 ⌘ “�” =

k4
k22

.
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Putting this all together, if Y ⇠ g⌘(·) in an exponential family,

Y ⇠
h

 ̇,  ̈1/2,
...
 
�
 ̈3/2,

....
 
�
 ̈2

i

" " " "
expectation standard skewness kurtosis

deviation

where the derivatives are taken at ⌘.

For the Poisson family

 = e⌘ = µ

so all the cumulants equal µ

 ̇ =  ̈ =
...
 =

....
 = µ,

giving

Y ⇠
h

µ,
p
µ, 1

�p
µ, 1/µ

i

" " " "
exp st dev skew kurt

A useful result

Continuing to use dots for derivatives with respect to ⌘ and primes for derivatives with µ, notice

that

� =

...
 

 ̈3/2
=

V̇

V 3/2
=

V 0

V 1/2

(using H 0 = ḣ/V ). Therefore

� = 2(V 1/2)0 = 2
d

dµ
sdµ

where sdµ = V 1/2
µ is the standard deviation of y. In other words, �/2 is the rate of change of sdµ

with respect to µ.

Homework 1.4. Show that

(a) � = V 00 + �2 and (b) �0 =

✓
� � 3

2
�2
◆�

sd .

Note. All of the classical exponential families — binomial, Poisson, normal, etc. — are those with

closed form CGFs  . This yields neat expressions for means, variances, skewnesses, and kurtoses.

Unbiased estimate of ⌘

By definition y is an unbiased estimate of µ (and in fact by completeness the only unbiased estimate

of form t(y)). What about ⌘?
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• Let l0(y) = log{g0(y)} and l00(y) =
dl0(y)
dy .

• Suppose Y = [y0, y1] (both possibly infinite)

and that m(y) = 1.

Lemma 1.

E⌘
�
�l00(y)

 
= ⌘ � [g⌘(y1)� g⌘(y0)] .

Homework 1.5. Prove the lemma. (Hint : integration by parts.)

So, if g⌘(y) = 0 (or ! 0) at the extremes of Y, then �l00(y) is a unbiased estimate of ⌘.

Homework 1.6. Numerically investigate how well E⌘{�l00(y)} approximates ⌘ in the Poisson

family.

1.3 Repeated sampling

Suppose that y1, y2, . . . , yn is an independent and identically distributed (i.i.d.) sample from an

exponential family G:
y1, y2, . . . , yn

iid⇠ g⌘(·),

for an unknown value of the parameter ⌘ 2 A. The density of y = (y1, y2, . . . , yn) is

nY

i=1

g⌘(yi) = e
Pn

1 (⌘yi� )

= en(⌘ȳ� ),

where ȳ =
Pn

i=1 yi/n. Letting gY⌘ (y) indicate the density of y with respect to
Qn

i=1m(dyi),

gY⌘ (y) = en[⌘ȳ� (⌘)]
nY

i=1

g0(yi). (1.2)

This is one-parameter exponential family, with:

• natural parameter ⌘(n) = n⌘ (so ⌘ = ⌘(n)/n)

• su�cient statistic ȳ =
Pn

1 yi/n (µ̄ = E⌘(n){ȳ} = µ)

• normalizing function  (n)(⌘(n)) = n (⌘(n)/n)

• carrier density
Qn

i=1 g0(yi) (with respect to
Q

m(dyi))

Homework 1.7. Show that ȳ ⇠ (µ,
p
V/n, �/

p
n, �/n).

Note. In what follows, we usually index the parameter space by ⌘ rather than ⌘(n).
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Notice that y is now a vector, and that the tilting factor e⌘
(n)ȳ is tilting the multivariate density

Qn
1 g0(yi). This is still a one-parameter exponential family because the tilting is in a single direction,

along 1 = (1, 1, . . . , 1).

The su�cient statistic ȳ also has a one-parameter exponential family of densities,

gȲ⌘ (ȳ) = en(⌘ȳ� )gȲ0 (ȳ),

where gȲ0 (ȳ) is the g0 density with respect to mȲ (dȳ), the induced carrying measure.

The density (1.2) can also be written as

e⌘S�n , where S =
nX

i=1

yi.

This moves a factor of n from the definition of the natural parameter to the definition of the su�cient

statistic. For any constant c we can re-express an exponential family {g⌘(y) = exp(⌘y �  )g0(y)}
by mapping ⌘ to ⌘/c and y to cy. This tactic will be useful when we consider multiparameter

exponential families.

Homework 1.8. y1, y2, . . . , yn
iid⇠ Poi(µ). Describe the distributions of Ȳ and S, and say what are

the exponential family quantities (⌘, y, , g0,m, µ, V ) in both cases.

1.4 Some well-known one-parameter families

We’ve already examined the Poisson family. This section examines some other well-known (and

not so well-known) examples.

Normal with variance 1

G is the normal family Y ⇠ N (µ, 1), µ in R1. The densities, taken with respect to m(dy) = dy,

Lebesque measure,

gµ(y) =
1p
2⇡

e�
1
2 (y�µ)2

can be written in exponential family form (1.1) with

⌘ = µ, y = y,  =
1

2
µ2 =

1

2
⌘2, g0(y) =

1p
2⇡

e�
1
2y

2
.

Homework 1.9. Suppose Y ⇠ N (µ,�2) with �2 known. Give ⌘, y,  , and g0.

Binomial

Y ⇠ Bi(N,⇡), N known, so

g(y) =

✓
N

y

◆
⇡y(1� ⇡)n�y
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with respect to counting measure on {0, 1, . . . , n}. This can be written as

✓
N

y

◆
e(log

⇡
1�⇡ )y+N log(1�⇡),

a one-parameter exponential family, with:

• ⌘ = log[⇡/(1� ⇡)] (so ⇡ = 1/(1 + e�⌘), 1� ⇡ = 1/(1 + e⌘))

• A = (�1,1)

• y = y

• expectation parameter µ = N⇡ = N/(1 + e�⌘)

•  (⌘) = N log(1 + e⌘)

• variance function V = N⇡(1� ⇡) (= µ(1� µ)N)

• g0(y) =
�N
y

�

Homework 1.10. Show that for the binomial

� =
1� 2⇡p
N⇡(1� ⇡)

and � =
1� 6⇡(1� ⇡)

N⇡(1� ⇡)
.

Homework 1.11. Notice that A = (�1,1) does not include the cases ⇡ = 0 or ⇡ = 1. Why

not?

Gamma

Y ⇠ �GN where GN is a standard gamma variable, N known, and � an unknown scale parameter,

g(y) =
yN�1e�y/�

�N�(N)
[Y = (0,1)] .

This is a one-parameter exponential family with:

• ⌘ = �1/�

• µ = N� = �N/⌘

• V = N/⌘2 = N�2 = µ2/N

•  = �N log(�⌘)

• � = 2/
p
N

• � = 6/N
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Negative binomial

A coin with probability of heads ✓ is flipped until exactly k + 1 heads are observed. Let Y = # of

tails observed. Then

g(y) =

✓
y + k

k

◆
(1� ✓)y✓k+1

=

✓
y + k

k

◆
e[log(1�✓)]y+(k+1) log ✓ [Y = (0, 1, 2, . . . )] .

This is a one-parameter exponential family with:

• ⌘ = log(1� ✓) •  = �(k + 1) log(1� e⌘)

Homework 1.12. (a) Find µ, V , and � as a function of ✓. (b) Notice that  = (k + 1) 0 where

 0 is the normalizing function for k = 0. Give a simple explanation for this. (c) How does it a↵ect

the formula for µ, V , and �?

Inverse Gaussian

Let W (t) be a Wiener process with drift 1/µ, so W (t) ⇠ N (t/µ, t) (Cov[W (t),W (t + d)] = t).

Define Y as the first passage time to W (t) = 1. Then Y has the “inverse Gaussian” or Wald

density

g(y) =
1p
2⇡y3

e
� (y�µ)2

2µ2y .

This is an exponential family with:

• ⌘ = �1/(2µ2)

•  = �
p
�2⌘

• V = µ3

Reference Johnson and Kotz, Continuous Univariate Densities Vol. 1, Chapter 15

Homework 1.13. Show Y ⇠ (µ, µ3/2, 3
p
µ, 15µ) as the mean, standard deviation, skewness, and

kurtosis, respectively.

Note. The early Generalized Linear Model literature was interested in the construction of non-

standard exponential families with relations such as V = µ1.5.

Normal Poisson Gamma Inverse normal

V / constant µ µ2 µ3
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2⇥ 2 table

Let X = (x1, x2, x3, x4) be a multinomial

sample of size N from a 4-category multi-

nomial layout, where the categories form

a double dichotomy as shown.

(x1, x2, x3, x4) ⇠ Mult4 [N, (⇡1,⇡2,⇡3,⇡4)]

Men

Women

Yes No

Column totals

Row totals

with ⇡ = (⇡1,⇡2,⇡3,⇡4) the true probabilities,
P4

1 ⇡i = 1. Given the table’s marginal totals

(N, r1, c1), we need only know x1 to fill in (x1, x2, x3, x4). (Fisher suggested analyzing the table

with marginals thought of as fixed ancillaries, for reasons discussed next.)

The conditional density of x1 given (N, r1, c1) depends only on the log odds parameter

✓ = log

✓
⇡1
⇡2

�
⇡3
⇡4

◆
,

so conditioning has reduced our four-parameter inferential problem to a simpler, one-parameter

situation. Notice that ✓ = 0 corresponds to ⇡1/⇡2 = ⇡3/⇡4, which is equivalent to independence

between the two dichotomies.

The conditional density of x1 | (N, r1, c1), with respect to counting measure, is

g✓(x1 | N, r1, c1) =

✓
r1
x1

◆✓
r2

c1 � x1

◆
e✓x1/C(✓),

C(✓) =
X

x1

✓
r1
x1

◆✓
r2

c1 � x1

◆
e✓x1 ,

(1.3)

the sum being over the sample space of possible x1 values,

max(0, c1 � r2)  x1  min(c1, r1).

Reference Lehmann, “Testing statistical hypotheses”, Section 4.5

This is a one-parameter exponential family with:

• ⌘ = ✓

• y = x

•  = log(C)

11

Treatment

Control

Success Failure

12

7

9

17

29 45

24

21

16

Example. The 14th experiment on ulcdata involved 45 patients in a clinical trial comparing a new
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Figure 1.2: ulcdata #14; likelihood function for crossproduct ratio ✓; max at ✓ = 0.600; �l̈ = 2.56

experimental surgery for stomach ulcers with the standard control procedure. The obvious estimate

of ✓ is

✓̂ = log

✓
9

12

�
7

17

◆
= 0.600.

Figure 1.2 graphs the likelihood, i.e., expression (1.3) as a function of ✓, with the data held fixed

as observed (normalized so that max{L(✓)} = 1).

Homework 1.14. (a) Compute the likelihood numerically and verify that it is maximized at

✓̂ = 0.600. (b) Verify numerically that

�d2 logL(✓)

d✓2

����
✓̂

= 2.56.

(c) Using this result, guess the variance of ✓̂.

The structure of one-parameter exponential families

Suppose f✓(x), ✓ and x possibly vectors, is a family of densities satisfying

log f✓(x) = A(✓)B(x) + C(✓) +D(x),
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A,B,C,D real. Then {f✓(x)} is a one-parameter

exponential family with:

• ⌘ = A(✓)

• y = B(x)

•  = �C(✓)

• log g0 = D(x)

A two-way table of log f✓(x) would have additive components C(✓)+D(x), and an interaction term

A(✓)B(x).

Homework 1.15. I constructed a 14⇥ 9 matrix P with ijth element

pij = Bi(xi, ✓j , 13),

the binomial probability of xi for probability ✓j , sample size n = 13, where

xi = i for i = 0, 1, 2, . . . , 13

✓j = 0.1, 0.2, . . . , 0.9.

Then I calculated the singular value decomposition (svd) of logP . How many nonzero singular

values did I see?

1.5 Bayes families

Suppose we observe Y = y from

g⌘(y) = e⌘y� (⌘)g0(y), (1.4)

where ⌘ itself has a prior density

⌘ ⇠ ⇡(⌘) (with respect to Lebesgue measure on A).

Bayes rule gives posterior density for ⌘

⇡(⌘ | y) = ⇡(⌘)g⌘(y)/g(y),

where g(y) is the marginal density

g(y) =

Z

A
⇡(⌘)g⌘(y) d⌘.



14 PART 1. ONE-PARAMETER EXPONENTIAL FAMILIES

(Note that g⌘(y) is the likelihood function, with y fixed and ⌘ varying.) Plugging in (1.4) gives

⇡(⌘ | y) = ey⌘�log[g(y)/g0(y)]
h
⇡(⌘)e� (⌘)

i
. (1.5)

We recognize this as a one-parameter exponential family with:

• natural parameter ⌘ = y

• su�cient statistic y = ⌘

• CGF  = log[g(y)/g0(y)]

• carrier g0 = ⇡(⌘)e� (⌘)

Homework 1.16. (a) Show that prior ⇡(⌘) for ⌘ corresponds to prior ⇡(⌘)/V⌘ for µ. (b) What is

the posterior density ⇡(µ | y) for µ?

Conjugate priors

Certain choices of ⇡(⌘) yield particularly simple forms for ⇡(⌘ | y) or ⇡(µ | y), and these are called

conjugate priors. They play an important role in modern Bayesian applications. As an example,

the conjugate prior for Poisson is the gamma.

Homework 1.17. (a) Suppose y ⇠ Poi(µ) and µ ⇠ mG⌫ , a scale multiple of a gamma with ⌫

degrees of freedom. Show that

µ | y ⇠ m

m+ 1
Gy+⌫ .

(b) Then

E{µ | y} =
m

m+ 1
y +

1

m+ 1
(m⌫)

(compared to E{µ} = m⌫ a priori, so E{µ | y} is a linear combination of y and E{µ}). (c) What

is the posterior distribution of µ having observed y1, y2 . . . , yn
iid⇠ Poi(µ)?

Diaconis and Ylvisaker (1979, Ann. Statist. 269–281) provide a general formulation of conju-

gacy:

y1, y2, . . . , yn
iid⇠ g⌘(y) = e⌘y� (⌘)g0(y);

the prior for µ wrt Lebesgue measure is

⇡n0,y0(µ) = c0e
n0[⌘y0� (⌘)]/V⌘,

where y0 is notionally the average of n0 hypothetical prior observations of y (c0 the constant making

⇡n0,y0(µ) integrate to 1).
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Theorem 1.

⇡(µ | y1, y2, . . . , yn) = ⇡n+,y+(µ),

where

n+ = n0 + n and y+ =

 
n0y0 +

nX

1

yi

!,
n+.

Moreover,

E{µ | y1, y2, . . . , yn} = y+.

Binomial case

y ⇠ Bi(n,⇡), hypothetical prior observations y0 successes out of n0 tries. Assuming a “beta” prior

(Part II) yields Bayes posterior expectation

✓̂ = E{⇡ | y} =
y0 + y

n0 + n
.

Current Bayes practice favors small amounts of hypothetical prior information, in the binomial case

maybe

✓̂ =
1 + y

2 + n
,

pulling the MLE y/n a little toward 1/2.

Tweedie’s formula

Equation (1.5) gave

⇡(⌘ | y) = ey⌘��(y)⇡0(y)

where

⇡0(y) = ⇡(⌘)e� (⌘) and �(y) = log [g(y)/g0(y)] ,

g(y) the marginal density of y. Define

l(y) = log [g(y)] and l0(y) = log [g0(y)] .

We can now di↵erentiate �(y) with respect to y to get the posterior moments (and cumulants) of

⌘ given y,

E{⌘ | y} = �0(y) = l0(y)� l00(y)

and

Var{⌘ | y} = �00(y) = l00(y)� l000(y).

Homework 1.18. Suppose y ⇠ N (µ,�2), �2 known, where µ has prior density ⇡(µ). Show that
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the posterior mean and variance of µ given y is

µ | y ⇠
�
y + �2l0(y),�2

⇥
1 + �2l00(y)

⇤ 
. (1.6)

Reference Efron (2012), “Tweedie’s formula and selection bias”, JASA

1.6 Empirical Bayes

With y ⇠ N (µ,�2) and µ ⇠ ⇡(µ), Tweedie’s formula gives posterior expectation

✓̂ = E{µ | y} = y + �2l0(y);

y is the MLE of µ so we can think of this as

✓̂ = MLE+ Bayes correction.

That’s fine if we know the prior ⇡(µ), but what if not? In some situations, where we have many

parallel experiments observed at the same time, we can e↵ectively learn ⇡(µ) from the data. This

is the empirical Bayes approach, as illustrated next.

A microarray analysis

In a study of prostate cancer, n = 102 men each had his genetic expression level xij measured on

N = 6033 genes,

xij =

8
<

:
i = 1, 2, . . . , N genes,

j = 1, 2, . . . , n men.

There were:

• n1 = 50 healthy controls

• n2 = 52 prostate cancer patients

4

Men

50 controls        52 patients

Genes
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For genei let ti = two-sample t statistic comparing patients with controls and

zi = ��1 [F100(ti)] (F100 cdf of t100 distribution);

zi is a z-value, i.e., a statistic having a N (0, 1) distribution under the null hypothesis that there

is no di↵erence in genei expression between patients and controls. (Note: in terms of our previous

notation, y = zi and µ = �i.) fig1.4  Prostate data microarray study; 6033 z−values;
Heavy curve is fhat(z) from GLM fit; Red is N(0,1)

z values

Fr
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Figure 1.3: Prostate data microarray study. 6033 z-values; heavy curve is ĝ(z) from GLM fit; dashed line
is N (0, 1).

A reasonable model is

zi ⇠ N (�i, 1),

where �i is the e↵ect size for gene i. The investigators were looking for genes with large values of

�i, either positive or negative. Figure 1.3 shows the histogram of the 6033 zi values. It is a little

wider than a N (0, 1) density, suggesting some non-null (�i = 0) genes. Which ones and how much?

Empirical Bayes analysis

1.1 Compute z1, z2, . . . , zN ; N = 6033.

1.2 Fit a smooth parametric estimate ĝ(z) to histogram (details in Part II).

1.3 Compute

�̂(z) = log [ĝ(z)/g0(z)]

✓
ĝ0(z) =

1p
2⇡

e�
1/2z2

◆
.



18 PART 1. ONE-PARAMETER EXPONENTIAL FAMILIES

1.4 Di↵erentiate �̂(z) to give Tweedie estimates

Ê{� | z} = �̂0(z) and dVar{� | z} = �̂00(z).

−4 −2 0 2 4 6

−2
0

2
4

fig1.5 Tweedie estimate of E{mu|z}, Prostate study;
Red curve is estimated local false discovery rate fdr(z)

at z=3: E{mu|z}=1.31,  fdr(z)=.37
z value

E{
m

u|
z}

●

●

5.29

3.94

3

Figure 1.4: Tweedie estimate of E{µ | z}, prostate study. Dashed curve is estimated local false discovery
rate fdr(z).

Figure 1.4 shows Ê{� | z}. It is near zero (“nullness”) for |z|  2. At z = 3, Ê{� | z} = 1.31.

At z = 5.29, the largest observed zi value (gene #610), E{� | z} = 3.94.

The “winner’s curse” (regression to the mean)

Even though each zi is unbiased for its �i, it isn’t true that zimax is unbiased for �imax (imax = 610

here). The empirical Bayes estimates ✓̂i = Ê{�i | zi} help correct for the winner’s curse (“selection

bias”), having |✓̂i| < |zi|.

False discovery rates

Let ⇡0 be the prior probability of a null gene, i.e., � = 0. The “local false discovery rate” is the

posterior null probability,

fdr(z) = Pr{� = 0 | z}.

Homework 1.19. (a) Show that

fdr(zi) = ⇡0g0(zi)/g(zi),
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where g(·) is the marginal density. (b) In the normal case z ⇠ N (�, 1), what is the relationship

between fdr(z) and E{� | z}?

In practice, fdr(z) is often estimated by

cfdr(z) = g0(z)/ĝ(z),

setting ⇡0 = 1, an upper bound. This is the dashed curve in Figure 1.4.

1.7 Some basic statistical results

This section briefly reviews some basic statistical results on estimation and testing. A good reference

is Lehmann’s Theory of Point Estimation.

Maximum likelihood and Fisher information

We observe a random sample y = (y1, y2, . . . , yn) from a member g⌘(y) of an exponential family G,

yi
iid⇠ g⌘(y), i = 1, 2, . . . , n.

According to (1.2) in Section 1.3, the density of y is

gY⌘ (y) = en[⌘ȳ� (⌘)]
nY

i=1

g0(yi),

where ȳ =
Pn

1 yi/n. The log likelihood function l⌘(y) = log gY⌘ (y), y fixed and ⌘ varying, is

l⌘(y) = n [⌘ȳ �  (⌘)] ,

giving score function l̇⌘(y) = @/@⌘ l⌘(y) equaling

l̇⌘(y) = n(ȳ � µ) (1.7)

(remembering that  ̇(⌘) = @/@⌘ (⌘) equals µ, the expectation parameter).

The maximum likelihood estimate (MLE) of ⌘ is the value ⌘̂ satisfying

l̇⌘̂(y) = 0.

Looking at (1.7), ⌘̂ is that ⌘ such that µ =  ̇(⌘) equals ȳ,

⌘̂ : E⌘=⌘̂{Ȳ } = ȳ.

In other words, the MLE matches the theoretical expectation of Ȳ to the observed mean ȳ.
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If ⇣ = h(⌘) is any function of ⌘ then by definition, ⇣̂ = h(⌘̂) is the MLE of ⌘. If the function is

1-1 then ⌘̂ = h�1(⇣̂). Notice that µ̂ = ȳ, so

⌘̂ =  ̇�1(µ̂) =  ̇�1(ȳ).

(If � = H(µ) then �̂ = H(µ̂) = H(ȳ).) For the

Poisson, ⌘̂ = log(ȳ) and for the binomial, accor-

ding to Section 1.4,

⌘̂ = log
⇡̂

1� ⇡̂
where ⇡̂ = y/N.

We can also take score functions with respect to µ, say “at ⌘ wrt µ”:

@

@µ
l⌘(y) =

@/@⌘ l⌘(y)
@µ/@⌘

= l̇⌘(y)
�
V

=
n(ȳ � µ)

V
.

In general, the score function for parameter ⇣ = h(⌘), “at ⌘ wrt ⇣”, is

@/@⇣ l⌘(y) = l̇⌘(y)
�
ḣ(⌘) = n(ȳ � µ)

�
ḣ(⌘).

The expected score function is

E⌘@/@⇣ l⌘(y) = 0.

The Fisher information in y, for ⇣ at ⌘, sample size n, is Var{@/@⇣ l̇⌘(y)},

i(n)⌘ (⇣) = E⌘ [@/@⌘ l⌘(y)]
2 = E⌘

h
l̇⌘(y)

�
ḣ(⌘)

i2

= i(n)⌘

�
ḣ(⌘)2.

Here i(n)⌘ is the Fisher information in y at ⌘, for ⌘,

i(n)⌘ = E⌘ [n(ȳ � µ)]2 = nV⌘.

(Notice that V⌘ = i⌘, the information in a single observation, omitting the “1” from the notation.)

For parameter µ,

i(n)⌘ (µ) =
nV⌘
V 2
⌘

=
n

V⌘
.

(Always seems wrong!)
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Score Functions

⌘ : l̇⌘(y) = n(ȳ � µ)

µ :
@l⌘(y)

@µ
=

n(ȳ � µ)

V

⇣ :
@l⌘(y)

@⇣
=

n(ȳ � µ)

ḣ(⌘)

Fisher Information

i(n)⌘ = Var⌘
h
l̇⌘(y)

i
= nV = ni⌘

i(n)⌘ (µ) =
n

V
= ni⌘(µ)

i(n)⌘ (⇣) =
nV

ḣ(⌘)2
= ni⌘(⇣)

In general the Fisher information i✓ has two expressions, in terms of the 1st and 2nd derivatives

of the log likelihood,

i✓ = E

(✓
@l✓
@✓

◆2
)

= �E

⇢
@2l✓
@✓2

�
.

For i(n)⌘ , the Fisher information for ⌘ in y = (y1, y2, . . . , yn), we have

�l̈⌘(y) = � @2

@⌘2
n(⌘ȳ �  ) = � @

@⌘
n(ȳ � µ)

= nV⌘ = i(n)⌘ ,

so in this case �l̈⌘(y) gives i
(n)
⌘ without requiring an expectation over y.

Homework 1.20. (a) Does

i(n)⌘ (µ) = � @2

@µ2
l⌘(y)?

(b) Does

i(n)⌘=⌘̂(µ) = � @

@µ2
l⌘(y)

����
⌘=⌘̂

? (⌘̂ the MLE)
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Cramér–Rao lower bound

The CRLB for an unbiased estimator ⇣̄ for ⇣ is

Var⌘(⇣̄) �
1

i(n)⌘ (⇣)
= ḣ(⌘)2

�
nV⌘.

For ⇣ ⌘ µ,

Var(µ̄) �
V 2
⌘

nV⌘
=

V⌘
n
.

In this case the MLE µ̂ = ȳ is unbiased and achieves the CRLB. This happens only for µ or linear

functions of µ, and not for ⌘, for instance.

In general, the MLE ⇣̂ is not unbiased for ⇣ = h(⌘), but the bias is of order 1/n,

E⌘{⇣̂} = ⇣ +B(⌘)/n.

A more general form of the CRLB gives

Var⌘(⇣̂) �

h
ḣ(⌘) + Ḃ(⌘)/n

i2

nV⌘
=

ḣ(⌘)2

nV⌘
+O

✓
1

n2

◆
.

Usually ḣ(⌘)2/(nV⌘) is a reasonable approximation for Var⌘(⇣̂).

Delta method

If X has mean µ and variance �2, then Y = H(X)
.
= H(µ) +H 0(µ)(X � µ) has approximate mean

and variance

Y ⇠̇
n
H(µ),�2

⇥
H 0(µ)

⇤2o
.

Homework 1.21. Show that if ⇣ = h(⌘) = H(µ), then the MLE ⇣̂ has delta method approximate

variance

Var⌘(⇣̂)
.
=

ḣ(⌘)2

nV⌘
,

in accordance with the CRLB 1/i(n)⌘ (⇣). (In practice we must substitute ⌘̂ for ⌘ in order to estimate

Var⌘(⇣̂).)

Hypothesis testing (Lehmann)

Suppose we wish to test

H0 : ⌘ = ⌘0 versus HA : ⌘ = ⌘1 (⌘1 > ⌘0).

• log{g⌘1(y)/g⌘0(y)} = (⌘1 � ⌘0)y � [ (⌘1)�  (⌘0)] " y
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• By the Neyman–Pearson lemma, MP↵ test rejects for y � Y (1�↵)
0 where Y (1�↵)

0 is (1� ↵)th

quantile of Y under H0.

• This doesn’t depend on ⌘1, so the test is UMP↵.

• For non-exponential families, such as Cauchy translation family, the MP↵ test depends on

⌘1: “A one-parameter exponential family is a straight line through the space of probability

distributions.” (Efron 1975, Ann. Statist. pp. 1189-1281)

Exp
Family

Cauchy 
Family

1.8 Deviance and Hoe↵ding’s formula

Deviance is an analogue of Euclidean distance applied to exponential families g⌘(y) = e⌘y� (⌘)g0(y).

By definition the deviance D(⌘1, ⌘2) between g⌘1 and g⌘2 in family G is

D(⌘1, ⌘2) = 2E⌘1

⇢
log

✓
g⌘1(y)

g⌘2(y)

◆�

= 2

Z

Y
g⌘1(y) log [g⌘1(y)/g⌘2(y)] m(dy).

We will also write D(µ1, µ2) or just D(1, 2); the deviance is the distance between the two densities,

not their indices.

Homework 1.22. Show that D(⌘1, ⌘2) � 0, with strict inequality unless the two densities are

identical.

Note. In general, D(⌘1, ⌘2) 6= D(⌘2, ⌘1).

Older name

The “Kullback–Leibler distance” equalsD(⌘1, ⌘2)/2. Information theory uses “mutual information”

for D[f(x, y), f(x)f(y)]/2, where f(x, y) is a bivariate density and f(x) and f(y) its marginals.
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Homework 1.23. Verify these formulas for the deviance:

Poisson Y ⇠ Poi(µ) : D(µ1, µ2) = 2µ1


log

✓
µ1

µ2

◆
�
✓
1� µ2

µ1

◆�

Binomial Y ⇠ Bi(N,⇡) : D(⇡1,⇡2) = 2N


⇡1 log

✓
⇡1
⇡2

◆
+ (1� ⇡1) log

✓
1� ⇡1
1� ⇡2

◆�

Normal Y ⇠ N (µ, 1) : D(µ1, µ2) = (µ1 � µ2)
2

Gamma Y ⇠ �GN : D(�1,�2) = 2N


log

✓
�2
�1

◆
+

✓
�1
�2

� 1

◆�

= 2N


log

✓
µ2

µ1

◆
+

✓
µ1

µ2
� 1

◆�

Hoe↵ding’s formula

Let ⌘̂ be the MLE of ⌘ having observed y. Then

g⌘(y) = g⌘̂(y)e
�D(⌘̂,⌘)/2.

Indexing the family with the expectation parameter µ rather than ⌘, and remembering that µ̂ = y,

we get a more memorable version of Hoe↵ding’s formula,

gµ(y) = gµ̂(y)e
�D(µ̂,µ)/2

= gy(y)e
�D(y,µ)/2.

(1.8)

This last says that a plot of the log likelihood log[gµ(y)] declines from its maximum at µ = y

according to the deviance,

log [gµ(y)] = log [gy(y)]�D(y, µ)/2.

In our applications of the deviance, the first argument will always be the data, the second a proposed

value of the unknown parameter.

Proof. The deviance in an exponential family is

D(⌘1, ⌘2)

2
= E⌘1 log

g⌘1(y)

g⌘2(y)
= E⌘1 {(⌘1 � ⌘2)y �  (⌘1) +  (⌘2)}

= (⌘1 � ⌘2)µ1 �  (⌘1) +  (⌘2).

Therefore

g⌘(y)

g⌘̂(y)
=

e⌘y� (⌘)

e⌘̂y� (⌘̂)
= e(⌘�⌘̂)y� (⌘)+ (⌘̂) = e(⌘�⌘̂)µ̂� (⌘)+ (⌘̂).

Taking ⌘1 = ⌘ and ⌘2 = ⌘̂, this last is D(⌘̂, ⌘). ⌅
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Repeated sampling

If y = (y1, y2, . . . , yn) is an iid sample from g⌘(·) then the deviance based on y, say Dn(⌘1, ⌘2), is

Dn(⌘1, ⌘2) = 2E⌘1 log
⇥
gY⌘1(y)

�
gY⌘2(y)

⇤
= 2E⌘1

(
log

nY

i=1


g⌘1(yi)

g⌘2(yi)

�)

= 2
nX

i=1

⇢
E⌘1 log


g⌘1(yi)

g⌘2(yi)

��
= nD(⌘1, ⌘2).

(This fact shows up in the binomial, Poisson, and gamma cases of Homework 1.16.)

Note. We are indexing the possible distributions of Y with ⌘, not ⌘(n) = n⌘.

Homework 1.24. What is the deviance formula for the negative binomial family?

Relationship with Fisher information

For ⌘2 near ⌘, the deviance is related to the Fisher information i⌘1 = V⌘1 (in a single observation

y, for ⌘1 and at ⌘1):

D(⌘1, ⌘2) = i⌘1(⌘2 � ⌘1)
2 +O(⌘2 � ⌘1)

3.

Proof.

@

@⌘2
D(⌘1, ⌘2) =

@

@⌘2
2 {(⌘1 � ⌘2)µ1 � [ (⌘1)�  (⌘2)]} = 2(�µ1 + µ2) = 2(µ2 � µ1).

Also
@2

@⌘22
D(⌘1, ⌘2) = 2

@µ1

@⌘2
= 2V⌘2 .

Therefore
@

@⌘2
D(⌘1, ⌘2)

����
⌘2=⌘1

= 0 and
@2

@⌘22
D(⌘1, ⌘2)

����
⌘2=⌘1

= 2V⌘1 ,

so

D(⌘1, ⌘2) = 2V⌘1
(⌘2 � ⌘1)2

2
+O(⌘2 � ⌘1)

3. ⌅

Homework 1.25. What is @3D(⌘1, ⌘2)/@⌘32?
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An informative picture

 (⌘) is a convex function of ⌘ since  ̈(⌘) =

V⌘ > 0. The picture shows ⇡(⌘) passing through

(⌘1, (⌘1)) at slope µ1 =  ̇(⌘1). The di↵e-

rence between  (⌘2) and the linear bounding line

 (⌘1)+(⌘2�⌘1)µ1 is  (⌘2)� (⌘1)+(⌘1�⌘2)µ1 =

D(⌘1, ⌘2)/2.

The previous picture, unlike our other results, depends on parameterizing the deviance as

D(⌘1, ⌘2). A version that uses D(µ1, µ2) depends on the dual function �(y) to  (y),

�(y) = max
⌘

{⌘y �  (⌘)} .

Reference Efron (1978), “Geometry of exponential families”, Ann. Statist.

Homework 1.26. Show that (a) �(µ) = ⌘µ �
 (⌘), where µ =  ̇(⌘); (b) �(µ) is convex as a

function of µ; and (c) d�(µ)/dµ = ⌘. (d) Verify

the picture at right.

Homework 1.27. Parametric bootstrap: we res-

ample y⇤ from g⌘̂(·), ⌘̂ = MLE based on y. Show

that

g⌘(y
⇤) = g⌘̂(y

⇤)e(⌘�⌘̂)(y
⇤�y)�D(⌘̂,⌘)/2.

Deviance residuals

The idea: if D(y, µ) is the analogue of (y � µ)2 in a normal model, then

sign(y � µ)
p
D(y, µ)

should be the exponential family analogue of a normal residual y � µ.

We will work in the repeated sampling framework

yi
iid⇠ gµ(·), i = 1, 2, . . . , n,

with MLE µ̂ = ȳ and total deviance Di(µ̂, µ) = nD(ȳ, µ). The deviance residual, of µ̂ = ȳ from
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true mean µ, is defined to be

R = sign(ȳ � µ)
p
D(ȳ, µ). (1.9)

The hope is that R will be nearly N (0, 1), closer to normal than the obvious “Pearson residual”

RP =
ȳ � µp
Vµ/n

(called “zi” later). Our hope is bolstered by the following theorem, verified in Appendix C of

McCullagh and Nelder, Generalized Linear Models.

Theorem 2. The asymptotic distribution of R as n ! 1 is

R ⇠̇ N
⇥
�an, (1 + bn)

2
⇤
, (1.10)

where an and bn are defined in terms of the skewness and kurtosis of the original (n = 1) exponential

family,

an = (�µ/6)
�p

n and bn =
⇥
(7/36) �2µ � �µ

⇤ �
n.

The normal approximation in (1.10) is accurate through Op (1/n), with errors of order Op (1/n3/2),

e.g.,

Pr

⇢
R+ an
1 + bn

> 1.96

�
= 0.025 +O (1/n3/2)

(so-called “third order accuracy”).

Corollary 1.

Dn(ȳ, µ) = R2 ⇠̇
 
1 +

5�2µ � 3�µ
12n

!
· �2

1,

�2
1 a chi-squared random variable with degrees of freedom 1. Since

Dn(ȳ, µ) = 2 log
⇥
gYµ̂ (y)

�
gYµ (y)

⇤

according to Hoe↵ding’s formula, the corollary is an improved version of Wilks’ theorem, i.e.,

2 log(gµ̂/gµ) ! �2
1 in one-parameter situations.

The constants an and bn are called “Bartlett corrections”. The theorem says that

R ⇠̇ (Z + an)/(1 + bn) where Z ⇠ N (0, 1).

Since an = O(1/pn) and bn = O(1/n), the expectation correction in (1.10) is more important than

the variance correction.

Homework 1.28. Gamma case, y ⇠ �GN with N fixed (N can be thought of as n). (a) Show

that the deviance residual sign(y � �N)
p
D(y,�N) has the same distribution for all choices of �.

(b) What is the skewness of the Pearson residual (y � �N)/�
p
N?
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Homework 1.29. Use our previous results to show that

Dn(ȳ, µ)
.
= R2

P +
�

6
p
n
R3

P +OP (1/n) .

An example

Figure 1.5 shows the results of 2000 replications of y ⇠ G5 (or equivalently,

ȳ =
5X

1

yi/5,

where yi are independent G1 variates, that is, standard one-sided exponentials). The qq-plot shows

the deviance residuals (black) much closer to N (0, 1) than the Pearson residuals (red).
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figure 1.6  qq comparison of Deviance residuals (black) with
Pearson residuals (red); Gamma N=1, lambda=1, n=5; B=2000 sims
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Figure 1.5: qq comparison of deviance residuals (black) with Pearson residuals (red); gamma N = 1, � = 1,
n = 5; B = 2000 simulations.

Homework 1.30. Compute a version of Figure 1.5 applying to y ⇠ Poi(16).

An example of Poisson deviance analysis

Reference Thisted and Efron (1987), “Did Shakespeare write a newly discovered poem?”, Bi-

ometrika

• A newly discovered poem is of total length 429 words, comprising 258 di↵erent words. An

analysis is done to test the hypothesis that Shakespeare wrote the poem.
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• 9 of the 258 works never appeared in the 884,647 total words of known Shakespeare; 7 of the

258 words appeared once each in the known Shakespeare, etc., as presented in column “y” of

the table.

• A simple theory predicts 6.97 for the expected number of “new” words, given Shakespearean

authorship, 4.21 “once before” words, etc., presented in column “⌫” of the table. The theory

also predicts independent Poisson distributions for the y values,

yi
ind⇠ Poi(⌫i) for i = 1, 2, . . . , 11.

• “Dev” shows the Poisson deviances; the total deviance 19.98 is moderately large compared

to a chi-squared distribution with 11 degrees of freedom, P{�2
11 > 19.98} = 0.046. This casts

some moderate doubt on Shakespearan authorship.

• “R” is the signed square root of the deviance; “an” is the correction 1/6 ⇥ ⌫1/2 suggested by

the theorem (1.10); “RR” is the corrected residual R + an. These should be approximately

N (0, 1) under the hypothesis of Shakespearean authorship. The residual for 20–29 looks

suspiciously large.

• 8 out of 11 of the RR’s are positive, suggesting that the y’s may be systematically larger than

the ⌫’s. Adding up the 11 cases,

y+ = 118, ⌫+ = 94.95.

This gives D+ = Dev(y+, ⌫+) = 5.191, R+ = 2.278, and RR+ = 2.295. The normal proba-

bility of exceeding 2.295 is 0.011, considerably stronger evidence (but see the paper). The

actual probability is

Pr{Poi(94.95) � 118} = 0.011.

# Prev y ⌫ Dev R an RR

0 9 6.97 .5410 .736 .0631 .799

1 7 4.21 1.5383 1.240 .0812 1.321

2 5 3.33 .7247 .851 .0913 .943

3–4 8 5.36 1.1276 1.062 .0720 1.134

5–9 11 10.24 .0551 .235 .0521 .287

10–19 10 13.96 1.2478 �1.117 .0446 �1.072

20–29 21 10.77 7.5858 2.754 .0508 2.805

30–39 16 8.87 4.6172 2.149 .0560 2.205

40–59 18 13.77 1.1837 1.088 .0449 1.133

60–79 8 9.99 .4257 �.652 .0527 �.600

80–99 5 7.48 .9321 �.965 .0609 �.904
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1.9 The saddlepoint approximation

We observe a random sample of size n from some

member of an exponential family G,

y1, y2, . . . , yn
iid⇠ gµ(·)

(now indexed by expectation parameter µ), and wish to approximate the density of the su�cient

statistic µ̂ = ȳ for some value of µ̂ perhaps far removed from µ. Let g(n)µ (µ̂) denote this density.

The normal approximation

g(n)µ (µ̂)
.
=
r

n

2⇡Vµ
e
� 1

2
n
Vµ

(µ̂�µ)2

is likely to be inaccurate if µ̂ is say several standard errors removed from µ. Hoe↵ding’s formula

gives a much better result, called the saddlepoint approximation:

g(n)µ (µ̂) = g(n)µ̂ (µ̂)e�Dn(µ̂,µ)/2 [Dn(µ̂, µ) = nD(µ̂, µ)]

.
=
r

n

2⇡Vµ̂
e�Dn(µ̂,µ)/2

(1.11)

Here Vµ̂ =  ̈(⌘̂), the variance of a single yi if µ = µ̂.

The approximation

g(n)µ̂ (µ̂)
.
=
r

n

2⇡Vµ̂

comes from applying the central limit theorem at the center of the g(n)µ̂ (·) distribution, just where it
is most accurate. There is an enormous literature of extensions and improvements to the saddlepoint

approximation: a good review article is Reid (1988) in Statistical Science.

The Lugananni–Rice formula

The saddlepoint formula can be integrated to give

an approximation to ↵(µ), the attained signifi-

cance level or “p-value” of parameter value µ ha-

ving observed ȳ = µ̂:

↵(µ) =

Z 1

µ̂
g(n)µ (t) dt.

Numerical integration is required to compute ↵(µ) from the saddlepoint formula itself, but the

Lugananni–Rice formula provides a highly accurate closed-form approximation:

↵(µ)
.
= 1� �(R)� '(R)

✓
1

R
� 1

Q

◆
+O

✓
1

n3/2

◆
,
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where � and ' are the standard normal cdf and density,

R = sign(µ̂� µ)
p
nD(µ̂, µ)

the deviance residual, and

Q =
p

nVµ̂ · (⌘̂ � ⌘)

the crude form of the Pearson residual based on the canonical parameter ⌘, not on µ. (Remember

that bsd(⌘̂) .
= 1/

p
nV̂ , so Q = (⌘̂� ⌘)/ bsd(⌘̂).) Reid (1988) is also an excellent reference here, giving

versions of the L-R formula that apply not only to exponential family situations but also to general

distributions of ȳ.

Homework 1.31. Suppose we observe y ⇠ �GN , GN gamma df = N , with N = 10 and � = 1.

Use the L-R formula to calculate ↵(µ) for y = µ̂ = 15, 20, 25, 30, and compare the results with the

exact values. (You can use any function R.)

Homework 1.32. Another version of the L-R formula is

1� ↵(µ)
.
= �(R0),

where

R0 = R+
1

R
log

✓
Q

R

◆
.

How does this relate to the first form?

Large deviations and exponential tilting

In a generic “large deviations” problem, we observe an iid sample

y1, y2, . . . , yn
iid⇠ g0(·)

from a known density g0 having mean and standard deviation

yi ⇠ (µ0,�0).

We wish to compute

↵n(µ) = Pr0{ȳ � µ}

for some fixed value µ > µ0. As n ! 1, the number of standard errors
p
n(µ � µ0)/�0 gets big,

rendering the central limit theorem useless.

Homework 1.33 (“Cherno↵ bound”). g⌘(y) = e⌘y� (⌘)g0(y)

(a) For any � > 0 show that ↵n(µ) = Pr0{ȳ � µ} satisfies

↵n(µ)  �n(µ) ⌘
Z

Y
en�(ȳ�µ)g0(y) dy.
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(b) Show that �n(µ) is minimized at � = ⌘.

(c) Finally, verify Cherno↵’s large deviation bound

Pr0{ȳ � µ}  e�nD(µ,0),

where D(µ, 0) is the deviance between g⌘(y) and g0(y).

Notice that for fixed µ, ↵n(µ) ! 0 exponentially fast, which is typical for large deviation results.

Homework 1.34. Extra credit: Suppose g0(y) = 1 for y in [0, 1] and 0 otherwise. Calculate the

Cherno↵ bound for Pr0{ȳ � 0.9}.

1.10 Transformation theory

Reference Hougaard (1982), JRSS-B ; DiCiccio (1984) Biometrika; Efron (1982), Ann. Statist.

Power transformations are used to make exponential families more like the standard normal

translation family Y ⇠ N (µ, 1). For example, Y ⇠ Poi(µ) has variance Vµ = µ depending on the

expectation µ, while the transformation

Z = h(Y ) = 2
p
Y

yields, approximately, Var(Z) = 1 for all µ. In a regression situation with Poisson responses

y1, y2, . . . , yn, we might first change to zi = 2
p
yi and then employ standard linear model met-

hods. (That’s not how we will proceed in Part II, where generalized linear model techniques are

introduced.)

The following display summarizes an enormous number of transformation results for one-

parameter exponential families. Let

⇣ = h(µ)

and likewise Z = h(Y ) and ⇣̂ = h(µ̂). The choice of transformation h(·) satisfying

h0(µ) = V ��1
µ

then results in:

� 1/3 1/2 2/3

result normal stabilized normal

likelihood variance density

The stabilized variance result follows from the delta method:

⇣̂ = h(µ̂) with h0(µ) =
1p
Vµ
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implies that

sdµ(⇣̂)
.
=

sdµ(µ̂)p
Vµ

= 1.

For the Poisson family, with Vµ = µ,

h0(µ) =
1
p
µ

gives

h(µ) = 2
p
µ+ any constant

as above.

“Normal likelihood” means that the transfor-

mation ⇣̂ = h(µ̂) results in

@3l⌘(y)

@⇣3

����
⇣̂

= 0.

This makes the log likelihood look parabolic near

its maximum at ⇣ = ⇣̂. For the Poisson the trans-

formation is h0 = V �2/3 = µ�2/3, or

h(µ) = 3µ1/3 + constant.

“Normal density” means that ⇣̂ = h(µ̂) ⇠̇ N (0, 1). For the Poisson h0 = µ�1/3 or

h(µ) =
3

2
µ2/3 + constant (makes skewness ⇣̂

.
= 0).

One sees all three transformations 2µ1/2, 3µ1/3, and 3/2µ2/3 referred to as “the” transformation for

the Poisson.

Homework 1.35. Numerically compare the three transformations for the Poisson for n = 5, 10, 15,

20, and 25.

Our transformation results apply to any sample size n, with V (n)
µ = Vµ/n. Verification of the

normal density case relies on Cornish–Fisher expansions, which won’t be presented here.

Homework 1.36. We observe independent �2 variables

�̂2i ⇠ �2i �
2
⌫i/⌫i,

the ⌫i being known degrees of freedom, and wish to regress �̂2i versus some known covariates. Two

frequently suggested transformations are log(�̂2i ) and (�̂2i )
1/3, the latter being the “Wilson–Hilferty”

transformation. Discuss the two transformations in terms of the previous results table.



Exponential Families in Theory and Practice

Bradley Efron
Stanford University



ii



Part 2

Multiparameter Exponential Families

2.1 Natural parameters, su�cient statistics, cgf (pp 35–36) Natural parameter space A; carriers

2.2 Expectation and covariance (pp 36–37) µ =  ̇, V =  ̈; relationship of µ and ⌘; expectation

space B

2.3 Review of transformations (pp 37–38) Scalar function h(⌘) = H(µ); H 0(µ) = Dḣ(⌘);

H 00(µ̂) = Dḧ(⌘̂)D0

2.4 Repeated sampling (pp 38–39) ȳ =
P

yi/n; g
(n)
⌘ (ȳ) = en[⌘

0ȳ� (⌘)]g(n)0 (ȳ); A(n) = nA, B(n) =

B

2.5 Likelihoods, score functions, Cramér–Rao lower bounds (pp 39–41) Fisher information i⌘;

Fisher information for functions of ⌘ or µ; when can CRLB be attained?

2.6 Maximum likelihood estimation (pp 41–45) µ̂ = ȳ; mapping to ⌘̂ one-parameter subfamilies;
...
 and

....
 ; Stein’s least favorable family

2.7 Deviance (pp 45–45) Hoe↵ding’s formula; relationship with Fisher information

2.8 Examples of multiparameter exponential families (pp 45–53) Beta; Dirichlet; univariate nor-

mal; multivariate normal; graph models; truncated data; conditional families; 2 ⇥ 2 tables;

Gamma/Dirichlet; Wishart; the Poisson trick

2.9 The multinomial as exponential family (pp 53–56) Categorical data, ⇡l = Pr{category l};
count vector sl, proportion pl = sl/n; symmetric parameterization

2.1 Natural parameters, su�cient statistics, cgf

One-parameter families are too restrictive for most real data analysis problems. It is easy, however,

to extend exponential families to multiparametric situations. A p-parameter exponential family is

a collection of probability densities

G = {g⌘(y), ⌘ 2 A}

of the form

g⌘(y) = e⌘
0y� (⌘)g0(y). (2.1)

35
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• ⌘ is the p⇥ 1 natural, or canonical, parameter vector.

• y is the p⇥ 1 vector of su�cient statistics, range space y 2 Y ⇢ Rp.

•  (⌘) is the carrying density, defined with respect to some carrying measure m(dy) on Y.

• A is the natural parameter space: all ⌘ having
R
Y e⌘

0yg0(y)m(dy) <1.

For any point ⌘0 in A we can express G as

g⌘(y) = e(⌘�⌘0)
0y�[ (⌘)� (⌘0)]g⌘0(y).

G consists of exponential tilts of g⌘0 . The log tilting functions are linear in the p su�cient statistics

y = (y(1), y(2), . . . , y(p))0.

Homework 2.1. Show that x1, x2, . . . , xn
iid⇠ N (�,�) can be written in form (2.1) with y = (x̄, x̄2).

In most applications, y is a function of a complete data set x, usually much more complicated

than a p-vector. Then y earns the name “su�cient vector”. The mapping y = t(x) from the full

data to the su�cient vector is crucial to the statistical analysis. It says which parts of the problem

are important, and which can be ignored.

2.2 Expectation and covariance

The expectation vector µ = E⌘{y} is given by

µ = E⌘{y} =  ̇
p⇥1

(⌘) =

0

BBB@

...

@ (⌘)/@⌘i
...

1

CCCA

while the covariance matrix equals the second derivative matrix of  ,

V = Cov⌘{y} =  ̈
p⇥p

(⌘) =

0

BBB@

...

@2 (⌘)/@2⌘i@⌘j
...

1

CCCA
.

Both µ and V are functions of ⌘, usually suppressed in our notation.

Relationship of µ and ⌘

Notice that

dµ/d⌘
p⇥p

= (@µi/@⌘j) =  ̈ = V,
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so

@⌘/@µ = (@⌘j/@µi) = V �1.

Here we are assuming that the carrying density g0(y) in (2.1) is of full rank in the sense that it is

not entirely supported on any lower-dimensional subspace of Rp, in which case V will be positive

definite for all choices of ⌘.

The vector µ is a 1:1 function of ⌘, usually nonlinear, the local equations of transformation

being

dµ = V d⌘ and d⌘ = V �1dµ

(remembering that V changes with ⌘ or µ). The set A of all ⌘ vectors for which
R
Y e⌘

0yg0(y) is

finite is convex, while the set B of all µ vectors is connected but not necessarily convex (though

counterexamples are hard to construct),

B = {µ = E⌘{y}, ⌘ 2 A} .

Figure 2.1

Note. d⌘0dµ = d⌘0V d⌘ > 0, so the angle between d⌘ and dµ is less than 90�; in this sense µ is an

increasing function of ⌘, and vice versa.

Homework 2.2. (a) Prove that A is convex. (b) If Y is the sample space of y, show that B ✓
convex hull of Y. (c) Construct a one-parameter exponential family where the closure B̄ is a proper

subset of Y.

Reference Efron (1978), “Geometry of exponential families”, Ann. Statist., Section 2, provides

an example of non-convex B.

2.3 Review of transformations

This review applies generally, though we’ll be interested in (⌘, µ) as previously defined. Suppose ⌘

and µ are vectors in Rp, smoothly related to each other,

⌘
1:1 ! µ,
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and that h(⌘) = H(µ) is some smooth real-valued function. Let D be the p ⇥ p derivative matrix

(Hessian)

D =

0

BBB@

...

· · · @⌘j/@µi · · ·
...

1

CCCA
, i # and j ! .

(D = V �1 in our case.) Letting · indicate derivatives with respect to ⌘, and 0 indicate derivatives

with respect to µ, we have

H 0(µ) = Dḣ(⌘)

where ḣ(⌘) = (· · · @h/@⌘j · · · )> and H 0(µ) = (· · · @H/@µi · · · )> (here using > to indicate transpo-

sition, as will be done whenever 0 is used for di↵erentiation).

The second derivative matrices of h(⌘) and H(µ) are related by

H 00(µ) = Dḧ(⌘)D> + D2ḣ(⌘)

" "
(@2H/@µi@µj) (@2h/@⌘i@⌘j)

Here D2 is the p⇥ p⇥ p three-way array (@2⌘j/@µi@µj).

Important: At a point where ḣ(⌘) = 0, H 00(µ) = Dḧ(⌘)D0.

Homework 2.3. Prove the important statement above.

2.4 Repeated sampling

Suppose we observe repeated samples from (2.1),

y = (y1, y2, . . . , yn)
iid⇠ g⌘(y).

Let ȳ denote the average of the vectors yi,

ȳ =
nX

i=1

yi/n.

Then

gY⌘ (y) = en[⌘
0ȳ� (⌘)]gY0 (y), (2.2)

as in (1.2), with gY0 (y) =
Qn

i=1 g0(yi). This is a p-dimensional exponential family (2.1), with:

• natural parameter ⌘(n) = n⌘

• su�cient vector y(n) = ȳ

• expectation vector µ(n) = µ
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• variance matrix V (n) = V/n [since Cov(ȳ) = Cov(y)/n]

• cgf  (n)(⌘(n)) = n (⌘(n)/n)

• sample space = product space Y1 ⌦ Y2 ⌦ · · ·⌦ Yn

Since ȳ is su�cient, we can consider it on its own sample space, say Y(n), with densities

g(n)⌘ (ȳ) = en[⌘
0ȳ� (⌘)]g(n)0 (ȳ), (2.3)

where g(n)0 (ȳ) is the density of ȳ for ⌘ = 0.

From ⌘(n) = n⌘ and µ(n) = µ we see that

A(n) = nA and B(n) = B.

In what follows, we will parameterize family (2.3) with ⌘ rather than ⌘(n) = n⌘. Then we can use

Figure 2.1 relating A and B exactly as drawn.

Homework 2.4. Is dµ(n) = V (n)d⌘(n) the same as dµ = V d⌘?

What does change is the distance of the su�cient statistic ȳ from its expectation µ: since

V (n) = V/n, the “error” ȳ � µ decreases at order Op(1/
p
n). As n ! 1, ȳ ! µ. This makes

asymptotics easy to deal with in exponential families.

2.5 Likelihoods, score functions, Cramér–Rao lower bounds

From (2.2), the log likelihood function of y = (y1, . . . , yn) is

l⌘(y) = n [ȳ �  (⌘)] .

The score function is defined to be the component-wise derivative with respect to ⌘,

l̇⌘(y) = (@l⌘(y)/@⌘j) = n(ȳ � µ)

(remembering that  ̇(⌘) = µ), and the second derivative matrix is

l̈⌘(y) = �nV

(since µ̇ =  ̈ = V ). The Fisher information for ⌘ in y is the outer product

i(n)⌘ = E⌘
n
l̇⌘(y)l̇⌘(y)

0
o
= nV,

(also equaling E{�l̈⌘(y)}).
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We can also consider the score function with respect to µ,

@l⌘(y)

@µ
=
@⌘

@µ

@l⌘(y)

@⌘
= V �1 l̇⌘(y)

= nV �1(ȳ � µ);

the Fisher information for µ, denoted i(n)⌘ (µ) (“at ⌘, for µ, sample size n”) is

i(n)⌘ (µ) = E

⇢
@l⌘(y)

@µ

@l⌘(y)0

@µ

�
= n2V �1Cov(ȳ)V �1

= nV �1.

Cramér–Rao lower bound (CRLB)

Suppose we have a multiparameter family f↵(z), score vector l̇↵(z) = (@ log f↵(z)/@⌘j), and Fisher

information i↵ the expected outer product E{l̇↵(z)l̇↵(z)0}. Then the CRLB for ↵ is i�1
↵ : if ↵̄ is any

unbiased estimate of vector ↵,

Cov{↵̄} � i�1
↵ .

(This is equivalent to Var{c0↵̄} � c0i�1
↵ c for estimating any linear combination c0↵.)

The CRLB for µ is seen to be

CRLB(µ) = i(n)⌘ (µ)�1 =
V

n
.

But Cov(ȳ) = V/n, so the MLE µ̂ = ȳ attains the CRLB. This only happens for µ, or linear

transformations of µ. So for example, the MLE ⌘̂ does not attain

CRLB(⌘) =
V �1

n
.

Homework 2.5. Let ⇣ be a scalar function of ⌘ or µ, say

⇣ = t(⌘) = s(µ),

with gradient vector ṫ(⌘) = (· · · @t/@⌘j · · · ), and likewise s0(µ) = (· · · @s/@µj · · · ). Having observed

y = (y1, y2, . . . , yn), show that the lower bound on the variance of an unbiased estimate of ⇣ is

CRLB(⇣) =
ṫ(⌘)>V �1ṫ(⌘)

n
= s0(µ)>V s0(µ).

Note. In applications, ⌘̂ is substituted for ⌘, or µ̂ for µ, to get an approximate variance for the

MLE ⇣̂ = t(⌘̂) = s(µ̂). Even though ⇣ is not generally unbiased for ⇣, the variance approximation

— which is equivalent to using the delta method — is usually pretty good.



2.6. MAXIMUM LIKELIHOOD ESTIMATION 41

2.6 Maximum likelihood estimation

From the score function for ⌘, l̇⌘(y) = n(ȳ � µ), we see that the maximum likelihood estimate ⌘̂

for ⌘ must satisfy

µ⌘̂ = ȳ.

That is, ⌘̂ is the value of ⌘ that makes the theoretical expectation µ equal the observed value ȳ.

Moreover, l̈⌘(y) = �nV shows that the log likelihood l⌘(y) is a concave function of ⌘ (since V is

positive definite for all ⌘) so there are no other local maxima.

From @/@µ l⌘(y) = nV �1(ȳ � µ), we see that the MLE of µ is µ̂ = ȳ. This also follows from

µ̂ = µ(⌘̂) (that is, that MLE’s map correctly) and µ⌘̂ = ȳ.

Figure 2.2

In Figure 2.2, the expectation space B and the sample space Y for individual yi’s are plotted

over each other. The scattered dots represent the yi’s, with their average ȳ = µ̂ at the center.

The nonlinear mapping ⌘̂ = ⌘(µ̂) has the local linear expression d⌘̂ = V̂ �1dµ̂, where V̂ = V⌘̂, the

variance matrix at the MLE point.

Homework 2.6. Use Figure 2.2 to get an approximation for Cov(⌘̂). How does it relate to

CRLB(⌘̂)?

Homework 2.7. Show that the p⇥ p second derivative matrix with respect to µ is

@2l⌘(y)

@µ2

����
µ̂

= �nV̂ �1.

From the central limit theorem,

µ̂ = ȳ ⇠̇ Np (µ, V/n) ,

where the normality is approximate but the expectation and covariance are exact. Then d⌘ =
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V �1dµ suggests

⌘̂ ⇠̇ Np (⌘, V
�1/n) ,

but now everything is approximate.

Figure 2.3

One-parameter subfamilies

Multiparameter exponential family calculations can sometimes be reduced to the one-parameter

case by considering subfamilies of g⌘(y),

⌘✓ = a+ b✓,

a and b fixed vectors in Rp. This defines densities

f✓(y) = g⌘✓(y) = e(a+b✓)0y� (a+b✓)g0(y).

This is a one-parameter exponential family

f✓(y) = e✓x��(✓)f0(y)

with

• natural parameter ✓;

• su�cient statistic x = b0y;

• �(✓) =  (a+ b✓);

• f0(y) = ea
0yg0(y).

For simple notation we write µ✓ for µ⌘✓ , V✓ for V⌘✓ , etc. As ✓ increases, ⌘✓ moves in a straight

line parallel to b, but µ✓ will usually follow a curve, the di↵erential relationship being

dµ✓ = V✓d⌘✓.
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Higher-order calculations are sometimes simplified by considering one-parameter subfamilies.

For example we have

d�/d✓ = E✓{x} = b0µ✓ = b0 ̇(⌘✓)


 ̇(⌘✓) ⌘  ̇(⌘)

���
⌘=⌘✓

�

d2�/d✓2 = Var✓{x} = b0V✓b = b0 ̈(⌘✓)b

d3�/d✓3 = E✓ {x� E✓(x)}3

=
X

i

X

j

X

k

...
 ijk(⌘✓)bibjbk ⌘

...
 (⌘✓)
p⇥p⇥p

· b3.

This last implies that
...
 ijk = E⌘(yi � µi)(yj � µj)(yk � µk).

Homework 2.8. Verify the result above. What is
....
 ijkl?

Figure 2.4

The subfamily F = {f✓(y), ✓ 2 ⇥} is defined for those values ✓ 2 ⇥ that keep ⌘✓ within A, so

F ⇢ G = {g⌘(y), ⌘ 2 A} .

Suppose now that y = (y1, y2, . . . , yn) is an iid sample from some member f✓ of F .

Homework 2.9. (a) Show that the MLE ✓̂ has µ✓̂ obtained by projection orthogonal to b, from ȳ

to {µ✓, ✓ 2 ⇥} as shown in Figure 2.4. (b) How would you estimate the standard deviation of ✓̂?

Note. The set of ȳ vectors having ✓̂ as MLE is a (p � 1)-dimensional hyperplane passing through

µ✓̂ orthogonal to b. The hyperplanes are parallel for all values of ✓̂.
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Stein’s least favorable family (another use of one-parameter subfamilies)

In a p-parameter exponential family G = {g⌘(y), ⌘ 2 A}, we wish to estimate a real-valued para-

meter ⇣ which can be evaluated as

⇣ = t(⌘) = s(µ).

Let the true value of ⌘ be ⌘0 and µ0 =  ̇(⌘0) the true value of µ. Then the true value of ⇣ is

⇣0 = t(⌘0) = s(µ0).

Gradients Let ṫ0 be the gradient of t(⌘) at ⌘ = ⌘0, and likewise s00 for the gradient of s(µ) at

µ = µ0,

ṫ(⌘) =

0

BBB@

...

@t(⌘)/@⌘j
...

1

CCCA

⌘0

and s0(µ) =

0

BBB@

...

@s(µ)/@µj

...

1

CCCA

µ0

,

both ṫ0 and s00 being p-vectors. As shown in Figure 2.5, ṫ0 is orthogonal to the (p� 1)-dimensional

level surface of ⌘ vectors that give t(⌘) = ⇣0, and s00 is orthogonal to the level surface s(µ) = ⇣0.

Figure 2.5

The least favorable family (LFF) is defined to be the one-parameter subfamily having

⌘✓ = ⌘0 + s00✓

(not ⌘0 + ṫ0✓) for ✓ in an open interval containing 0.

Homework 2.10. Show that the CRLB for estimating ⇣ in the LFF, evaluated at ✓ = 0, is the

same as the CRLB for estimating ⇣ in G, evaluated at ⌘ = ⌘0; and that both equal (s00)
>V⌘0s

0
0.

In other words, the reduction to the LFF does not make it any easier to estimate ⌘. LFF

operations are used in theoretical calculations where it is desired to extend a one-dimensional

result to higher dimensions.

Extra Credit Any choice other than b = s00 in the family ⌘✓ = ⌘0+b✓ makes the one-parameter

CRLB smaller.
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2.7 Deviance

Everything said in Section 1.8 holds for deviance in multiparameter families:

D(⌘1, ⌘2) = 2E⌘1

⇢
log

g⌘1(y)

g⌘2(y)

�

= 2
⇥
(⌘1 � ⌘2)0µ1 �  (⌘1, ⌘2)

⇤
� 0.

(Also denoted D(µ1, µ2) or just D(1, 2).) Under iid sampling, y = (y1, y2, . . . , yn),

Dn(⌘1, ⌘2) = nD(⌘1, ⌘2).

Usually, D(⌘1, ⌘2) 6= D(⌘2, ⌘1).

Hoe↵ding’s formula

Now indexing with µ rather than ⌘,

gµ(y)

gµ̂(y)
= e�nD(µ̂,µ)/2 = e�nD(ȳ,µ)/2.

Relationship with Fisher information

D(⌘1, ⌘2) = (⌘2 � ⌘1)0V⌘1(⌘2 � ⌘1) +O(⌘2 � ⌘1)3

(remembering that i(1)⌘1 = V⌘1).

The tangency picture on page 26 in Part 1 remains valid: now  (⌘) is a convex surface over

the convex set A in Rp. The tangent line on page 26 is now the tangent hyperplane to the surface,

passing through (⌘1, (⌘1)) in Rp+1; D(⌘1, ⌘2) is the distance from (⌘2, (⌘2)) projected down to

the tangent hyperplane.

Homework 2.11. Prove the previous statement.

Extra Credit Draw a schematic picture analogous to the illustration at the top of page 26.

Homework 2.12. Show that

(⌘2 � ⌘1)0(µ2 � µ1) = 1/2 [D(1, 2) +D(2, 1)] .

Since the right-hand side is positive, this proves that the relationship between ⌘ and µ is “globally

monotonic”: the angle between (⌘2 � ⌘1) and (µ2 � µ1) is always less than 90�.

2.8 Examples of multiparameter exponential families

There is a short list of named multiparameter exponential families that show up frequently in

applications. Later we will consider some important examples that don’t have familiar names.
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Beta

• X is univariate with density on [0, 1],

x↵1�1(1� x)↵2�1

be(↵1,↵2)


be(↵1,↵2) =

�(↵1)�(↵2)

�(↵1 + ↵2)

�
,

↵1 and ↵2 positive. The density is defined with respect to Lebesgue measure on [0, 1]. This

is written in exponential family form as

g↵(x) = e↵
0y� (↵)g0(x)

8
>>><

>>>:

y = [log(x), log(1� x)]0 and Y = R2

 = log [be(↵1,↵2)]

g0(x) = 1/[x(1� x)].

Homework 2.13. (a) Verify directly that x has

mean
↵1

↵1 + ↵2
and variance

↵1↵2

(↵1 + ↵2)2(↵1 + ↵2 + 1)
.

(b) Find an expression for E{log(x)} in terms of the digamma function, digamma (z) = �0(z)/�(z).

Dirichlet

• Let Sp indicate the p-dimensional simplex

Sp =

(
x = (x1, x2, . . . , xp) : xi � 0 and

pX

1

xi = 1

)
,

and S̄p the projected simplex

S̄p =

(
x : xp = 0, xi � 0, and

p�1X

1

xi  1

)
.

• An almost obvious fact, S̄p has (p � 1)-

dimensional “area” of 1/(p� 1)! (the case

p = 3 is obvious).

Homework 2.14. Argue that Sp has (p� 1)-dimensional area
p
p/(p� 1)!.

• The Dirichlet is Beta’s big brother for p > 2. Let

↵ = (↵1,↵2, . . . ,↵p) with all ↵i > 0.
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The corresponding Dirichlet density is

g↵(x) =
pY

i=1

x↵i�1
i

�
di(↵)

"
di(↵) =

pY

1

�(↵i)

�
�
⇣X

↵i

⌘#

with respect to uniform measure on S̄p, or uniform/
p
p measure on Sp. (Since xp = 1 �

Pp�1
1 xi, g↵(x) is actually (p� 1)-dimensional.)

• g↵(x) can be written in exponential family form as

g↵(x) = e↵
0y� (↵)m(dx),

where

– ↵ is the natural parameter vector (“⌘”);

– y = log(x) = [log(x1), log(x2), . . . , log(xp)];

–  (↵) = log[di(↵)]; m(dx) = uniform/
p
p measure on Sp.

Homework 2.15. What are µ and V for the Dirichlet? Compare with Homework 2.13. What is

rank(V )?

Univariate normal

• X ⇠ N (�,�), univariate, with

g(x) =
1p
2⇡�

e�
1
2� (x��)

2
=

1p
2⇡�

e

n
�x2

2�+�
�x�

�2

2�

o

.

• In exponential family form,

g⌘(x) = e⌘1y1+⌘2y2� (⌘)g0(x),

with

⌘ =

✓
⌘1
⌘2

◆
=

✓
�/�

�1/2�

◆
, µ =

✓
�

�2 + �

◆
;

y =

✓
y1
y2

◆
=

✓
x

x2

◆
,  =

1

2

✓
�2

�
+ log�

◆
;

g0(x) =
1p
2⇡

with respect to uniform measure on (�1,1).

Homework 2.16. Use  ̇ and  ̈ to derive µ and V .
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It seems like we have lost ground: our original univariate statistic x is now represented two-

dimensionally by y = (x, x2). However, if we have an iid sample x1, x2, . . . , xn
iid⇠ N (�,�), then

ȳ =

✓P
xi/nP
x2i /n

◆

is still a two-dimensional su�cient statistic (though not the more usual form (x̄, �̂2)). Figure 2.6

presents diagrams of A and of B and Y.

Homework 2.17. An iid sample x1, x2, . . . , xn ⇠ N (�,�) gives y1, y2, . . . , yn, with yi = (xi, x2i ).

Draw a schematic diagram of B and Y indicating the points yi and the su�cient vector ȳ.

Figure 2.6

Multivariate normal

• Another big brother case: we observe n independent observations from a d-dimensional normal

distribution with expectation vector � and d⇥ d covariance matrix �,

x1, x2, . . . , xn
iid⇠ Nd(�,�).

(This is the generic beginning point for classical multivariate analysis.)

• We need some special notation: for H a d⇥d symmetric matrix, let h = H(v) be the d(d+1)/2

vector that strings out the on-or-above diagonal elements,

h0 = (H11, H12, . . . , H1d, H22, H23, . . . , H2d, H31, . . . , Hdd),

and let h(m) be the inverse mapping from h back to H.

• Also let diag(H) = matrix with on-diagonal elements those of H and o↵-diagonal elements 0.

• Straightforward but tedious (and easily bungled) calculations show that the density of x =

(x1, x2, . . . , xn) forms a

p = d(d+ 3)/2
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-dimensional exponential family

g⌘(x) = en[⌘
0y� (⌘)]g0(x)

described as follows:

y0 = (y10, y20) where y1� x̄ and y2 =

 
nX

i=1

xix
0
i/n

!(v)

,

dimensions d and d(d+ 1)/2, respectively;

⌘0 = (⌘10, ⌘20) where ⌘1 = n��1� and ⌘2 = n
⇥
diag(��1)/2� ��1

⇤(v)
;

µ0 = (µ10, µ20) where µ1 = � and µ2 = (��0 + �)(v);

 =
1

2

⇥
�0��1�+ log(�)

⇤
.

• We also have

� = µ1 =
1

n
� · ⌘1;

� = µ2(m) � µ1µ10 = �n
h
diag(⌘2(m)) + ⌘2(m)

i�1
.

Reference Efron and DiCiccio (1992), “More accurate confidence intervals in exponential fami-

lies”, Biometrika, Section 3.

Homework 2.18. Calculate the deviance D[Np(�1,�1),Np(�2,�2)].

Graph models

Exponential families on graphs are now a boom-

ing topic in network theory. We have a graph with

n nodes, each with its own parameter ✓i. Let

xij =

8
<

:
1 if an edge between ✓1 and ✓2,

0 if no edge between ✓1 and ✓2.

A simple model assumes that the xij are indepen-

dent Bernoulli variates, with probability xij = 1,

⇡ij =
e✓i+✓j

1 + e✓i+✓j
.

This is the “degree model”.

Homework 2.19. (a) Show that the degree model is an n-parameter exponential family with
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su�cient vector y,

yi = #{edges entering node i} (“degree i”).

(b) Describe ⌘, µ, and V .

If all ✓i’s are the same, the degree model reduces to a one-parameter exponential family, density

e⌘E� (⌘) with E the total number of edges. There are more complicated models, for instance

e⌘1E+⌘2T� (⌘1,⌘2),

where T is the total number of triangles. Very large graphs — the kinds of greatest interest these

days — make it di�cult to compute the normalizing factor  (⌘1, ⌘2), or to directly sample from

the family–giving rise to Markov chain Monte Carlo (MCMC) techniques.

Truncated data

Suppose y ⇠ g⌘(y) = e⌘
0y� (⌘)g0(y), but we only get to observe y if it falls into a given subset Y0

of the sample space Y. (This is the usual case in astronomy, where only su�ciently bright objects

can be observed.) The conditional density of y given that it is observed is then

g⌘(y | Y0) = e⌘
0y� (⌘)g0(y)

�
G⌘(Y0)

where

G⌘(Y0) =

Z

Y0

g⌘(y)m(dy).

But this is still an exponential family,

g⌘(y | Y0) = e⌘
0y� (⌘)�logG⌘(Y0)g0(y).

Homework 2.20. x ⇠ Poi(µ) but we only observe x if it is > 0. (a) Describe gµ(x) in exponential

family form. (b) Di↵erentiate  (⌘) to get µ and V .

Conditional families

Reference Lehmann and Romano (2005), Testing Statistical Hypotheses, 3rd edition, Section

2.7.

We have a p-parameter exponential family,

G =
n
g⌘(y) = e⌘

0y� (⌘)dG0(y), ⌘ 2 A
o
,

where now we have represented the carrying density g0(y)m(dy) in Stiljes form “dG0(y)”. We
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partition ⌘ and y into two parts, of dimensions p1 and p2,

⌘ = (⌘1, ⌘2) and y = (y1, y2).

Lemma 2. The conditional distributions of y1 given y2 form a p1-parameter exponential family,

with densities

g⌘1(y1 | y2) = e⌘
0
1y1� (⌘1|y2)dG0(y1 | y2), (2.4)

natural parameter vector ⌘1, su�cient statistic y1, and cgf  (⌘1 | y2) that depends on y2 but not

on ⌘2. Here dG0(y1 | y2) represents the conditional distribution of y1 given y2 when ⌘1 = 0.

Homework 2.21. Verify Lemma 2. (The fact that the carrier is dG0(y1 | y2) follows from a general

probabilistic result, and may be assumed.)

The familiar uses of Lemma 2 often involve transformation of the original family G: for M a

p⇥ p nonsingular matrix, let

⌘̃ = M�1⌘ and ỹ = My.

Since ⌘0ỹ = ⌘0y1, we see that the transformed densities g̃⌘̃(ỹ) also form an exponential family

G̃ =
n
g̃⌘̃(ỹ) = e⌘̃

0ỹ� (M ⌘̃)dG̃0(ỹ), ⌘̃ 2M�1A
o
,

to which Lemma 2 can be applied. What follows are four useful examples.

Example 1 (2⇥ 2 tables). We start with

(x1, x2, x3, x4) ⇠ Mult4 [N, (⇡1,⇡2,⇡3,⇡4)]

as in Section 1.4. The conditional distribution of

x1 | x2, x3, x4 is identical to x1 | r1, c1, N . Accor-

ding to Lemma 2, x1 conditionally follows a one-

parameter exponential family, which turns out to

be the “tilted hypergeometric” family (1.3) (ap-

plying to Fisher’s exact test). The reason why

⌘1 = log(⇡1⇡4/⇡2⇡3), the log odds ratio, is con-

nected to the exponential family representation of

the multinomial, as discussed in the next section.

Homework 2.22. What is the matrix M being used here?

Example 2 (Gamma/Dirichlet). We have p independent gamma variates of possibly di↵erent degrees

of freedom,

si
ind⇠ G⌫i , i = 1, 2, . . . , p,
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so s = (s1, s2, . . . , sp)0 follows a p-parameter exponential family. Let M have first row (1, 1, . . . , 1)0,

so that s̃ = Ms has first element s̃1 =
Pp

1 si = s+. Define

z = s/s+,

z taking its values in the simplex Sp. Then

z | s+ ⇠ Dirichlet(⌫) [⌫ = (⌫1, ⌫2, . . . , ⌫p)] ,

a (p� 1)-dimensional exponential family.

Example 3 (Wishart). Given a multivariate normal sample x1, x2, . . . , xn
iid⇠ Nd(�,�), let y1 = x̄

and y2 =
P

xix0i/n as before. The conditional distribution of y2 | y1 is then a p = d(d + 1)/2

exponential family. But the Wishart statistic

W =
X

(xi � x̄)(xi � x̄)0/n =
X

xix
0
i/n� x̄x̄0

is, given x̄, a function of y2. (In fact W is independent of x̄.) This shows that W follows a

[d(d+ 1)/2]-parameter exponential family.

Example 4 (The Poisson trick). Suppose that

s = (s1, s2, . . . , sL) is a vector of L independent

Poisson variates,

sl
ind⇠ Poi(µl), l = 1, 2, . . . , L.

Then the conditional distribution of s = (s1, s2,

. . . , sL) — given that
P

sl equals n — is multi-

nomial:

s | n ⇠ MultL(n,⇡), (2.5)

the notation indicating an L category multino-

mial, n draws, true probabilities ⇡ where

⇡ = (⇡1,⇡2, . . . ,⇡L) with ⇡l = µl

,
LX

1

µi.

Homework 2.23. Directly verify (2.5).

Another way to say this: if

n ⇠ Poi(µ+) and s | n ⇠ MultL(n,⇡),
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then

sl
ind⇠ Poi(µ+ · ⇡l), l = 1, 2, . . . , L. (2.6)

If you are having trouble with a multinomial calculation, usually because of multinomial correlation

among the sl, then thinking of sample size n as Poisson instead of fixed makes the components

independent. This “Poisson trick” is often used for quick multinomial approximations.

Homework 2.24. For the 2⇥ 2 table of Example 1, or of Section 1.4, use the Poisson trick to find

the delta-method approximation of the standard error for the log odds ratio, log(⇡1⇡4/⇡2⇡3).

2.9 The multinomial as exponential family

Traditional multivariate analysis focused on the multivariate normal distribution. More recently

there has been increased attention to categorical data and the multinomial distribution. The

multinomial’s exponential family structure is just a little tricky.

We assume that n subjects have each been put

into one of L categories. In the ulcer data example

from Section 1.4, page 11, n = 45, L = 4, with

categories Treatment-Success, Treatment-Failure,

Control-Success, Control-Failure.

11

Treatment

Control

Success Failure

12

7

9

17

29 45

24

21

16

It is convenient to code the L categories with indicator vectors,

el = (0, 0, . . . , 0, 1, 0, . . . , 0)0 (1 in the lth place),

indicating category l. The data can be written as

y = (y1, y2, . . . , yn)
0,

where

yi = eli , li the ith subject’s category.

The multinomial probability model says that each subject’s category is chosen independently

according to probability distribution ⇡ = (⇡1,⇡2, . . . ,⇡L)0,

yi ⇠ {el with probability ⇡l, l = 1, 2, . . . , L}

independently for i = 1, 2, . . . , n. The probability density function is

g⇡(y) =
LY

l=1

⇡sll = e⌘
0s,
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where sl = #{yi = el}, the count for category l, and

⌘l = log ⇡l
⇥
⌘ = (⌘1, ⌘2, . . . , ⌘L)

0⇤ .

However, this isn’t in exponential family form since ⌘ = (⌘1, ⌘2, . . . , ⌘L)0 is constrained to lie in a

nonlinear subset of RL,
LX

l=1

e⌘l =
LX

1

⇡l = 1.

To circumvent this di�culty we let ⌘ be any vector in RL, and define

⇡l = e⌘l

,
LX

j=1

e⌘j for l = 1, 2, . . . , L, (2.7)

so

log ⇡l = ⌘l � log
LX

j=1

e⌘j .

Now the multinomial density can be written in genuine exponential family form,

g⌘(y) = e⌘
0s�n (⌘)

"
 (⌘) = log

LX

l=1

e⌘l

#
.

The count vector s = (s1, s2, . . . , sL) is a su�cient statistic; the sample space Y for y = (y1, y2, . . . ,

yn) has Ln points, all with g0(y) = 1.

Figure 2.7

More familiarly, the multinomial is expressed in terms of the vector of observed proportions p,
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pl =
sl
n

⇥
p = (p1, p2, . . . , pn)

0⇤ ,

as

g⌘(p) = en[⌘
0p� (⌘)]g0(p). (2.8)

Now g0(p) is the multinomial coe�cient

g0(p) =

✓
n

np1, np2, . . . , npL

◆
= n!

,
LY

l=1

sl!

defined with respect to counting measure on the

lattice of points (s1, s2, . . . , sL)0/n, the sl being

non-negative integers summing to n. This will be

denoted

p ⇠ MultL(n,⇡)/n. (2.9)

To summarize, p is the vector of observed proportions, ⇡ the vector of category probabilities,

parameterized in terms of the vector ⌘ at (2.7), and obeying density (2.8).

Homework 2.25. Re-express g⌘(p) so that ⌘ = 0 corresponds to p ⇠ Mult(n,⇡0)/n, where ⇡0 =

(1, 1, . . . , 1)0/L (the centerpoint of the simplex S).

Homework 2.26. Why is ⌘1 the log odds ratio log(⇡1⇡4/⇡2⇡3) in the 2⇥ 2 case of Example 1 of

Section 2.8? Hint: Homework 2.22.

Homework 2.27. Di↵erentiate  (⌘) to show that p has expectation vector ⇡ (“= µ” in our

original notation) and covariance matrix V = D⇡ � ⇡⇡0, where D = diag(⇡), the diagonal matrix

with elements ⇡l, so that Vij = ⇡i(1� ⇡i) if i = j, and �⇡i⇡j otherwise.

As n gets large, p becomes approximately normal,

p ⇠̇ NL(⇡, V ),

but its L-dimensional distribution is confined to the (L�1)-dimensional flat set SL. The preceding

diagram is a schematic depiction of the case n = 3 and L = 3.

In our parameterization, all ⌘ vectors on RL of the form ⌘ = ⌘̃ +  · 1, with  any number,

1 = (1, 1, . . . , 1)0, and
P

e⌘l = 1, map into the same expectation vector ⇡ = (· · · e⌘l · · · )0. As a

result, the Hessian matrix dµ/d⌘ = V is singular,

V · 1 = ⇡ � ⇡ = 0.

We can take the inverse matrix d⌘/dµ = V �1 to be any pseudoinverse of D⇡ � ⇡⇡0, in particular

V �1 = diag(1/⇡),
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the diagonal matrix with entries 1/⇡l; but we won’t need to do so here. The multinomial can be

expressed in standard form by taking ⌘ = (log ⇡1, log ⇡2, . . . , log ⇡L�1)0 and y = (p1, p2, . . . , pL�1)0,

but this often causes problems because of asymmetry.

Homework 2.28. In what way is the Poisson trick related to V �1 above?

There is one more thing to say about the multinomial family: it represents all distributions

supported on exactly L points, while all other exponential families are subfamilies of more general

probability models.
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Normal theory linear regression, including the analysis of variance, has been a mainstay of

statistical practice for nearly a century. Generalized linear models (GLMs) began their development

in the 1960s, extending regression theory to situations where the response variables are binomial,

Poisson, gamma, or any one-parameter exponential family. GLMs have turned out to be the great

success story of exponential family techniques as applied to the world of statistical practice.

3.1 Exponential family regression models

Suppose that y1, y2, . . . , yN are independent observations from the same one-parameter exponential

family, but having possibly di↵erent values of the natural parameter ⌘,

yi
ind⇠ g⌘i(yi) = e⌘iyi� (⌘i)g0(yi) for i = 1, 2, . . . , N. (3.1)

57
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A generalized linear model expresses the ⌘i as linear functions of an unknown p-dimensional para-

meter vector �,

⌘i = x0i� for i = 1, 2, . . . , N,

where the xi are known covariate vectors. We can write this all at once as

⌘
N⇥1

= X
N⇥p

�
p⇥1

⇥
X = (x1, x2, . . . , xN )0

⇤
.

The density for y = (y1, y2, . . . , yN )0 turns out to be a p-parameter exponential family. Multi-

plying factors (3.1) gives the density

g�(y) = e
P

i(⌘iyi� (⌘i))
Y

i

g0(yi) = e�
0X0y�

P
i  (x

0
i�)
Y

i

g0(yi)

= e�
0z��(�)g0(y)

(3.2)

where

• � is the p⇥ 1 natural parameter vector;

• z = X 0y is the p⇥ 1 su�cient vector;

• �(�) =
PN

i=1  (x
0
i�) is the cgf; and

• g0(y) =
QN

i=1 g0(yi) is the carrying density.

Notation Boldface vectors will be used for N -dimensional quantities, as with y = (y1, y2, . . . , yn)0

and ⌘ = (⌘1, ⌘2, . . . , ⌘N )0; likewise µ for the expectation vector (µ1, µ2, . . . , µN )0, µi =  ̇(⌘i), or

more succinctly, µ =  ̇(⌘). Similarly, V will denote the N⇥N diagonal matrix of variances, written

V =  ̈(⌘) = diag( ̈(⌘i)), with V� = diag( ̈(x0i�)) indicating the variance matrix for parameter

vectors ⌘ = X� in the GLM.

Homework 3.1. Show that

(a) E�{z} = �̇(�) = X 0
p⇥N

µ
N⇥1

(�)

(b) Cov�{z} = �̈(�) = X 0
p⇥N

V�
N⇥N

X
N⇥p

= i� (i� the Fisher information for �)

(c)
d�̂

dy
p⇥N

= (X 0V�̂X)�1X 0 (“influence function of �̂”)

The score function for a GLM l̇�(y) = (· · · @l(y)/@�k · · · )0 is

l̇�(y) = z � E�{z} = X 0(y � µ),
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with

�l̈�(y) = X 0V�X = i� ,

the p⇥ p Fisher information matrix.

The MLE equation is z = E�=�̂{Z} or

X 0
⇣
y � µ

⇣
�̂
⌘⌘

= 0, (3.3)

0 here being a p-vector of zeros. Asymptotically, as the Fisher information matrix i� grows large,

the general theory of maximum likelihood estimation yields the normal approximation

�̂ ⇠̇ N�(�, i
�1
� ) (3.4)

(though a formal statement depends on the boundedness of the xi vectors as N ! 1). Solving

(3.3) for �̂ is usually carried out by some version of Newton–Raphson iteration, as discussed below.

The regression model {⌘i = x0i�} is a p-parameter subfamily of the N -parameter family (3.1)

that lets each ⌘i take on any value,

g⌘(y) = e⌘
0y�

P
i  (⌘i)g0(y).

If the original one-parameter family g⌘(y) in (3.1) has natural space ⌘ 2 A and expectation space

µ 2 B, then g⌘(y) has spaces AN and BN as N -fold products, AN = AN and BN = BN , and

similarly YN = YN for the sample spaces.

The natural parameter vectors for the GLM, ⌘ = X�, lie in the p-dimensional linear subspace

of AN generated by the columns of X = (x(1),x(2), . . . ,x(p)). This flat space maps into a curved

p-dimensional manifold in BN ,

{µ(�)} =
n
µ =  ̇(⌘),⌘ = X�

o
,

as pictured here.
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(In the linear regression situation, yi
ind⇠ N (x0i�,�

2), {µ(�)} is flat, but this is essentially the only

such case.)

The data vector y will usually not lie in the curved manifold {µ(�)}. From the MLE equations

X 0(y�µ(�̂)) = 0 we see that y�µ(�̂) must be orthogonal to the columns x(j) of X. In other words,

the maximum likelihood estimate µ̂ = µ(�̂) is obtained by projecting y into {µ(�)} orthogonally

to the columns of X. Letting Lcol(X) be the column space of X,

Lcol(X) = {⌘ = X�,� 2 Rp},

the residual y �X�̂ must lie in the space
?
Lcol(X) of N -vectors orthogonal to Lcol(X).

In the normal case, where {µ(�)} is flat, µ(�̂) is obtained from the usual OLS (ordinary least

squares) equations. Iterative methods are necessary for GLMs: if �0 is an interim guess, we update

to �1 = �0 + d� where

d� = (X 0V�0X)�1
�
y � µ(�0)

�

(see Homework 3.1(c)), continuing until d� is su�ciently close to 0. Because g�(y) is an exponential

family (3.2) there are no local maxima to worry about.

Modern computer packages such as glm in R find �̂ quickly and painlessly. Having found it

they use the asymptotic normal approximation

�̂ ⇠̇ Np
�
�, (X 0V�X)�1

�
(3.5)

(from Homework 3.1(b)) to report approximate standard errors for the components of �̂.

Warning The resulting approximate confidence intervals, e.g., �̂j ±1.96bsej , may be quite inaccu-

rate, as shown by comparison with better bootstrap intervals.

Two useful extensions

We can add a known “o↵set” vector a to the definition of ⌘ in the GLM

⌘ = a+X�.

Everything said previously remains valid, except now

µi(�) =  ̇(ai + x0i�) and Vi(�) =  ̈(ai + x0i�).

Homework 3.2. Write the o↵set situation in the form g�(y) = e�
0z��(�)g0(y). Show that Home-

work 3.1(a) and (b) still hold true, with the changes just stated.

As a second extension, suppose that corresponding to each case i we have ni iid observations,

yi1, yi2, . . . , yini

iid⇠ g⌘i(y) = e⌘iy� (⌘i)g0(y),
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with

⌘i = x0i�, i = 1, 2, . . . , N.

This is the same situation as before, now of size
PN

1 ni. However, we can reduce to the su�cient

statistics

ȳi =
niX

j=1

yij/ni,

having

ȳi
ind⇠ eni[⌘iȳi� (⌘i)]g0(ȳi) (⌘i = x0i�),

reducing the size of the GLM from
P

ni to N .

Homework 3.3. Let nȳ be theN -vector with elements niȳi, similarly nµ for the vector of elements

niµi(�), and nV� for diag(niVi(�)).

(a) Show that

g�(y) = e�
0z��(�)g0(y)

8
<

:
z = X 0(nȳ)

� =
PN

i=1 ni (x0i�).

(b) Also show that

l̇�(y) = X 0(nȳ � nµ), �l̈�(y) = X 0nV�X = i� .

Note. Standard errors for the components of �̂ are usually based on the approximation Cov(�̂) =

i�1
�̂

.

Homework 3.4 (“Self-grouping property”). Suppose we don’t reduce to the su�cient statistics

ȳi, instead doing a GLM with X having
P

ni rows. Show that we get the same estimates of �̂ and

i�̂ .

Homework 3.5. Show that the solution to the MLE equation (3.3) minimizes the total deviance

distance

�̂ = argmin
�

(
NX

i=1

D (yi, µi(�))

)
.

In other words, “least deviance” is the GLM analogue of least squares for normal regression.

3.2 Logistic regression

When the observations yi are binomials we are in the realm of logistic regression, the most widely

used of the generalized linear models. In the simplest formulation, the yi’s are independent Bernoulli

variables Ber(⇡i), that is Bi(1,⇡i),

yi =

8
<

:
1 with probability ⇡i

0 with probability 1� ⇡i,
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where 1 or 0 code the outcomes of a dichotomy, perhaps male or female, or success or failure, etc.

The binomial natural parameter is the logistic transform

⌘ = log
⇡

1� ⇡

✓
⇡ =

1

1 + e�⌘

◆
.

A logistic GLM is then of the form ⌘i = x0i� for i = 1, 2, . . . , N or ⌘(�) = X�. The vector of

probabilities ⇡ = (⇡1,⇡2, . . . ,⇡N )0 is µ in this case; the MLE equations (3.3) can be written in

vector notation as

X 0
✓
y � 1

1+ e�⌘(�)

◆
= 0.

Table 3.1: Output of logistic regression for the transplant data. Null deviance 139.189 on 222 degrees of
freedom; residual deviance 54.465 on 210 df.

Estimate St. error z-value Pr(> |z|)

inter �6.76 1.48 �4.57 .00

age �.21 .41 �.52 .60
gen �.61 .42 �1.45 .15
diag .57 .41 1.40 .16
donor �.68 .46 �1.48 .14
start �.07 .61 �.12 .91
date .41 .49 .83 .41
datf .12 .62 .19 .85
datl �1.26 .66 �1.89 .06
vl1 .07 .49 .15 .88
vl2 �.71 .47 �1.49 .13
vl3 .21 .47 .44 .66
vl4 5.30 1.48 3.58 .00***

Example (The transplant data). Among N = 223 organ transplant patients, 21 subsequently suf-

fered a severe viral infection. The investigators wished to predict infection (“y = 1”). There were

12 predictor variables, including age, gender, and initial diagnosis, and four viral load measure-

ments taken during the first weeks after transplant. In this study, the covariate matrix X was

223⇥ 12, with response vector y of length 223. The R call glm(y ⇠ X,binomial) gave the results

in Table 3.1. Only the final viral load measurement (vl4) was seen to be a significant predictor,

but that doesn’t mean that the others aren’t informative. The total residual deviance from the

MLE fit was
P

D(yi,⇡i(�̂)) = 54.465, compared to
P

D(yi, ȳ) = 139.189 for the model that only

predicts the average response ȳ = 21/220. (More on GLM versions of F -tests later.)

The logistic fit gave a predicted probability of infection

⇡̂i = ⇡i
⇣
�̂
⌘
=

1

1 + e�x0
i�̂

for each patient. The top panel of Figure 3.1 compares the predictions for the 199 patients who did
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         Predicted probs of infection, logistic regression; 
solid = not infected,  line = infected

logistic regression prediction

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

| || |

predict if >.2:
error1stkind=.054
power=.905

Now cross−validate prediction probs

logistic regression prediction

Fr
eq

ue
nc

y
0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

| || |

error1st=.075
power=.667

Figure 3.1: Predicted probabilities of infection, logistic regression; solid histogram represents not infected,
line histogram represents infected.

not su↵er an infection (solid blue histogram) with the 21 who did (line histogram). There seems

to be considerable predictive power: the rule “predict infection if ⇡̂i exceeds 0.2” makes only 5%

errors of the first kind (predicting an infection that doesn’t happen) with 90% power (predicting

infections that do happen).

This is likely to be optimistic since the MLE rule was fit to the data it is trying to predict.

A cross-validation analysis split the 223 patients into 11 groups of 20 each (three of the patients

were excluded). Each group was omitted in turn and a logistic regression fit to the reduced set of

200, then predictions ⇡̃i made for the omitted patients, based on the reduced MLE. This gave more

realistic prediction estimates, with 8% errors of the first kind and 67% power.

Homework 3.6. Repeat this analysis removing vl4 from the list of covariates. Comment on your

findings.

Standard errors Suppose ⇣ = h(�) is a real-valued function of �, having gradient ḣ(�) =

(· · · @h(�)/@�j · · · )0. Then the approximate standard error assigned to the MLE ⇣̂ = h(�̂) is usually

se
⇣
⇣̂
⌘

.
=

⇢
ḣ
⇣
�̂
⌘0

i�1
�̂

ḣ
⇣
�̂
⌘�1/2

.

In particular suppose we wish to estimate the probability of a 1 at a given covariate point x0,

⇡0 = Pr{y = 1 | x0} = 1/(1 + e�x0
0�).



64 PART 3. GENERALIZED LINEAR MODELS

Then ḣ(�) = x0⇡0(1� ⇡0), and

se(⇡̂0)
.
= ⇡̂0(1� ⇡̂0)

n
x00i

�1
�̂

x0
o1/2

,

⇡̂0 = 1/(1 + e�x0
0�̂).

Logistic regression includes the situation where yi
ind⇠ Bi(ni,⇡i), ni possibly greater than 1. Let

pi = yi/ni denote the proportion of 1’s,

pi
ind⇠ Bi(ni,⇡i)/ni,

so pi is ȳi in the notation of (3.4), with µi = ⇡i. From Homework 3.3(b) we get

l̇�(y) = X 0(np� n⇡) and � l̈� = X 0 diag {ni⇡i(�) [1� ⇡i(�)]}X.

Probit analysis

The roots of logistic regression lie in bioassay : to establish the toxicity of a new drug, groups of

ni mice each are exposed to an increasing sequence of doses di, i = 1, 2, . . . ,K, and the proportion

pi of deaths observed. (A customary goal is to estimate “LD50”, the dose yielding 50% lethality.)

The probit model is

⇡i = �(�0 + �1di), i = 1, 2, . . . ,K,

where � is the standard normal cdf; maximum likelihood is used to solve for (�0,�1).

Homework 3.7. Show that replacing �(x) above with the logistic cdf ⇤(x) = 1/(1+ e�x) reduces

the bioassay problem to logistic regression.

Linkages

The key idea of GLMs is to linearly model the natural parameters ⌘i. Since µi =  ̇(⌘i), this is equi-

valent to linearly modeling  ̇�1(µi). Other links appear in the literature. Probit analysis amounts

to linearly modeling ��1(µi), sometimes called the probit link. But only the GLM “canonical link”

allows one to make full use of exponential family theory.

3.3 Poisson regression

The second most familar of the GLMs — and for general purposes sometimes the most useful, as

we will see — is Poisson regression. We observe independent Poisson variables

yi
ind⇠ Poi(µi) for i = 1, 2, . . . , N,
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sometimes written y ⇠ Poi(µ). A Poisson GLM is a linear model for the natural parameters

⌘i = logµi,

⌘i = ai + x0i�, i = 1, 2, . . . , N,

where � is an unknown p-dimensional parameter vector, xi a known p-dimensional covariate vector,

and ai a known scalar “o↵set”. The MLE equation (3.3) is

X 0(y � ea+X�̂) = 0,

the exponential notation indicating the vector with components eai+x0
i�̂ . Since the variance Vi

equals µi = e⌘i for Poisson variates, the asymptotic approximation (3.4) is

�̂ ⇠̇ Np

⇢
�,
h
X 0 diag(eai+x0

i�)X
i�1
�
,

in practice with �̂ substituted for � on the right.

Table 3.2: Counts for a truncated sample of 487 galaxies, binned by magnitude and redshift.

Redshift (farther) �!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18 1 6 6 3 1 4 6 8 8 20 10 7 16 9 4
17 3 2 3 4 0 5 7 6 6 7 5 7 6 8 5
16 3 2 3 3 3 2 9 9 6 3 5 4 5 2 1
15 1 1 4 3 4 3 2 3 8 9 4 3 4 1 1
14 1 3 2 3 3 4 5 7 6 7 3 4 0 0 1
13 3 2 4 5 3 6 4 3 2 2 5 1 0 0 0
12 2 0 2 4 5 4 2 3 3 0 1 2 0 0 1

" 11 4 1 1 4 7 3 3 1 2 0 1 1 0 0 0
Magnitude 10 1 0 0 2 2 2 1 2 0 0 0 1 2 0 0
(dimmer) 9 1 1 0 2 2 2 0 0 0 0 1 0 0 0 0

8 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0
7 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
6 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0
5 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

The galaxy data Table 3.2 shows counts of galaxies from a survey of a small portion of the

sky: 487 galaxies have had their apparent magnitudes m and (log) redshifts r measured. Apparent

brightness is a decreasing function of magnitude — stars of the 2nd magnitude are less bright than

those of the first, etc. — while distance from Earth is an increasing function of r.

As in most astronomical studies, the galaxy data is truncated, very dim galaxies lying below the

threshold of detection. In this study, attention was restricted to the intervals 17.2  m  21.5 and

1.22  r  3.32. The range of m has been divided into 18 equal intervals, and likewise 15 equal

intervals for r. Table 3.2 gives the counts yij of the 487 galaxies in the N = 270 = 18 ⇥ 15 bins.
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The left panel of Figure 3.2 shows a perspective picture of the counts.
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Figure 3.2. Galaxy data. Binned counts
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Figure 3.2: Left panel : galaxy data, binned counts. Right panel : Poisson GLM density estimate.

We can imagine Table 3.2 as the lower left corner of a much larger table we would see if the data

were not truncated. We might then fit a bivariate normal density to the data. It seems awkward

and di�cult to fit part of a bivariate normal density to truncated data, but Poisson regression o↵ers

an easy solution.

We begin with the reasonable assumption that the counts are independent Poisson observations,

yij
ind⇠ Poi(µij), i = 1, 2, . . . , 18 and j = 1, 2, . . . , 15.

Let m be the 270-vector listing the mij values in some order, say m = (18, 17, . . . , 1) repeated 15

times, and likewise r for the 270 rij values. This defines the 270⇥ 15 structure matrix X,

X = (m, r,m2,mr, r2),

where m2 is the 270-vector with components m2
ij , etc.

Letting y denote the 270-vector of counts, the GLM call in R

glm(y ⇠ X, poisson),

then produces an estimate of the best-fit truncated normal density. We can see the estimated

contours of the fitted density in Figure 3.3. The estimate density itself is shown in the right panel

of Figure 3.2.

Homework 3.8. Why does this choice of X for the Poisson regression produce an estimate of a

truncated bivariate normal density?

Homework 3.9. (a) Reproduce the Poisson fit.

(b) Calculate the Poisson deviance residuals (1.9). Can you detect any hints of poor fit?

(c) How might you supplement the model we used to improve the fit?
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Figure 3.3: Contour curves for Poisson GLM density estimates for the galaxy data; dot shows point of
maximum density.

3.4 Lindsey’s method [Efron and Tibshirani (1996), Ann. Statist. 2431–2461]

Returning to the prostate study of Section 1.6, we have N = 6033 observations z1, z2, . . . , zN and

wish to fit a density curve ĝ(z) to their distribution. For a parametric analysis, we assume that the

density is a member of a p-parameter exponential family,

g�(z) = e�
0t(z)� (�)g0(z), (3.6)

where � and t(z) are in Rp. In Figure 1.3, t(z) was a fifth-degree polynomial

t(z) =
5X

j=1

zj .

(Choosing a second-degree polynomial, with g0(z) constant, would amount to fitting a normal

density; going up to degree 5 permits us to accommodate non-normal tail behavior.)

How can we find the MLE �̂ in family (3.6)? There is no closed form for  (�) or µ =  ̇(�)

except in a few special cases such as the normal and gamma families. This is where Lindsey’s

method comes in. As a first step we partition the sample space Z (an interval of R1) into K
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subintervals Zk,

Z =
K[

k=1

Zk,

with Zk having length�k and centerpoint xk. For

simplicity we will take �k = � for all k, and

g0(z) = 1 in what follows.

______|_____|_____|_____|_____|______

Define

⇡k(�) = Pr�{z 2 Zk} =

Z

Zk

g�(z) dz
.
= �e�

0tk� (�), (3.7)

tk = t(xk), and

⇡(�) = (⇡1(�),⇡2(�), . . . ,⇡K(�)).

Also let y = (y1, y2, . . . , yK)0 be the count vector

yk = #{zi 2 Zk}.

If the zi’s are independent observations from g�(z) then y will be a multinomial sample of size N ,

Section 2.9,

y ⇠ MultK (N,⇡(�)) .

For small values of �, the multinomial MLE will be nearly the same as the actual �̂, but it doesn’t

seem any easier to find. Poisson regression and the Poisson trick come to the rescue.

Define

µk(�0,�) = e�0+�
0tk , (3.8)

where �0 is a free parameter that absorbs � and  (�) in (3.7), and let µ+(�0,�) =
P

k µk(�0,�).

Then
µk(�0,�)

µ+(�0,�)
= ⇡k(�).

We can now use standard GLM software to find the Poisson MLE (�̂0, �̂) in model (3.8),

y ⇠ Poi (µ(�0,�)) .

Homework 3.10.

(a) Show that �̂ is the MLE in the multinomial model above. What does e�̂0 equal?

(b) How is Lindsey’s method applied if the �k are unequal or g0(z) is not constant?

3.5 Analysis of deviance

Idea We fit an increasing sequence of GLMs to the data, at each stage measuring the lack of fit

by the total residual deviance. Then we use the residual deviances to construct an ANOVA-like
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table.

Total deviance yi
ind⇠ g⌘i(·) for i = 1, 2, . . . , N , as in (3.1). The total deviance of y from ⌘ (or

from µ) is

D+(y,µ) =
NX

i=1

D(yi, µi).

Homework 3.11. Verify Hoe↵ding’s formula,

gYy (y)

gYµ (y)
⌘

NY

i=1

gyi(yi)

gµi(yi)
= eD+(y,µ)/2.

Nested linear models

Suppose that in the original model

⌘
N⇥1

= X
N⇥p

�
p⇥1

,

� is divided into (�(1),�(2)) of dimensions p(1) and p(2), X = (X1, X2) with X1 N ⇥ p(1) and X2

N ⇥ p(2). Then

⌘ = X(1)�(1)

is a p(1)-parameter GLM submodel of ⌘ = X�. Let

• �̂(1) = MLE of �(1) in the smaller model;

• µ̂(1) = corresponding expectation vector

 ̇(X(1)�̂(1)).

The MLEs �̂ and �̂(1) are both obtained by pro-

jection as in Section 3.1, with the projections into

the curved manifolds

M =
n
µ =  ̇(X�)

o
and M(1) =

n
µ =  ̇

⇣
X(1),�(1)

⌘o
,

along directions
?
Lcol(X) and

?
Lcol(X(1)).

The deviance additivity theorem [G. Simon; Efron (1978), Ann. Statist. p. 362 Sect. 4]

For standard normal regression theory (OLS), M and M(1) are flat spaces, and deviance is Eucli-

dean squared distance. Pythagoras’ theorem says that

D+(µ̂, µ̂
(1)) = D+(y, µ̂

(1))�D+(y, µ̂). (3.9)
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The deviance additivity theorem says that (3.9) holds for any GLM, as discussed next.

Hoe↵ding’s formula can be written as dif-

ferences between total log likelihoods lµ(y) =
PN

i=1 lµi(yi),

• D+(y, µ̂) = 2
⇥
ly(y)� lµ̂(y)

⇤
and

• D+(y, µ̂(1)) = 2
h
ly(y)� lµ̂(1)(y)

i
.

Taking di↵erences gives

2
h
lµ̂(y)� lµ̂(1)(y)

i
= D+(y, µ̂

(1))�D+(y, µ̂).

Homework 3.12. Show that the left side equals D+(µ̂, µ̂(1)).

Testing H0 : �(2) = 0 If H0 is true then Wilks’ theorem says that

D+(µ̂, µ̂
(1)) = 2 log

 
gµ̂(y)

gµ̂(1)(y)

!
⇠̇ �2

p(2) ,

so we reject H0 if D+(µ̂, µ̂(1)) exceeds �2(↵)
p(2)

for ↵ = 0.95 or 0.975, etc. Since

D+(µ̂, µ̂
(1)) =

NX

i=1

D(µ̂i, µ̂
(1)
i ),

we can examine the individual components to see if any one point is causing a bad fit to the smaller

model.

Analysis of deviance table

Suppose � and X are divided into J parts,

�
p⇥1

=
⇣
�(1)
p(1)

,�(2)
p(2)

, . . . ,�(J)
p(J)

⌘
and X

N⇥p
=

✓
X(1)

N⇥p(1)
, X(2)

N⇥p(2)
, . . . , X(J)

N⇥p(J)

◆
.

Let �̂(j) be the MLE for � assuming that �(j+1) = �(j+2) = · · · = �(J) = 0. An analysis of

deviance table is obtained by di↵erencing the successive maximized log likelihoods l�̂(j)(y) =
PN

i=1 log gµi(�̂(j))(yi); see Table 3.3.

Note. It is common to adjoin a “zero-th column” of all ones to X, in which case �̂(0) is taken to

be the value making µ̂(0) a vector with all entries ȳ.

Table 3.4 shows D+(y0, µ̂(j)) for the prostate data, where µ̂(j) is the fitted expectation vector

from the R call

glm(y ⇠ poly(x, j), poisson)
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Table 3.3: Analysis of deviance table.

Twice max Compare
MLE log like Di↵erence with

�̂(0) = 0 �! 2l�̂(0)
&

D+(µ̂(1), µ̂(0)) �2
p(1)%

�̂(1) �! 2l�̂(1)
&

D+(µ̂(2), µ̂(2)) �2
p(2)%

�̂(2) �! 2l�̂(2)
&

...
...

...
...

D+(µ̂(J), µ̂(J � 1)) �2
p(J)%

�̂(J) = �̂ �! 2l�̂(J)

for j = 2, 3, . . . , 8, with y the vector of bin centers in Figure 1.3,

x = (�4.4,�4.2,�4.0, . . . , 5.0, 5.2),

length K = 49. In other words, we used Lindsey’s method to fit log polymial models of degrees 2

through 8 to the 6033 z-values.

Table 3.4: Deviance and AIC for prostate data fits glm(y ⇠ poly(x,df), poisson).

df 2 3 4 5 6 7 8
Dev 139 137 65.3 64.3 63.8 63.8 59.6
AIC 143 143 73.3 74.3 75.8 77.8 75.6

Because the models are successively bigger, the deviance D(j)
+ must decrease with increasing j.

It cannot be that bigger models are always better, they just appear so. AIC, Akaike’s information

criterion, suggests a penalty for increased model size,

AIC(j) = D(j)
+ + 2j;

see Efron (1986) JASA, Remark R. We see that j = 4 minimizes AIC for the prostate data.

Homework 3.13.

(a) Construct the deviance table and give the significance levels for the chi-square tests.
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(b) Construct the analogous table using natural splines instead of polynomials,

glm(y ⇠ ns(x, j), poisson).

3.6 A survival analysis example

A randomized clinical trial conducted by the Northern California Oncology Group (NCOG) compa-

red two treatments for head and neck cancer: chemotherapy (Arm A of the trial, n = 51 patients)

and chemotherapy plus radiation (Arm B, n = 45 patients). The results are reported in Table 3.5 in

terms of the survival time in number of days past treatment. The numbers followed by + indicate

patients still alive on their final day of observation. For example, the sixth patient in Arm A was

alive on day 74 after his treatment, and then “lost to follow-up”; we only know that his survival

time exceeded 74 days.

Table 3.5: Censored survival times in days, from the two arms of NCOG study of head and neck cancer.

Arm A: Chemotherapy

7 34 42 63 64 74+ 83 84 91 108 112
129 133 133 139 140 140 146 149 154 157 160
160 165 173 176 185+ 218 225 241 248 273 277
279+ 297 319+ 405 417 420 440 523 523+ 583 594
1101 1116+ 1146 1226+ 1349+ 1412+ 1417

Arm B: Chemotherapy+Radiation

37 84 92 94 110 112 119 127 130 133 140
146 155 159 169+ 173 179 194 195 209 249 281
319 339 432 469 519 528+ 547+ 613+ 633 725 759+
817 1092+ 1245+ 1331+ 1557 1642+ 1771+ 1776 1897+ 2023+ 2146+

2297+

This is a case of censored data, an endemic problem in medical survival studies. A powerful

methodology for the statistical analysis of censored data was developed between 1955 and 1975.

Here we will discuss only a bit of the theory, concerning its connection with generalized linear

models. A survey of survival analysis appears in Chapter 9 of Efron and Hastie’s 2016 book,

Computer Age Statistical Inference.

Hazard rates

Survival analysis theory requires stating probability distribution in terms of hazard rates rather

then densities. Suppose X is a nonnegative discrete random variable, with probability density

fi = Pr{X = i} for i = 1, 2, 3, . . . ,
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and survival function

Si = Pr{X � i} =
X

j�i

fj .

Then hi, the hazard rate at time i,

hi = fi/Si = Pr{X = i | X � i}.

In words, hi is the probability of dying at time i after having survived up until time i. Notice that

Si =
i�1Y

j=1

(1� hj). (3.10)

Homework 3.14. Prove (3.10) and give an intuitive explanation.

Life tables

Table 3.6 presents the Arm A data in life table form. Now the time unit is months rather than

days. Three statistics are given for each month:

• ni = number of patients under observation at the beginning of month i;

• yi = number of patients observed to die during month i;

• li = number of patients lost to follow-up at the end of month i.

So for instance n10 = 19 patients were under observation (“at risk”) at the beginning of month 10,

y10 = 2 died, l10 = 1 was lost to follow-up,1 leaving n11 = 16 at risk for month 11.

The key assumption of survival analysis is that, given ni, the number of deaths yi is binomial

with probability of death the hazard rate hi,

yi | ni ⇠ Bi(ni, hi). (3.11)

This amounts to saying that drop-outs before time i are uninformative for inference except in their

e↵ect on ni.

Homework 3.15. Suppose patients can sense when the end is near, and drop out of the study

just before they die. How would this a↵ect model (3.11)?

The unbiased hazard rate estimate based on (3.11) is

ĥi = yi/ni; (3.12)

1Patients can be lost to follow-up for various reasons — moving away, dropping out of the study, etc. — but most
often because they entered the study late and were still alive when it closed.
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Table 3.6: Arm A of NCOG head and neck cancer study, binned by month: n = number at risk, y =
number deaths, l = lost to follow-up, ĥ = hazard rate y/n; Ŝ = life table survival estimate.

month n y l ĥ Ŝ month n y l ĥ Ŝ

1 51 1 0 .020 .980 25 7 0 0 .000 .184
2 50 2 0 .040 .941 26 7 0 0 .000 .184
3 48 5 1 .104 .843 27 7 0 0 .000 .184
4 42 2 0 .048 .803 28 7 0 0 .000 .184
5 40 8 0 .200 .642 29 7 0 0 .000 .184
6 32 7 0 .219 .502 30 7 0 0 .000 .184
7 25 0 1 .000 .502 31 7 0 0 .000 .184
8 24 3 0 .125 .439 32 7 0 0 .000 .184
9 21 2 0 .095 .397 33 7 0 0 .000 .184

10 19 2 1 .105 .355 34 7 0 0 .000 .184
11 16 0 1 .000 .355 35 7 0 0 .000 .184
12 15 0 0 .000 .355 36 7 0 0 .000 .184
13 15 0 0 .000 .355 37 7 1 1 .143 .158
14 15 3 0 .200 .284 38 5 1 0 .200 .126
15 12 1 0 .083 .261 39 4 0 0 .000 .126
16 11 0 0 .000 .261 40 4 0 0 .000 .126
17 11 0 0 .000 .261 41 4 0 1 .000 .126
18 11 1 1 .091 .237 42 3 0 0 .000 .126
19 9 0 0 .000 .237 43 3 0 0 .000 .126
20 9 2 0 .222 .184 44 3 0 0 .000 .126
21 7 0 0 .000 .184 45 3 0 1 .000 .126
22 7 0 0 .000 .184 46 2 0 0 .000 .126
23 7 0 0 .000 .184 47 2 1 1 .500 .063
24 7 0 0 .000 .184

(3.10) then gives the survival estimate

Ŝi =
i�1Y

j=1

⇣
1� ĥj

⌘
. (3.13)

Figure 3.4 compares the estimated survival curves for the two arms of the NCOG study. The

more aggressive treatment seems better: the Arm B one-year survival rate estimate is about 50%,

compared with 35% for Arm A.

Note. Estimated survival curves are customarily called Kaplan–Meier curves in the literature.

Formally speaking, the name applies to estimates (3.13) where the time unit, months in our example,

is decreased to zero. Suppose the observed death times are

t(1) < t(2) < t(3) < · · · < t(m)

(assuming no ties). Then the Kaplan–Meier curve Ŝ(t) is flat between death times, with downward

jumps at the observed t(i) values.

Homework 3.16. What is the downward jump at t(i)?
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Figure 9.1 NCOG Kaplan-Meier survival curves; lower Arm A (chemo
only); upper Arm B (chemoCradiation). Vertical lines indicate
approximate 95% confidence intervals.

The vertical bars in Figure 9.1 are approximate 95% confidence limits for the
two curves based on Greenwood’s formula. They overlap enough to cast doubt
on the superiority of Arm B at any one choice of “days” but the two-sample test
of the next section, which compares survival at all timepoints, will provide more
definitive evidence.

Life tables and the Kaplan-Meier estimate seem like a textbook example of
frequentist inference as described in Chapter 2: a useful probabilistic result is
derived (9.4), and then implemented by the plug-in principle (9.6). There is more
to the story though, as discussed below.

Life table curves are nonparametric, in the sense that no particular relation-
ship is assumed between the hazard rates hi . A parametric approach can greatly
improve the curves’ accuracy.é Reverting to the life table form of Table 9.3, weé4
assume that the death counts yk are independent binomials,

yk
ind
⇠ Bi.nk; hk/; (9.19)

and that the logits �k D logfhk=.1�hk/g satisfy some sort of regression equation

� D X˛; (9.20)

as in (8.22). A cubic regression for instance would set xk D .1; k; k2; k3/0 for
the kth row of X , with X 47 ⇥ 4 for Table 9.3.

Figure 3.4: NCOG estimated survival curves; lower is Arm A (chemotherapy only); upper is Arm B
(chemotherapy+radiation). Vertical lines indicate approximate 95% confidence intervals.

The binomial model2 (3.11) leads to Greenwood’s formula, an approximate standard error for

Ŝi,

sd
n
Ŝi

o
.
= Ŝi

0

@
X

ji

yj
nj(nj � yj)

1

A
1/2

.

The vertical bars in Figure 3.4 indicate ±1.96 sdi, approximate 95% confidence limits for Si. There

is overlap between the bars for the two curves; at no one time point can we say that Arm B is

significantly better than Arm A (though more sophisticated two-sample tests do in fact show B’s

superiority).

Parametric survival analysis

Life table survival curves are nonparametric in the sense that the true hazard rates hi are not as-

sumed to follow any particular pattern. A parametric approach can greatly improve the estimation

accuracy of the curves. In particular, we can use a logistic GLM: letting ⌘i be the logistic transform

of hi,

⌘i = log
hi

1� hi
,

and assuming that ⌘ = (⌘1, ⌘2, . . . , ⌘N )0 satisfies

⌘ = X� (3.14)

2It is assumed that the conditional binomial distributions (3.11) are successively independent of the previous
observations (nj , yj , lj), j < i.
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as in Section 3.1–Section 3.2. 9.2 Censored data and Kaplan-Meier 135
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Figure 9.2 Parametric hazard rate estimates for the NCOG study.
Arm A, black curve, has about 2.5 times higher hazard than Arm B for
all times more than a year after treatment. Standard errors shown at 15
and 30 months.

The parametric hazard rate estimates in Figure 9.2 were instead based on a
“cubic-linear spline”,

xk D
�
1; k; .k � 11/2

�
; .k � 11/3

�

�0
; (9.21)

where .k�11/� equals k�11 for k  11, and 0 for k � 11. The vector � D X˛
describes a curve that is cubic for k  11, linear for k � 11, and joined smoothly
at 11. The logistic regression maximum likelihood estimate Ǫ produced hazard
rate curves

Ohk D 1
. ⇣

1C e�x0

k Ǫ

⌘
(9.22)

as in (8.8). The black curve in Figure 9.2 traces Ohk for Arm A, while the red
curve is that for Arm B, fit separately.

Comparison in terms of hazard rates is more informative than the survival
curves of Figure 9.1. Both arms show high initial hazards, peaking at five months,
and then a long slow decline.6 Arm B hazard is always below Arm A, in a ratio of
about 2.5 to 1 after the first year. Approximate 95% confidence limits, obtained

6 The cubic-linear spline (9.21) is designed to show more detail in the early months, where there
is more available patient data and where hazard rates usually change more quickly.

Figure 3.5: Parametric hazard rate estimates for NCOG study. Arm A (black curve) has about 2.5 times
higher hazard than Arm B (red curve) for all times more than a year after treatment. Standard errors shown
at 15 and 30 months.

Consider the Arm A data of Table 3.6, providing N = 47 binomial observations yi ⇠ Bi(ni, hi),

assumed independent as in Greenwood’s formula. For the analysis in Figure 3.5, we took X in

(3.14) to be the 47⇥ 4 matrix having ith row

xi =
⇥
1, i, (i� 11)2, (i� 11)3,

⇤0
, (3.15)

where (i � 11) equals i � 11 for i  11 and 0 for i > 11. Then ⌘ = X� describes a cubic-linear

spline with the knot at 11. This choice allows for more detailed modeling of the early months, when

there is the most data and the greatest variation in response, as well as allowing stable estimation

in the low-data right tail.

Homework 3.17. Repeat the Arm A calculation in Figure 3.5, including the estimated standard

errors.

The comparison of estimated hazard rate in Figure 3.5 is more informative than the survival

curve comparison of Figure 3.4. Both arms show a peak in hazard rates at five months, a swift

decline, and then a long slow decline after one year, reflecting to some extent the spline model

(3.15). Arm B hazard is always below Arm A by a factor of about 2.5.

3.7 Overdispersion and quasi-likelihood

Applications of binomial or Poisson generalized linear models often encounter di�culties with over-

dispersion: after fitting the best GLM we can find, the residual errors are still too large by the
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standards of binomial or Poisson variability. Quasilikelihood is a simple method for dealing with

overdispersion while staying within the GLM framework. A more detailed technique, double expo-

nential families, is developed in the next section.

Table 3.7: Toxoplasmosis data: rainfall, #sampled and #positive in 34 cities in El Salvador; p = s/n, ⇡̂ =
fit from cubic logistic regression in rainfall; R binomial dev residual, Rp Pearson residual;

P
(Rp2)/30 = 1.94,

estimated overdispersion factor.

City r n s p ⇡̂ R Rp

1 1735 4 2 .500 .539 �.16 �.16
2 1936 10 3 .300 .506 �1.32 �1.30
3 2000 5 1 .200 .461 �1.22 �1.17
4 1973 10 3 .300 .480 �1.16 �1.14
5 1750 2 2 1.000 .549 1.55 1.28
6 1800 5 3 .600 .563 .17 .17
7 1750 8 2 .250 .549 �1.72 �1.70
8 2077 19 7 .368 .422 �.47 �.47
9 1920 6 3 .500 .517 �.08 �.08

10 1800 10 8 .800 .563 1.58 1.51
11 2050 24 7 .292 .432 �1.42 �1.39
12 1830 1 0 .000 .560 �1.28 �1.13
13 1650 30 15 .500 .421 .87 .88
14 2200 22 4 .182 .454 �2.69 �2.57
15 2000 1 0 .000 .461 �1.11 �.92
16 1770 11 6 .545 .558 �.08 �.08
17 1920 1 0 .000 .517 �1.21 �1.03
18 1770 54 33 .611 .558 .79 .79
19 2240 9 4 .444 .506 �.37 �.37
20 1620 18 5 .278 .353 �.68 �.67
21 1756 12 2 .167 .552 �2.76 �2.69
22 1650 1 0 .000 .421 �1.04 �.85
23 2250 11 8 .727 .523 1.39 1.36
24 1796 77 41 .532 .563 �.54 �.54
25 1890 51 24 .471 .536 �.93 �.93
26 1871 16 7 .438 .546 �.87 �.87
27 2063 82 46 .561 .427 2.44 2.46
28 2100 13 9 .692 .417 2.00 2.01
29 1918 43 23 .535 .518 .22 .22
30 1834 75 53 .707 .559 2.62 2.57
31 1780 13 8 .615 .561 .40 .40
32 1900 10 3 .300 .530 �1.47 �1.46
33 1976 6 1 .167 .477 �1.60 �1.52
34 2292 37 23 .622 .611 .13 .13

As an example, Table 3.7 reports on the prevalence of toxoplasmosis, an endemic blood infection,

in 34 cities of El Salvador; Efron (1986), JASA 709–721. The data consists of triplets (ri, ni, si),

i = 1, 2, . . . , 34, where

• ri = annual rainfall in city i;

• ni = number of people sampled;

• si = number testing positive for toxoplasmosis.
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Table 3.8: Cubic logistic regression of toxoplasmosis data: glm(formula = p ⇠ poly(r,3), family =
binomial, weights = n). Overdispersion: deviance 62.635/30 = 2.09; Pearson 1.94. Null deviance 74.212
on 33 degrees of freedom; residual deviance 62.635 on 30 df.

Coe�cients Estimate St. error z-value Pr(> |z|)

(Intercept) .0243 .0769 .32 .75240
poly(r,3)1 �.0861 .4587 �.19 .85117
poly(r,3)2 �.1927 .4674 �.41 .68014
poly(r,3)3 1.3787 .4115 3.35 .00081 ***

Let pi = si/ni be the observed proportion positive in city i. A cubic logistic regression of pi on

ri was run,

glm(p ⇠ poly(r,3), binomial, weight = n),

with p, r, and n indicating their respective 34-vectors. Part of the output appears in Table 3.8. We

see that the cubic regression coe�cient 1.3787 is strongly positive, z-value 3.35, two-sided p-value

less than 0.001.
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Figure 3.6: Observed proportions of toxoplasmosis, 34 cities in El Salvador; curve is cubic logistic regression.

The points (ri, pi) are shown in Figure 3.6, along with the fitted cubic regression curve. Each

pi is connected to its fitted value ⇡̂i by a dashed line. We will see that the points are too far from

the curve by the standard of binomial variability. This is what overdispersion looks like.

The middle two columns of Table 3.7 show the observed proportions pi and the fitted values ⇡̂i

from the cubic logistic regression. Two measures of discrepancy are shown in the last two columns:
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the binomial deviance residual

Ri = sign(pi � ⇡̂i)
p
niD(pi, ⇡̂i),

(1.9) and Homework 1.23, and the Pearson residual

Rpi = (pi � ⇡̂i)
.p

⇡̂i(1� ⇡̂i)/ni,

⇡̂i = 1/(1 + e�x0
i�̂).

In the absence of overdispersion, we would expect both

34X

1

R2
i /30 and

34X

1

Rp2i /30

to be close to 1 (30 = 34� 4 is the added degrees of freedom in going from cubic regression to the

model allowing a separate estimate ⇡i for each city). Instead we have

34X

1

R2
i /30 = 2.09 and

34X

1

Rp2i /30 = 1.94;

the points in Figure 3.6 are about
p
2 farther from the fitted curve than as suggested by binomial

variability.

Homework 3.18. Compute the p-value for Wilks’ likelihood ratio test of the null hypothesis that

there is no overdispersion around the cubic regression curve.

Table 3.9: Toxoplasmosis data matrix; cj city residence for subject j, rj rainfall in that subject’s city, zj
either 0 or 1 indicating positive test for toxoplasmosis or not.

City Rainfall Response

1
...

...
...

2
...

...
...

...
...

...
...

j cj rj zj
...

...
...

...

697
...

...
...

The toxoplasmosis study comprised 697 subjects. It was originally presented as a 697 by 3

matrix, such as that suggested by Table 3.9, with cj the city residence for subject j, rj the rainfall

in that subject’s city, and zj either 1 or 0 if the test for toxoplasmosis was positive or not.
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Homework 3.19. Run logistic regressions for these three models: (1) z ⇠ 1, i.e., only a single

constant fit; (2) z ⇠ poly(r,3); (3) z ⇠ as.factor(city). Compute the analysis of deviance

table, using the anova function, and interpret the results.

There is nothing mysterious about overdispersion. Overly large residuals mean that our model

is deficient. In the toxoplasmosis example there are certainly other predictors — age, gender,

neighborhood, etc. — that would reduce residual error if included in the logistic regression model–

if we knew them. We don’t, but we can at least assess the degree of overdispersion, and account

for its e↵ect on the accuracy of estimates �̂i such as those in Table 3.8. This is what the theory of

quasilikelihood does.

Quasilikelihood A normal-theory GLM, that is, ordinary least squares, has no problem with

overdispersion. The usual model,

y ⇠ X� + ✏, ✏ ⇠ NN (0,�2I),

gives MLE �̂ = (X 0X)�1X 0y, with

�̂ ⇠ Np
�
�,�2(X 0X)�1

�
;

�2 is estimated from the residual sum of squared errors. A significance test for the kth coe�cient is

based on �̂k/�̂, automatically accounting for dispersion. Notice that the point estimate �̂k doesn’t

depend on �̂, while its variability does.

Homework 3.20. Suppose we observe independent 0/1 random variables y1, y2, . . . , yN , with

unknown expectations E{yi} = ⇡i, and wish to estimate ✓ =
PN

1 ⇡i/N . An unbiased estimate

is ✓̂ = ȳ. What can we learn from

�̂2 =
NX

i=1

(yi � ȳ)2/N?

The advantage of the normal-theory GLM

yi
ind⇠ N (x0i�,�

2), i = 1, 2, . . . , N,

is that it incorporates a dispersion parameter �2 without leaving the world of exponential families.

This isn’t possible for other GLMs (however, see Section 3.8). Quasilikelihood theory says that we

can act as if it is possible.

We begin by considering an extension of the GLM structure. As in (3.1), the observations yi

are obtained from possibly di↵erent members of a one-parameter exponential family. Denote the

mean and variance of yi by yi ⇠ (µi, vi), where µi is a function µi(�) of an unknown p-dimensional

parameter vector �; vi = v(µi(�)) is determined by the variance function v(µ) of the family, e.g.,
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v(µ) = µ for the Poisson family. We assume that the function µ� = (· · ·µi(�) · · · )0 is smoothly

defined, with N ⇥ p derivative matrix

w� =

✓
@µi

@�j

◆
.

Lemma 3. The score function and information matrix for an extended GLM family are

l̇�(y) = w0
�v

�1
� (y � µ�) and i� = w0

�v
�1
� w� ,

where v� is the diagonal matrix with elements vi(�).

The proof of Lemma 3 begins by di↵erentiating l�(y) = ⌘0
�y �

P
 (⌘i(�)), using d⌘�/d� =

v�1
� w� .

Homework 3.21. Complete the proof.

Note. In a standard unextended GLM, ⌘� = X�, we get

w� =
dµ

d⌘
X = V�X.

Setting v� = V� in Lemma 3 gives

l̇�(y) = X 0(y � µ�) and i� = X 0V�X,

the same as in Section 3.1.

The quasilikelihood approach to overdispersion is simply to assume that

v(µ) = �2V (µ) (for �2 an unknown positive constant), (3.16)

where V (µ) is the variance function in the original family. For instance,

v(µ) = �2µ(1� µ) = �2⇡(1� ⇡)

for the binomial family, or v(µ) = �2µ for the Poisson family. Applied formally, Lemma 3 gives

l̇�(y) = w0
�V

�1
� (y � µ�)/�

2 and i� = w0
�V

�1
� w�/�

2. (3.17)

Chapter 9 of McCullagh and Nelder (1989) shows that under reasonable asymptotic conditions, the

MLE �̂, i.e., the solution to l̇�(y) = 0, satisfies

�̂ ⇠̇ Np(�, i
�1
� ).
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Applied to the original model ⌘� = X�, (3.17) gives

l̇�(y) = X 0(y � µ�)/�
2 and i� = X 0V�X/�2. (3.18)

The MLE equation l̇�(y) = 0 gives the same estimate �̂. However the estimated covariance matrix

for �̂ is now multiplied by �2,

�̂ ⇠̇ Np
�
�,�2(X 0V�X)�1

�
,

compared with (3.1) in Section 3.1.

The toxoplasmosis data was rerun using a quasibinomial model, as shown in Table 3.10. It

estimated �2 as 1.94, the Pearson residual overdispersion estimate from Table 3.7. Comparing the

results with the standard binomial GLM in Table 3.8 we see that:

• The estimated coe�cient vector �̂ is the same.

• The estimated standard errors are multipled by
p
1.94 = 1.39.

• The estimated t-values are divided by 1.39.

This last item results in a two-sided p-value for the cubic coe�cient of 0.023, compared with 0.00081

previously.

Table 3.10: Quasibinomial logistic regression for toxoplasmosis data: glm(formula = p ⇠ poly(r,3),
family = quasibinomial, weights = n).

Coe�cients Estimate St. error t-value Pr(> |t|)

(Intercept) .0243 .1072 .23 .822
poly(r,3)1 �.0861 .6390 �.13 .894
poly(r,3)2 �.1927 .6511 �.30 .769
poly(r,3)3 1.3787 .5732 2.41 .023 ***

3.8 Double exponential families [Efron (1986), JASA 709–721]

The quasilikelihood analysis of the toxoplasmosis data proceeded as if the observed proportions pi

were obtained from a one-parameter exponential family with expectation ⇡i and variance �2⇡i(1�
⇡i)/n. There is no such family, but it turns out we can come close using the double exponential

family construction.

Forgetting about GLMs for now, suppose we have a single random sample y1, y2, . . . , yn from

a one-parameter exponential family gµ(y) having expectation µ and variance function V (µ). The

average ȳ is then a su�cient statistic, with density say

gµ,n(ȳ) = en(⌘ȳ� (⌘))g0,n(ȳ)
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as in Section 1.3, and expectation and variance

ȳ ⇠
✓
µ,

V (µ)

n

◆
. (3.19)

Hoe↵ding’s formula, Section 1.8, expresses gµ,n(ȳ) in terms of deviance,

gµ,n(ȳ) = gȳ,n(ȳ)e
�nD(ȳ,µ)/2,

with D(µ1, µ2) the deviance function for n = 1.

The double exponential family corresponding to gµ,n(ȳ) (3.19) is the two-parameter family

fµ,✓,n(ȳ) = C ✓1/2gȳ,n(ȳ)e
�n✓D(ȳ,µ)/2, (3.20)

µ in the interval of allowable expectations for gµ,n(ȳ), and ✓ > 0. An important point is that the

carrier measure m(dȳ) for fµ,✓,n(ȳ), suppressed in our notation, is the same as that for gµ,n(ȳ). This

is crucial for discrete distributions like the Poisson where the support stays the same — counting

measure on 0, 1, 2, . . . — for all choices of ✓.

What follows is a list of salient facts concerning fµ,✓,n(ȳ), as verified in Efron (1986).

Fact 1 The constant C = C(µ, ✓, n) that makes fµ,✓,n(ȳ) integrate to 1 is close to 1.0. Standard

Edgeworth calculations give

C(µ, ✓, n)
.
= 1 +

1

n

 
1� ✓

✓

9�µ � 15�2µ
72

!
+O

✓
1

n2

◆
,

with �u and �u the skewness and kurtosis of gµ,1(ȳ). Taking C = 1 in (3.20) is convenient,

and usually accurate enough for applications.

Fact 2 Formula (3.20) can also be written as

fµ,✓,n(ȳ) = C ✓1/2gµ,n(ȳ)
✓gȳ,n(ȳ)

1�✓,

which says that log fµ,✓,n(ȳ) is essentially a linear combination of log gµ,n(ȳ) and log gȳ,n(ȳ).

Homework 3.22. Verify Fact 2.

Fact 3 The expectation and variance of ȳ ⇠ fµ,✓,n are, to excellent approximations,

ȳ ⇠̇
✓
µ,

V (µ)

n✓

◆
,

with errors of order 1/n2 for both terms. Comparison with (3.16) shows that 1/✓ measures

dispersion,

�2 = 1/✓.



84 PART 3. GENERALIZED LINEAR MODELS

Homework 3.23. Suppose gµ,n(ȳ) represents a normal mean, ȳ ⇠ N (µ, 1/n). Show that fµ,✓,n(ȳ)

has ȳ ⇠ N (µ, 1/(n✓)).

Fact 4 fµ,✓,n(ȳ) is a two-parameter exponential family having natural parameter “⌘” equal n(✓⌘, ✓),

and su�cient vector “y” equal (ȳ,�⌘̄ ̄), where ⌘̄ =  ̇�1(ȳ). Moreover, with ✓ and n fixed,

fµ,✓,n(ȳ) is a one-parameter exponential family with natural parameter n✓⌘ and su�cient

statistic ȳ; with µ and n fixed, fµ,✓,n(ȳ) is a one-parameter exponential family with natural

parameter ✓ and su�cient statistic �nD(ȳ, µ)/2.

Homework 3.24. Verify Fact 4.

Together, Facts 3 and 4 say that fµ,✓,n(ȳ), with ✓ fixed, is a one-parameter exponential family

having expectation and variance nearly µ and Vµ/(n✓), respectively. This is just what was required

for the notional quasilikelihood families.
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Figure 3.7: Double Poisson densities for µ = 10 and ✓ = 1 (solid), = 1/2 (dashed), or = 2 (dotted).

Figure 3.7 illustrates the double Poisson distribution: we have taken3 n = 1, µ = 10, and

✓ = 1, 1/2, or 2 (using C(µ, ✓, n) from Fact 1). The case ✓ = 1, which is the standard Poisson

distribution, has µ = 10 and Vµ =
p
10 = 3.16. As claimed, the variance doubles for ✓ = 1/2 and

halves for ✓ = 2, while µ stays near 10. All three distributions are supported on 0, 1, 2, . . . .

3Because the Poisson family is closed under convolutions, the double Poisson family turns out to be essentially
the same for any choice of n.
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Homework 3.25.

(a) For the Poisson family (n = 1) show that (3.20), with C = 1, gives

fµ,✓(y) = ✓1/2e�✓µ
✓
e�yyy

y!

◆✓
eµ

y

◆✓y

(y is ȳ here).

(b) Compute fµ,✓(y) for ✓ = 1/3 and ✓ = 3, and numerically calculate the expectations and varian-

ces.

(c) Use Fact 1 to give an expression for C(µ, ✓, n).

(d) What are the expectations and variances now using C(µ, ✓, n) instead of C = 1?
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figure 3.7  Compare double poisson dens mu=10, theta=.5 (solid)
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Figure 3.8: Comparison of double Poisson density, µ = 10, ✓ = 0.5 (solid), with negative binomial density,
µ = 10, variance = 20 (points).

Count statistics that appear to be overdispersed Poissons are often modeled by negative binomial

distributions, Section 1.4. Figure 3.8 compares f10,.5(y) with the negative binomial density having

expectation 10 and variance 20, showing a striking similarity. Negative binomials form a one-

parameter family in ✓, but the auxiliary parameter k cannot be incorporated into a two-parameter

exponential family.

The fact that ȳ ⇠ fµ,✓,n has expectation and variance approximately µ and Vµ/(n✓) suggests

that the density fµ,✓,n(ȳ) is similar to gµ,n✓(ȳ). Choosing ✓ = 1/2, say, e↵ectively reduces the sample

size in the original family from n to n/2. This was exactly true in the normal case of Homework 3.23.
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Fact 5 For any interval I of the real line,

Z

I
fµ,✓,n(ȳ) mn(dȳ) =

Z

I
gµ,n✓(ȳ) mn✓(dȳ) +O

✓
1

n

◆
.

Here mn and mn✓ are the carrying measures in the original family, for sample sizes n and n✓.

For the binomial family p ⇠ Bi(n,⇡)/n — where we are thinking of ȳ = p as the average of n

Bernoulli variates yi ⇠ Bi(1,⇡) — mn(p) is counting measure on 0, 1/n, 2/n, . . . , 1, while mn✓(p) is

counting measure on 0, 1/n✓, 2/n✓, . . . , 1. This assumes n✓ is an integer, and shows the limitations of

Fact 5 in discrete families.

Homework 3.26. In the binomial case, numerically compare the cumulative distribution function

of fµ,✓,n(p), (µ, ✓, n) = (0.4, 0.5, 16), with that of gµ,n(p), (µ, n) = (0.4, 8).

Homework 3.27. What would be the comparisons suggested by Fact 5 for the Poisson distributions

in Figure 3.7?

The double family constant C(µ, ✓, n) can be calculated explicitly for the gamma family ȳ ⇠
µGn/n,

gµ,n(ȳ) =
ȳn�1e�(nȳ/µ)

(µ/n)n�(n)
(ȳ > 0).

Homework 3.28.

(a) Show that

fµ,✓,n(ȳ) =
gµ,n✓(ȳ)

C(µ, ✓, n)
,

where

C(µ, ✓, n) = ✓�1/2 �(n)

(n/e)n

,
�(n✓)

(n✓/e)n✓
.

(b) Using Stirling’s formula

�(z)
.
=

p
2⇡ zz�1/2 exp (�z + 1/12z) ,

compare C(µ, ✓, n) with the approximation of Fact 1.

Di↵erentiating the log likelihood function lµ,✓,n(ȳ) = log fµ,✓,n(ȳ),

lµ,✓,n(ȳ) = �n✓
D(ȳ, µ)

2
+

1

2
log ✓ + log gȳ,µ(ȳ),

and using @D(ȳ, µ)/@µ = 2(µ� ȳ)/Vµ, gives the next fact.

Fact 6 The score functions for fµ,✓,n(ȳ) are

@lµ,✓,n(ȳ)

@µ
=

ȳ � µ

Vµ/(n✓)
and

@lµ,✓,n(ȳ)

@✓
=

1

2✓
� nD(ȳ, µ)

2
.
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Double family GLMs Suppose we have a generalized regression setup, observations

ȳi
ind⇠ fµi,✓,ni for i = 1, 2, . . . , N, (3.21)

with the GLM model ⌘(�) = X� giving µ(�) = (· · ·µi =  ̇(⌘i(�)) · · · )0. The score functions for

the full data set y = (ȳ1, ȳ2, . . . , ȳN )0 are

@

@�
l�,✓(y) = ✓X 0 diag(n) (y � µ(�)) ,

diag(n) the diagonal matrix with entries ni, and

@

@✓
l�,✓(y) =

N

2✓
�

NX

i=1

niD (ȳi, µi(�))

2
.

Homework 3.29. Verify the score functions.

We see that the MLE �̂ does not depend on ✓, which only enters the � score function as a

constant multiple. The MLE for ✓̂ is

✓̂ = N

,
NX

i=1

niD
⇣
ȳi, µi

⇣
�̂
⌘⌘

.

Homework 3.30. How does this estimate relate to the overdispersion estimates �̂2 for the toxo-

plasmosis data of Section 3.7?

I ran a more ambitious GLM for the toxoplasmosis data, where ✓i as well as pi was modeled.

It used the double binomial model pi ⇠ f⇡i,✓i,ni , i = 1, 2, . . . , 34. Here pi and ⇡i, the observed and

true proportion positive in city i, play the roles of yi and µi in (3.20).

My model let ⇡i be a cubic polynomial function of rainfall, as in Section 3.7; ✓i was modeled as

a function of ni, the number of people sampled in city i. Let

ñi =
ni � n̄

sdn
,

n̄ and sdi the mean and standard deviation of the ni values. I took ✓i = 1.25 · (1 + e��i), where

�i = �0 + �1ñi + �2ñ2
i . This allowed the ✓i to range from 1.25 (mild underdispersion) all the way

down to zero. All together the model had seven parameters, four for the cubic rainfall regression

and three for the ✓ regression. The seven-parameter MLE was found using the R function nonlinear

maximizer nlm.

Homework 3.31. What was the function I minimized?
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The resulting cubic regression of ⇡i as a function

of ri (solid curve) was somewhat more extreme

than the original GLM in Table 3.8, the latter

shown as the dotted curve here.

 Efron: Double Exponential Families 717

 Formula (5.3) allows us to set a maximum value M for
 O,. A value slightly greater than 1, M = 1.25, was used in
 the examples of Sections 6 and 7 to avoid having Oj = 1
 be on the boundary of the allowable parameter space. In
 neither example did the choice of M much effect the fitted
 regression for the mean, (5.2); in the second example it
 had a mild effect on the dispersion regression (5.4). The
 choice of M relates to the problem of overfitting the dis-
 persion parameters, as discussed in Remark 12.

 6. THE TOXOPLASMOSIS DATA

 This section and the next present two regression analyses
 based on double exponential families. These examples, and
 the particular regression models chosen, are meant to be
 illustrative rather than definitive. All of the data are given
 for both examples, so the reader can try alternative for-
 mulations.

 The toxoplasmosis data of Table 1 were analyzed using
 binomial double exponential families. The response vari-

 ables yj, observed proportion of subjects testing positive
 for toxoplasmosis in city j, were assumed to have inde-
 pendent binomial double exponential distributions as in
 (5.1). That is, gHn(y) in (2.10) was the rescaled binomial
 density (2.3).

 In the original analysis of these data, Efron (1978a) fit

 an ordinary logistic regression predicting yj in terms of a
 cubic function of the annual rainfall xj for city j. Let X, be
 the standardized value of the rainfall, X, = (x, - )/

 {J=_l- /)2/33}1/2. Then the natural parameter ,= log
 Pi/(I - Uj) for city j was modeled as

 i7j = ao + a,Xj + 2X + a3XJ. (6.1)
 This same specification was used for the double logistic

 analysis. In the notation of Section 5, tj = (1, X, Xj,
 Xj3), p = 4, and (6.1) was the jth row of (5.2).

 The dispersion parameters Oi were modeled as in (5.3)
 and (5.4) with M = 1.25. Let N, be the standardized value
 of the sample size n, for city j, Nj = (nj - hn)/{E(nj -n
 33}1/2. Then s' = (1, Nj, N,2), H 3, and the jth row of
 (5.4) was

 Aj = /So + /h1N1 + /32NJ2, (6.2)

 a quadratic regression on sample size.

 The results of the analysis are shown in Figure 1. The
 regression of mean response ,u, on rainfall differs moder-
 ately from the ordinary fit, especially near x, = 2,100 mm.
 The regression of the dispersion parameter O3 on n, is in-
 teresting. Cities with nj near 30 were assigned 0, .80, so
 their effective sample size njo0 was not much less than the
 actual size n,. Cities with nj much smaller than 30 or, in
 particular, much larger than 30 were strongly down-
 weighted. The full results appear in Table 4.

 The absolute value of the deviance residual from an or-
 dinary logistic regression (or any general linear model) is
 defined as

 Rj {D(y1, /j)}1/2 = {2n(y, ,P)}1i2 (6.3)
 (see McCullagh and Nelder 1983, p. 30). If the regression
 model is correct, then the R,'s should have an approxi-
 mately half-normal distribution. Figure 2 compares the ab-
 solute deviance residuals for a as obtained from the double
 fit with those obtained from the ordinary logistic regres-
 sion. The residuals are shown individually in the last two
 columns of Table 4. [To compare the magnitude of the
 residuals from the two fits, R1 for the double fit is not
 defined here as {2n01(y1, i)}112 = 012D(y, f)112; this
 definition is used in Sec. 7.]

 In 24 of the 34 cities, Rj (double) Rj (ordinary), but
 in a couple of cities, particularly city 27, which has the

 largest sample size, Rj (double) is much bigger than R,
 (ordinary). The double fitting process essentially gave up
 trying to fit those cities, by dramatically downweighting
 their effective sample sizes, in order to reduce the majority
 of the residuals. Whether or not the double fit is better is
 certainly debatable, but it is clear that the double family
 method can robustify a standard analysis, deemphasizing
 influential points by means of a model for overdispersion.
 Double family regression is not automatically preferable
 to the ordinary method; it can be a useful supplement to
 reveal possible weaknesses and limitations of ordinary
 analyses.

 Remark 7. We must have R I; (ordinary) c Rj (dou-
 ble), because

 R2= 2njI(yj,f) = 2 log JJ " , (6.4)
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Perhaps more interesting was the fitted regression

for the dispersion parameter ✓̂i as a function of

number sampled ni. It peaked at about ✓̂i = 0.8

at ni = 30, declining to 0.2 for ni = 70. Rather

unintuitively, overdispersion increased in the lar-

gest samples.
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 certainly debatable, but it is clear that the double family
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 analyses.
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Not every problem can be reduced to exponential family form. This chapter concerns situations

that start out as exponential families but then su↵er from some complicating factor that makes them

less tractable. Exponential family ideas can still be useful in such problems. In terms of the three-

circles diagram in Figure 1 of the Introduction, page iii, we are venturing out of the exponential

families circle into the realm of General Theory, in hopes of reducing — if not removing — our

dependence on abstract asymptotic arguments.

4.1 Curved exponential families: Definitions and first results

We begin with a p-parameter exponential family G, as in Part 2,

G =
n
g⌘(y) = e

⌘
0
y� (⌘)

g0(y) for ⌘ 2 A, y 2 Y
o
.

In some situations though, we may know that ⌘ is restricted to lie in a q-parameter curved subspace

of A, say

⌘ = ⌘✓ for ✓ 2 ⇥ ⇢ Rq
,

q < p. The mapping ⌘ = ⌘✓ from ⇥ into A will be assumed to have continuous second derivatives.

We can express the q-parameter subfamily of densities as

F = {f✓(y) = g⌘✓(y) for ✓ 2 ⇥} ,

so

f✓(y) = e
⌘
0
✓y� (⌘✓)g0(y).

If the mapping ⇥ ! A is linear, say

⌘ = X✓,

then

f✓(y) = e
✓
0
X

0
y� (X✓)

f0(y)

is a q-parameter exponential family with natural parameter vector ✓, as in the generalized linear

models of Part 3. Here we will be interested in curved exponential familes, where ⌘✓ is a nonlinear

function of ✓.

Some convenient notation We will write µ✓ for µ(⌘✓), and likewise V✓ for V⌘✓ = Cov✓(y),  ✓

for  ⌘✓ , etc. Derivatives with respect to ✓ will be indicated by dot notation,

⌘̇✓
p⇥q

=

✓
@⌘i

@✓j

◆

⌘=⌘✓

, µ̇✓
p⇥q

=

✓
@µi

@✓j

◆

µ=µ✓

= V✓⌘̇✓,

and

⌘̈✓ =

✓
@
2
⌘i

@✓j@✓k

◆

⌘=⌘✓

,
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a p⇥ p⇥ q array. Family F has representations in both the ⌘ and µ (“A” and “B”) spaces,

FA = {⌘✓, ✓ 2 ⇥} and FB = {µ✓, ✓ 2 ⇥},

both FA and FB being q-dimensional manifolds in Rp, usually curved.

The log likelihood function The log likelihood function is

l✓(y) = log f✓(y) = ⌘
0
✓
y �  (⌘✓).

Taking derivatives with respect to ✓ gives the score function

l̇✓(y)
q⇥1

=

✓
@l✓

@✓j

◆
= ⌘̇

0
✓
(y � µ✓), (4.1)

where we have used

 ̇✓ = ⌘̇
0
✓
µ✓;

(4.1) gives the Fisher information matrix

i✓
p⇥p

= E✓

n
l̇✓(y)l̇✓(y)

0
o
= ⌘̇

0
✓
V✓⌘̇✓. (4.2)

Taking derivatives again yields a simple but important result:

Lemma 4 (Second Derivative Lemma). Minus the second derivative matrix of the log likelihood is

�l̈✓(y)
q⇥q

=

✓
� @

2
l✓

@✓j@✓k

◆
= i✓ � ⌘̈

0
✓
(y � µ✓). (4.3)

Here ⌘̈
0
✓
(y � µ✓) has (j, k)th element

pX

i=1

@
2
⌘i

@✓j@✓k
(y � µ✓)i.

Homework 4.1. (a) Verify the formulas for l̇✓,  ̇✓, i✓, and �l̈✓.

(b) Show that µ̇✓ = V✓⌘̇✓ and so

i✓ = ⌘̇
0
✓
i✓ = ⌘̇

0
✓
V✓⌘̇✓ = 0. (4.4)

(In the one-dimensional case q = 1, (4.4) shows that the curves ⌘✓ and µ✓ through p-space have

directional derivates within 90� of each other.)
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4.2 Two pictures of the MLE

4.2.1 Fisher’s picture

Figure 4.1: Fisher’s picture.

The maximum likelihood estimate ✓̂ satisfies l̇
✓̂
(y) = 0, which according to (4.1) is the local

orthogonality condition

⌘̇
0
✓̂
(y � µ

✓̂
) = 0. (4.5)

Here 0 represents a vector of q zeros. We obtain a pleasing geometric visualization of MLE estima-

tion from Figure 4.1. Notice that:

• The expectation vector µ
✓̂
corresponding to ✓̂ is obtained by projecting the data vector y onto

FB orthogonally to ⌘̇
✓̂
, the tangent space to FA at ⌘

✓̂
.

• If ⌘✓ is linear in ✓, say

⌘✓ = a+ b✓,

with a p⇥1 and b p⇥q (that is, if FA is a flat space), then ⌘̇✓ = b for all ✓, and the projection

direction is always orthogonal to b,

b
0(y � µ

✓̂
) = 0.

• Otherwise, the projection orthogonals ⌘̇
✓̂
change with ✓̂.

• The set of y vectors having MLE equaling some particular value ✓̂ is (p� q)-dimensional flat

space in Y, passing through µ
✓̂
orthogonally to ⌘̇

✓̂
, say

?
L
✓̂
=
n
y : ⌘̇0

✓̂
(y � µ

✓̂
) = 0

o
. (4.6)
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4.2.2 Hoe↵ding’s picture

Figure 4.2: Hoe↵ding’s picture.

Hoe↵ding’s formula, Section 2.7 (now indexing G by µ rather than ⌘), is

f✓(y) = gµ✓(y)

= gy(y)e
�D(y,µ✓)/2.

Therefore the MLE ✓̂ must minimize the deviance D(y, µ✓) between y and a point µ✓ on FB,

✓̂ : D(y, µ
✓̂
) = min

✓2⇥
D(y, µ✓) ⌘ Dmin(y).

Another way to say this: as d is increased from 0, the level curves D(y, µ) = d touch FB for the

first time when d = Dmin. Figure 4.2 is the visualization.

Homework 4.2. A normal theory linear model y ⇠ Np(µ, I) has

⌘✓ = µ✓ = X✓

for X a known p⇥ q matrix. What do the two pictures look like? What are their usual names?

Homework 4.3. Show that the level curves of constant deviance,

Cd = {µ : D(y, µ) = d} ,

become ellipsoidal as d # 0. What determines the shape of the ellipsoids?
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Figure 4.3: See text.

Fisher never drew “Fisher’s picture” but he did carry out an incisive analysis of the multinomial

case

p ⇠ MultL(n,⇡✓)/n

with q = 1, that is, with ✓ one-dimensional. (As in Section 2.9, L or L� 1 is the dimension p, p is

now y, and ⇡✓ is µ✓.)

Homework 4.4. Show that we can take ⌘̇✓j = ⇡̇✓j/⇡✓j .

Fisher argued that the MLE ✓̂ was superior to other possible smooth estimations ✓̃ = t(p), such

as minimum chi-squared. He made three points:

[1] Consistency In order for ✓̃ = t(p) to be a consistent estimator of ✓ as n ! 1, it must satisfy

t(⇡✓) = ✓ (“Fisher consistency”).

Homework 4.5. What was Fisher’s argument?

[2] E�ciency In order to achieve the Fisher information bound for estimating ✓, a Fisher con-

sistent estimator must have C(✓̂), the level surface {p : t(p) = ✓̂}, and must intersect FB at

⇡✓ orthogonally to ⌘̇✓.

Homework 4.6. Verify [2] above (not worrying about rigor).
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[3] Second-order e�ciency If FB represents a one-parameter exponential family (⌘✓ = a+b✓) then

the MLE ✓̂ is a su�cient statistic. Even if not, ✓̂ loses less information than any competitor

✓̃. In other words, the flat level surfaces of MLE estimation are superior to any curved one of

the type suggested in Figure 4.3. This was a controversial claim, but we will see it supported

later.

4.3 Repeated sampling and the influence function of the MLE

Suppose y1, y2, . . . , yn is an i.i.d. sample from some member of a curved family F = {f✓(y) = g⌘✓(y)}.
Then ȳ is a su�cient statistic in F , since it is so in the larger family G. The family of distributions

of ȳ, Fn, is the curved exponential family

Fn =
n
f✓,n(ȳ) = g⌘✓,n(ȳ) = e

n(⌘0✓ ȳ� ✓), ✓ 2 ⇥
o
.

Fn is essentially the same family as F : B and FB stay the same, while An = nA, FA,n = nFA,

and ⌘̇✓,n = n⌘̇✓, as in Section 2.4. Fisher’s and Hoe↵ding’s pictures stay exactly as shown, with ȳ

replacing y. The covariance matrix of ȳ, V✓,n, equals V✓/n. This means that typically ȳ is closer

than y to FB by a factor of 1/
p
n, this applying to both pictures. Asymptotic calculations in

curved exponential families are greatly simplified by the unchanging geometry.

The log likelihood l✓,n(ȳ) in FA is

l✓,n(ȳ) = n(⌘0
✓
ȳ �  ✓)

(with the case n = 1 denoted l✓(y) as before). The first and second derivatives with respect to ✓

are
l̇✓,n(ȳ) = n⌘̇

0
✓
(ȳ � µ✓)

and � l̈✓,n(ȳ) = n
⇥
i✓ � ⌘̈

0
✓
(ȳ � µ✓)

⇤
,

(4.7)

according to (4.1) and (4.3) in Section 4.1.

Looking at Fisher’s picture, we can think of the MLE ✓̂ as a function of ȳ,

✓̂ = t(ȳ),

t(·) being a mapping from Rp into Rq. A small change ȳ ! ȳ + dȳ produces a small change in the

MLE, ✓̂ ! ✓̂ + d✓̂, according to the influence function (or derivative matrix)

dt/dȳ

q⇥p

=

 
@✓̂i

@ȳj

!
⌘ d✓̂

dȳ
,

approximately

d✓̂
.
=

d✓̂

dȳ
dȳ.
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The MLE influence function takes a simple but useful form:

Lemma 5 (Influence Lemma). The influence function of the MLE is

d✓̂/dȳ

q⇥p

=
h
�l̈

✓̂
(ȳ)
i�1

q⇥q

⌘̇
0
✓̂

q⇥p

(4.8)

where

�l̈
✓̂
(ȳ) = i

✓̂
� ⌘̈

0
✓̂
(ȳ � µ

✓̂
).

(Note (4.8) uses �l̈
✓̂
(ȳ), not �l̈

✓̂,n
(ȳ); it can also be expressed as [�l̈

✓̂,n
(ȳ)]�1(n⌘̇0

✓̂
).)

Homework 4.7. Verify Lemma 5. Hint : (⌘̇
✓̂+d✓̂

)0(ȳ + dȳ � µ
✓̂+d✓̂

) = 0.

Figure 4.4: See text.

4.4 Variance calculations for the MLE

Corresponding to a given true value ✓ in F is
?
L✓ = {ȳ : ⌘̇0

✓
(ȳ � µ✓) = 0}, the set of observations ȳ

such that the MLE t(ȳ) = ✓. In particular, ȳ = µ✓ is on
?
L✓, i.e.,

t(µ✓) = ✓;
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so the MLE is Fisher consistent. Since ȳ converges almost surely to µ✓ as n ! 1, and t(ȳ) is a

nicely continuous function, Fisher consistency implies ordinary consistency: ✓̂ ! ✓ a.s.

The quantity

In(ȳ) = �l̈✓,n(ȳ) = n

h
i
✓̂
� ⌘̈

0
✓̂
(ȳ � µ

✓̂
)
i

(4.9)

is called the observed Fisher information for ✓, with the case n = 1 denoted I(y). For reasons that

will be discussed in Section 4.6, Fisher claimed that the covariance of the MLE is better assessed

by In(ȳ)�1 rather than (ni
✓̂
)�1. Notice that I(µ✓) = i✓, so that I(ȳ) is itself Fisher consistent as

an estimate of i✓,

�l̈✓(µ✓) = i✓.

The variance matrix of ✓̂ can be approximated using Fisher consistency and the MLE influence

function (4.8):

✓̂ = t(ȳ) = t(µ✓ + ȳ � µ✓)
.
= t(µ✓) +

dt

dȳ

����
µ✓

(ȳ � µ✓)

.
= ✓ +

h
�l̈✓(µ✓)

i�1
⌘̇
0
✓
(ȳ � µ✓)

.
= ✓ + i

�1
✓
⌘̇
0
✓
(ȳ � µ✓),

a Taylor series statement of how ✓̂ behaves as a function of ȳ when n ! 1. This yields the

covariance approximation

Cov✓
⇣
✓̂

⌘
.
= i

�1
✓
⌘̇
0
✓

V✓

n
⌘̇✓i

�1
✓

= i
�1
✓

/n,

the Cramér–Rao lower bound for estimating ✓ (Section 2.5), where we have used ⌘̇
0
✓
V✓⌘̇✓ = i✓.

Except in special cases, Cov✓(✓̂) will exceed i
�1
✓

; nevertheless, i�1
✓̂

is usually a reasonable estimate

of Cov(✓̂), as the derivation above suggests.

Variance if our model is wrong Suppose we were wrong in assuming that µ 2 FB, and that

actually µ lies somewhere else in B, as in Figure 4.5. Let

✓̃ = t(µ),

so µ
✓̃
is the closest point to µ on FB in terms of deviance distance (Hoe↵ding’s picture). This

means that µ, the true expectation of ȳ, lies on
?
L
✓̃
, passing through FB at µ

✓̃
, orthogonally to ⌘̇

✓̃
.

As n ! 1, ȳ goes to µ and

✓̂ �! t(µ) = ✓̃.

We can still use the MLE influence function

d✓̂

dȳ

�����
ȳ=µ

=
h
�l̈

✓̃
(µ)
i�1

⌘̇
0
✓̃
=
⇥
i
✓̃
� ⌘̈

✓̃
(µ� µ

✓̃
)
⇤�1

⌘̇
✓̃
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Figure 4.5: See text.

to approximate the covariance matrix Varµ{✓̂},

Varµ
n
✓̂

o
.
= Varµ

8
<

:✓̃ +
d✓̂

dȳ

�����
µ

(ȳ � µ)

9
=

; =
d✓̂

dȳ

�����

0

µ

Vµ

n

d✓̂

dȳ

�����
µ

or

Varµ
n
✓̂

o
.
=
h
�l̈

✓̃
(µ)
i�1

✓
⌘̇
0
✓̃

Vµ

n
⌘̇
✓̃

◆h
�l̈

✓̃
(µ)
i�1

.

In applied use, we would estimate the covariance of ✓̂ by substituting ȳ for µ and ✓̂ for ✓̃, giving

Var
n
✓̂

o
.
=
h
�l̈

✓̂
(ȳ)
i�1

✓
⌘̇
0
✓̂

Vȳ

n
⌘̇
✓̂

◆h
�l̈

✓̂
(ȳ)
i�1

, (4.10)

sometimes called “Huber’s sandwich estimator”.

The covariance matrix Vµ=ȳ is the only probabilistic element of the exponential family G entering

into (4.10). Everything else depends only on the geometry of F ’s location inside G.

Homework 4.8. Suppose q = 1, i.e., ✓ is real-valued, and that both FA and FB are specified.

How might you numerically evaluate (4.10)?
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We can retreat further from G by using the nonparametric covariance estimate

V =
1

n

nX

i=1

(yi � ȳ)(yi � ȳ)0

in place of Vȳ. This results in the nonparametric delta method estimate of covariance,

dVar
⇣
✓̂

⌘
=
h
�l̈

✓̂
(ȳ)
i�1

 
⌘̇
0
✓̂
V ⌘̇

✓̂

i

!h
�l̈

✓̂
(ȳ)
i�1

. (4.11)

Homework 4.9. A nonparametric bootstrap sample y
⇤
1, y

⇤
2, . . . , y

⇤
n consists of a random sample

of size n drawn with replacement from (y1, y2, . . . , yn), and gives a bootstrap replication ✓̂
⇤ =

t(
P

n

i=1 y
⇤
i
/n) of ✓̂. The bootstrap estimate of covariance for ✓̂ is Cov⇤{✓̂⇤}, Cov⇤ indicating the

covariance of ✓̂⇤ under bootstrap sampling, with (y1, y2, . . . , yn) held fixed. Give an argument

suggesting that Cov⇤{✓̂⇤} is approximately the same as (4.11). Hint : ȳ⇤ ⇠
⇤
(ȳ, V /n).

Note. In complicated models it is often easiest to evaluate �l̈
✓̂
(ȳ) and ⌘̇

✓̂
numerically, by computing

the likelihood and ⌘̇✓ at the 2p points ✓̂ ± ✏ei, where ei = (0, 0, . . . , 1, 0, . . . , 0), 1 in the ith place.

Homework 4.10. Explain how you would carry out the evaluation described above.

Table 4.1: The spatial test data.

1 2 3 4 5 6 7 8 9 10 11 12 13

A 48 36 20 29 42 42 20 42 22 41 45 14 6
B 42 33 16 39 38 36 15 33 NA NA NA NA 7

14 15 16 17 18 19 20 21 22 23 24 25 26

A 0 33 28 34 4 32 24 47 41 24 26 30 41
B 15 NA NA NA NA NA NA NA 41 28 14 NA NA

4.5 Missing data and the EM algorithm [Little and Rubin (1987), Statistical

Analysis with Missing Data Chap. 7]

Exponential family structure is lost if some of a data set is missing. In the spatial test data in

Table 4.1 and Figure 4.6, the original data set consisted of n = 26 pairs (Ai, Bi), each pair being

two di↵erent measurements of spatial ability on a neurologically impaired child. However the B

score was lost for 13 of the 26 children, as indicated by the Not Available abbreviation NA.

Suppose we assume, perhaps not very wisely, that the (Ai, Bi) were originally bivariate normal
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Figure 4.10. Spatial Test Data; Open circles
represent 13 children missing B msmnt
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Figure 4.6: Spatial test data; open circles represent 13 children missing B measurement.

pairs, obtained independently,

✓
Ai

Bi

◆
ind⇠ N2(�,�), i = 1, 2, . . . , 26. (4.12)

This is a five-parameter exponential family (Section 2.8). Somehow though, the B measurements

have been lost for 13 of the children.1 The data we get to see, 13 (A,B) pairs and 13 A values, is

not from an exponential family.

Homework 4.11. In addition to (4.12), assume that Ai

ind⇠ N (�1,�11) for the B open circle

points in Figure 4.6. Show that this situation represents a curved exponential family. (The normal

assumptions make this a special case; usually we wouldn’t obtain even a curved exponential family.)

In the absence of missing data — if all 26 (Ai, Bi) pairs were observable — it would be straight-

forward to find the MLE (�̂, �̂). With data missing, the näıve approach, simply using the 13

observable complete pairs, is both ine�cient and biased. What follows is a brief discussion of an

expansive theory that deals correctly with missing data situations. The theory is not confined to

exponential family situations, but takes on a neater form in such situations.

1It is crucial in what follows that missingness should be random, in the sense that the chance B is missing should
not depend on the value of A.
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The Fisher–Louis expressions

Let y be a data vector, of which we observe part

o, with part u unobserved, and let Y(o1) denote

the set of y vectors having a certain value o1 of o,

Y(o1) = {y = (o, u) : o = o1} .

Fisher derived a simple but evocative expression

for the score function based on observing only o:

Lemma 6 (Fisher).

l̇✓(o) = E✓

n
l̇✓(y) | o

o
. (4.13)

Fisher’s lemma applies to all smoothly defined q-parameter families, not just exponential fami-

lies. Its proof is particularly transparent when the sample space Y of y is discrete. The discrete

density of o is then

f✓(o) =
X

Y(o)

f✓(y).

Letting ḟ✓ indicate the gradient (@f✓/@✓j), a q-vector,

ḟ✓(o) =
X

Y(o)

ḟ✓(y) =
X

Y(o)

 
ḟ✓(y)

f✓(y)

!
f✓(y)

or
ḟ✓(o)

f✓(o)
=
X

Y(o)

ḟ✓(y)

f✓(y)

f✓(y)

f✓(o)
,

which is (4.13).

There is also a slightly less simple expression for the observed Fisher information, attributed in

its multiparameter version to Tom Louis:

Lemma 7 (Louis).

�l̈✓(o) = E✓

n
�l̈✓(y) | o

o
� Cov✓

n
l̇✓(y) | o

o
. (4.14)

Together the Fisher–Louis expressions say that the score function for o is that based on data

y averaged over Y(o), while the observed Fisher information I(o) is the corresponding average of

I(y) minus the covariance matrix of l̇✓(y) given Y(o). We lose Fisher information (and increase the

variability of the MLE) when data is partly missing.

Homework 4.12. What happens if o is su�cient for y?

Homework 4.13. Prove (4.14) (assuming discreteness if you wish).
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Suppose now that y = (y1, y2, . . . , yn) is an i.i.d. sample from a curved exponential family

f✓(yi) = g⌘✓(yi) = e
⌘
0
✓yi� (⌘✓)g0(yi),

but we only observe part oi of each yi, o = (o1, o2, . . . , on). Let yi(✓) and Vi(✓) indicate the

conditional expectation and covariance of yi given oi,

yi(✓) = E✓{yi | oi} and Vi(✓) = Cov✓{yi | oi}.

Since

l̇✓(yi) = ⌘̇
0
✓
(yi � ✓) and � l̈✓(yi) = i✓ � ⌘̈

0
✓
(yi � µ✓),

the Fisher–Louis expressions become

l̇✓(oi) = ⌘̇
0
✓
(yi(✓)� µ✓) ,

�l̈✓(oi) = i✓ � ⌘̈
0
✓
(yi(✓)� µ✓)� ⌘̇

0
✓
Vi(✓)⌘̇✓.

If we also assume that the missing data mechanism yi ! oi operates independently for i =

1, 2, . . . , n, then the oi are independent, l̇✓(o) =
P

n

1 l̇✓(oi) and l̈✓(o) =
P

n

1 l̈✓(oi), putting the

Fisher–Louis expressions for o into compact form:

l̇✓(o) = n
⇥
⌘̇
0
✓
(ȳ(✓)� µ✓)

⇤
 
ȳ(✓) =

nX

i=1

yi(✓)/n

!
,

�l̈✓(o) = n
⇥
i✓ � ⌘̈

0
✓
(ȳ(✓)� µ✓)� ⌘̇

0
✓
V (✓)⌘̇✓

⇤
 
V (✓) =

nX

i=1

Vi(✓)/n

!
.

(4.15)

Fisher’s picture with missing data The MLE equation is now

⌘̇
0
✓̂
(ȳ(✓)� µ✓) = 0.

Fisher’s picture is the same as in Figure 4.1 (with ȳ for y) except that ȳ itself is now ȳ(✓), a function

of the unknown parameter ✓. This induces extra variability in ✓̂, as suggested by the decrease of

n⌘̇
0
✓̂
V (✓̂)⌘̇

✓̂
in the observed Fisher information and depicted in Figure 4.7.

Homework 4.14. Suppose oi = yi for i = 1, 2, . . . , n1, and oi = NA for i = n1+1, n1+2, . . . , n.

What does Figure 4.7 look like?

The EM algorithm [Dempster, Laird and Rubin (1977), JRSS-B 1–38]

One way to solve for ✓̂ is to evaluate l̇✓ and l̈✓ as in (4.15) and then iterate toward the solution

using Newton–Raphson,

✓
(j+1) � ✓

(j) =
h
�l̈

✓(j)(o)
i�1 h

l̇
✓(j)(o)

i
.
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Figure 4.7: See text.

This requires the evaluation of ȳ(✓(j)) and V (✓(j)) at each step.

The EM algorithm lets you get by with just ȳ(✓(j)):

✓
(j) “E”�! ȳ

⇣
✓
(j)
⌘

“M”�! ✓
(j+1) : ⌘̇0

✓(j+1)

⇣
ȳ

⇣
✓
(j)
⌘
� µ

✓(j+1)

⌘
= 0.

In words: given ✓(j), we use it to Estimate ȳ, the su�cient statistic if there were no missing data;

and then we Maximize the full-data log likelihood ⌘0
✓
ȳ �  (⌘✓) to get ✓(j+1). See Figure 4.8.

The EM algorithm has some notable advantages:

• It is often easy to program.

• It is conservative; a theorem shows that l
✓(j+1)(o) � l

✓(j)(o) at every step.

• It is a good way to begin searching for the MLE even if you eventually switch over to Newton–

Raphson.

There is a significant disadvantage:

• Convergence is slow, especially near the solution ✓̂, with

���✓(j+1) � ✓̂

��� ⇡ c1

���✓(j) � ✓̂

���



104 PART 4. CURVED EXPONENTIAL FAMILIES

Figure 4.8: See text.

compared to the Newton–Raphson asymptotic convergence rate

���✓(j+1) � ✓̂

��� ⇡ c2

���✓(j) � ✓̂

���
2
,

c1 and c2 small constants.

Homework 4.15. In the spatial test data (4.12), we wish to estimate ✓ = (�1,�2,�11,�12,�22).

(a) Program the EM algorithm to find the MLE ✓̂. Hint : E✓{Bi | Ai} = �2 + (�12/�11)(Ai � �2).

(b) Program a Newton–Raphson search for ✓̂ and compare the two convergence rates.

4.6 Statistical curvature
2

We begin with a one-dimensional curved exponential family, q = 1, where FA and FB are curves

through Rp and with sample size n = 1, ȳ = y; this last being no restriction since the geometry in

Fisher’s and Hoe↵ding’s pictures stays the same for all n.

If F were an (uncurved) one-parameter subfamily of G then the MLE ✓̂ would be a su�cient

statistic for ✓. This is not the case for curved families, where di↵erent values of y on
?
L
✓̂
yield the

2Derivations and details for the material in this section are in these references:
1. Efron (1975), Defining the curvature of a statistical problem (with applications to second order e�ciency). Ann.

Statist. 3, 1189–1242.
2. Efron (1978). The geometry of exponential families. Ann. Statist. 6, 362–376.
3. Efron (2018). Curvature and inference for maximum likelihood estimates. To appear Ann. Statist.
4. Efron and Hinkley (1978). Assessing the accuracy of the MLE: Observed versus expected Fisher information.

Biometrika 65, 457–487.



4.6. STATISTICAL CURVATURE 105

same MLE ✓̂ = t(y) but di↵erent amounts of observed information,

I(y) = �l̈
✓̂
(y) = i

✓̂
� ⌘̈

0
✓̂
(y � µ

✓̂
).

This happens because ✓̂ is not su�cient in curved families.

Homework 4.16. Show the following:

(a) If ✓̂ were su�cient, �l̈
✓̂
(y) would be constant on

?
L
✓̂
.

(b) If ⌘̈✓ = c✓⌘̇✓ for all ✓ and for some scalar function c✓ then �l̈
✓̂
(y) ⌘ i

✓̂
.

(c) Under the same condition, FA is a flat subset of A (so F is an exponential family).

Figure 4.9: See text.

When q = 1, ⌘̈
✓̂
as well as ⌘̇

✓̂
is a p-dimensional vector, and we can draw a helpful schematic

diagram like that shown in Figure 4.9. Fisher argued for I(y)�1 rather than i
�1
✓̂

as an estimate

of Cov(✓̂). From Figure 4.9 we see I(y) = i
✓̂
� ⌘̈

0
✓̂
(y � µ

✓̂
) is less than i

✓̂
for y above µ

✓̂
(“above”

meaning in the direction best aligned with ⌘̈
✓̂
), presumably making ✓̂ more variable; and conversely

for y below µ
✓̂
. Curvature theory is intended to quantify this argument.

For a given value of ✓, denote the 2 ⇥ 2 covariance matrix of l̇✓(y) = ⌘̇
0
✓
(y � µ✓) and l̈✓(y) =

⌘̈
0
✓
(y � µ✓)� i✓ by  

⌫11✓ ⌫12✓

⌫21✓ ⌫22✓

!
=

 
⌘̇
0
✓
V✓⌘̇✓ ⌘̇

0
✓
V✓⌘̈✓

⌘̈
0
✓
V✓⌘̇✓ ⌘̈

0
✓
V✓⌘̈✓

!
(4.16)
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(⌫11✓ = i✓ = E✓{�l̈✓(y)}). The residual of l̈✓(y) after linear regression on l̇✓(y),

?
l ✓(y) = l̈✓(y)�

⌫12✓

⌫11✓
l̇✓(y)

has variance

Var✓

⇢
?
l (y)

�
= ⌫22✓ �

⌫
2
12✓

⌫11✓
.

Definition. The statistical curvature of F at ✓ is

�✓ =

✓
⌫22✓

⌫
2
11✓

�
⌫
2
21✓

⌫
3
11✓

◆1/2

=

sd✓

⇢
�

?
l ✓(y)

�

E✓

n
�l̈✓(y)

o . (4.17)

(In classical di↵erential geometry terms, �✓ is the curvature of FA in the metric V✓.)

Curvature can be computed for general one-parameter families F = {f✓(y), ✓ 2 ⇥}, not neces-
sarily of exponential family form. Having calculated

l̇✓(y) =
@

@✓
log f✓(y) and l̈✓(y) =

@
2

@✓2
log f✓(y),

we define the 2⇥ 2 matrix (4.16) as the covariance matrix of (l̇✓(y), l̈✓(y)) and then compute �✓ as

in (4.17).

Some important properties follow:

• The value of the curvature is invariant under smooth monotonic transformations of ✓ and y.

• �✓ = 0 for all ✓ 2 ⇥ if and only if F is a one-parameter exponential family.

• Large values of �✓ indicate a breakdown of exponential family properties; for instance, locally

most powerful tests of H0 : ✓ = ✓0 won’t be globally most powerful.

• In repeated sampling situations, �✓,n = �✓/
p
n (so increased sample sizes make Fn more

exponential family-like).

• In repeated sampling situations, with ✓ the true value,

�l̈
✓̂,n

(ȳ)

i
✓̂,n

=
�l̈

✓̂
(ȳ)

i
✓̂

�! N (1, �2
✓
/n).

This says that �✓,n = �✓/
p
n determines the variability of the observed Fisher information

In(ȳ) around the expected Fisher information i
✓̂,n

.

Efron and Hinkley (1978) show that there is reason to take 1/In(ȳ)1/2 rather than 1/i1/2
✓̂,n

as the

estimate of sd{✓̂}. If �2
✓,n

is large, say � 1/8, then the two estimates can di↵er substantially.
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Homework 4.17. Suppose �
✓̂,n

= 1/8. What is a rough 68% interval for the ratio of the two

estimates of sd{✓̂}?

Figure 4.10: See text.

Fisher’s circle model

Fisher provided a salient example of what we have been calling a curved exponential family, designed

to show why I(y)�1/2 is better than i
�1/2

✓̂
as an assessment of sd{✓̂}. The example has p = 2, and

y bivariate normal with identity covariance matrix y ⇠ N2(µ, I), where µ lies on a circle of known

radius ⇢:

FB =

⇢
µ✓ = ⇢

✓
cos ✓

sin ✓

◆
,�⇡ < ✓  ⇡

�
.

Homework 4.18. Show that

(a) i✓ = ⇢
2 for all ✓;

(b) �✓ = 1/⇢ for all ✓;

(c) µ
✓̂
is the point on FB nearest y;

(d) I(y) = �l̈
✓̂
(y) = Ri✓ if y lies on a circle of radius R⇢ (kyk = R⇢).

Finally, give a heuristic argument supporting Fisher’s preference for I(y) in place of i
✓̂
. Hint :

Consider the case ✓̂ = 0.
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R is an ancillary statistic: a random variable whose distribution does not depend on ✓, but

whose value determines the accuracy of ✓̂ as an estimate of ✓.

Homework 4.19. What is the distribution of R?

Bayesians criticize frequentist calculations for averaging over possible data sets that are di↵erent

from the one actually observed: sd(✓̂) = 1/i1/2
✓̂

is correct on average, but is misleading for R

very large or very small. Conditioning on ancillary statistics was Fisher’s method for reconciling

frequentist and Bayesian calculations (though he wouldn’t have said it that way). Like the MLE

itself, I(y) depends only on the observed likelihood function and not its frequentist framework,

moving it closer to the Bayesian perspective. From a practical point of view, I(y) can be numerically

calculated directly from the likelihood, obviating the need for theoretical derivation of i✓.

Figure 4.11: See text.

Approximate versions of ancillarity hold more generally. This is illustrated in Figure 4.11, drawn

for the situation p = 2 and q = 1. From I(y) = i
✓̂
� ⌘̈

0
✓̂
(y � µ

✓̂
) = �l̈

✓̂
(y), we see that there must

be a critical point c
✓̂
above µ

✓̂
on

?
L
✓̂
such that

I(c
✓̂
) = �l̈

✓̂
(c
✓̂
) = 0.

Homework 4.20. Show that i
✓̂
= ⌘̈

0
✓̂
(c
✓̂
� µ

✓̂
).

Let ⇢
✓̂
be the radius of curvature at ✓̂, ⇢

✓̂
= 1/�

✓̂
. Some results from Efron (1978) are:

• ⇢
✓̂
= [(c

✓̂
� µ

✓̂
)0V �1

✓̂
(c
✓̂
� µ

✓̂
)]1/2, that is, ⇢

✓̂
equals the Mahalanobis distance from c

✓̂
to µ

✓̂
.
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• Let R be the proportional distance of y from c
✓̂
to µ

✓̂
,

R =
kc
✓̂
� yk

kc
✓̂
� µ

✓̂
k

(in any metric since
?
L
✓̂
is one-dimensional). Then

R = �l̈
✓̂
(y)/i

✓̂
= I(y)/i

✓̂
,

the repeated sampling version �l̈
✓̂
(ȳ)/i

✓̂
being asymptotically N (1, �2

✓
/n). R is > 1 below

FB and < 1 above it.

• Beyond the critical point c
✓̂
, R is less than 0 and ✓̂ is a local minimum rather than maximum

of the likelihood.

• Let Cr be the curve in Y representing those y having R equal to some particular value r.

Then the conditional standard deviation of ✓̂ given that y is on Cr is approximately

sd
n
✓̂ | R = r

o
= 1
.p

ri✓,

leading to the data-based estimate

sd
n
✓̂ | R

o
.
=
q
Ri

✓̂

�1
=
p
I(y)

�1
. (4.18)

R is approximately ancillary for ✓ — i.e., its distribution (almost) doesn’t depend on ✓ —

strengthening the rationale for (4.18).3 Note that In(ȳ)/i✓̂,n = I(ȳ)/i
✓̂
so the curve Cr stays

the same under repeated sampling: the di↵erence being that ȳ tends closer to FB, making R

closer to 1.

Homework 4.21. (a) In Figure 4.11, identify the elements of Fisher’s circle model: c
✓̂
, ⌘̇

✓̂
, etc.

(b) Give a heuristic argument justifying (4.18) in this case.

Large values of the curvature move the critical points c✓ nearer to FB. This can destabilize the

MLE. In addition to increased variance, there is the possibility of false roots, the probability of

falling on the far side of the critical boundary being approximately

Pr✓{R < 0} .
= �(�1/�✓),

� the standard normal cdf.

3A better approximate ancillary is R̃ = (R � 1)/�✓̂, better in the sense of having its distribution depend less on

✓, but conditioning on R̃ lends again to
p

I(y)
�1

as the preferred estimate of sd{✓̂}. The underlying rationale for
(4.18) is geometrical, as exemplified in Fisher’s circle model.
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Curvature theory also has something to say about Fisher’s claim that the MLE is a superior

estimate of ✓. As in Section 4.2, suppose that ✓̃ = t(ȳ) is a locally unbiased and first-order e�cient

estimator of the true value ✓, so that asymptotically

lim
n!1

nVar✓,n
n
✓̃

o
= i✓.

The theorem in Section 10 of Efron (1975) says that

Var✓
n
✓̃

o
.
=

1

ni✓
+

1

n2i✓
{�2

✓
+ C1 + C2},

where

C1 is the same positive constant for all choices of the estimator ✓̃,

while

C2 � 0, equaling zero only for the MLE.

This result demonstrates the “second-order e�ciency of the MLE”: using an estimator other than

the MLE increases asymptotic variance.

Some examples of one-parameter curved families

Normal with known coe�cient of variation Suppose x ⇠ N (✓,�) as in Section 2.8, but with

� = ⌧✓
2, ⌧ known (so the coe�cient of variation of x is

p
�/|✓| =

p
⌧). This is a one-parameter

curved family in p = 2 dimensions, with y = (x, x2) and

⌘✓ =
1

⌧

✓
1

✓
,� 1

2✓2

◆0
.

Homework 4.22. (a) Augment Figure 2.6 to include FA and FB.

(b) What is �✓?

Autoregressive process x0, x1, . . . , xT are observations of an autoregressive process

y0 = u0, yt+1 = ✓yt + (1� ✓
2)1/2ut+1 (t = 1, 2, . . . , T ),

where ut
ind⇠ N (0, 1) for t = 0, 1, . . . , T , and ⇥ = (�1, 1).

Homework 4.23. Show that the preceding is a one-parameter curved family in p = 3 dimensions,

and give expressions for y and ⌘✓. (Efron 1975 shows that �20 = (8T � 6)/T 2.)

A genetics linkage model [Dempster, Laird and Rubin (1977), JRSS-B ] Four phenotypes occur

in proportions

⇡✓ =

✓
1

2
+
✓

4
,
1

4
� ✓

4
,
1

4
� ✓

4
,
✓

4

◆
, (4.19)
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Figure 4.12: See text.

where ✓ is an unknown parameter between 0 and 1. A sample of n = 197 animals gave observed

proportions

p = (125, 18, 20, 34)/197,

p ⇠ Mult4(n,⇡✓)/n as in Section 2.9. Model (4.19) is linear in the B space, as shown in Figure 4.12,

but curved in the B space, making it a one-parameter curved family: FB is the line

⇡✓ = a+ b✓

8
<

:
a =

�
1
2 ,

1
4 ,

1
4 , 0
�

b =
�
1
4 ,�

1
4 ,�

1
4 ,

1
4

�
,

with ⌘✓ the curve log ⇡✓.

Homework 4.24. (a) Write an iterative program to find the MLE ✓̂.

(b) Provide an estimated standard error of ✓̂.

(c) Show, numerically, that �
✓̂,n

= 0.0632.

Cauchy translation family A Cauchy observation y has density

g✓(y) =
1

⇡

1

1 + (y � ✓)2
(y and ✓ 2 Rp),

the translation parameter ✓ being the centerpoint of the symmetric density. Though not an expo-

nential family, we can di↵erentiate the log likelihood function l✓(y) = � log[1 + (y � ✓)2]� log ⇡ to

get l̇✓(y) and l̈✓(y), and then compute their covariance matrix (4.16) to get the curvature (4.17),

�✓ =
p
2.5 (the same for all ✓ because this is a translation family). A Cauchy sample of say n = 10

observations y1, y2, . . . , yn would have �✓,n =
p
0.25 = 0.50: a large curvature implying, correctly,

di�culties with multiple roots to the MLE equation l̇
✓̂
(y) = 0.
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For ✓ near 0 we can expand l✓(y) in a Taylor series,

l✓(y) = l0(y) + l̇0(y)✓ + l̈0(y)✓
2
/2 +

...
l 0(y)✓

3
/6 + . . . ,

and think of this as a one-parameter curved exponential family having su�cient vector (l̇0(y), l̈0(y),
...
l 0(y), . . . ) and

⌘✓ = (✓, ✓2/2, ✓3/6, . . . ).

The point here is that curved exponential families can be thought of as an approximating framework

for all smoothly defined parametric families, with the amount of curvature indicating favorable or

unfavorable properties of the MLE. Section 4.8 discusses an example of multiparameter curved

families (q > 1) and generalizations of Figure 4.11.

4.7 Regions of stability for the MLE
4

Figure 4.11 showed the MLE ✓̂ growing more variable as the observation vector y moved along
?
L
✓̂
toward the critical point c

✓̂
–becoming unstable beyond c

✓̂
, where ✓̂ is a minimum rather than

maximum of the likelihood l✓(y). Figure 4.11 applied to the case p = 2 and q = 1, but a theory of

stability applies to general (p, q) curved exponential families. Only a brief description of the theory

is developed here.

A transformation of coordinates simplifies the description. Let ⌘0 be any point in A, the

parameter space of the full p-parameter exponential family G (Section 4.1). At ⌘0, y has expectation

vector µ0 and covariance matrix V0. Also let M be a symmetric p ⇥ p square root matrix of V0,

M
2 = V0. (If V0 has eigenvalue-eigenvector representation V0 = �D�0, D the diagonal matrix of

eigenvalues, we can set M = �D1/2�0.)

Transform ⌘ and y to

⌘̃ = M⌘ and ỹ = M
�1(y � µ0).

Then ỹ has expectation 0 and covariance matrix

M
�1

V0M
�1 = Ip,

the p⇥ p identity matrix at ⌘ = ⌘0. The family G transforms into an equivalent exponential family,

eG =
n
g̃⌘̃(ỹ) = e

⌘̃
0
ỹ� ̃(⌘̃)

g̃0(ỹ), ⌘̃ 2 Ã, ỹ 2 eY
o
, (4.20)

with ỹ ⇠ (0, Ip) at ⌘̃ = M⌘0.

Homework 4.25. Verify (4.20).

In what follows, we will assume that (⌘, y) have already been transformed, with ⌘0 chosen to be

4From Efron (2018), “Curvature and inference for maximum likelihood estimates”, to appear Ann. Statist.
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the MLE point ⌘
✓̂
, so that

µ
✓̂
= 0 and V

✓̂
= Ip (4.21)

in the curved family F . All the calculations will be conditional on ✓ = ✓̂, making (4.21) legitimate

for the purpose of easy calculation.

Returning to one-parameter curved families as in Section 4.6, let ⌫̂11 = ⌫11✓̂, ⌫̂12 = ⌫12✓̂, and

⌫̂22 = ⌫22✓̂ in (4.16), and define
?
⌘
✓̂
= ⌘̈

✓̂
� ⌫̂12

⌫̂11
⌘̇
✓̂
,

the component of ⌘̈
✓̂
orthogonal to ⌘̇

✓̂
.

Homework 4.26. Show that, in terms of the definitions in Section 4.6,

(a) k?⌘
✓̂
k = i

✓̂
�
✓̂
;

(b) �l̈
✓̂
(y) = i

✓̂
� ?
⌘

0
✓̂(y � µ

✓̂
).

Figure 4.13: See text.

Figure 4.13 illustrates maximum likelihood estimation for one-parameter curved families, gene-

ralizing Figure 4.11 to p � 2, so that
?
L
✓̂
= {y : MLE = ✓̂} has dimension p� 1. The critical point

c
✓̂
is the nearest point to µ

✓̂
such that the observed Fisher information I(y) = �l̈

✓̂
(y) equals 0.

Homework 4.27. Let v
✓̂
=

?
⌘
✓̂
/i
✓̂
�
✓̂
(so kv

✓̂
k = 1). Show that

(a) c
✓̂
= v

✓̂
/�

✓̂
;

(b) I(y) = i
✓̂
(1� b�

✓̂
), where y = µ

✓̂
+ bv

✓̂
+ r, with r in

?
L
✓̂
and v

0
✓̂
r = 0.
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The critical boundary

B
✓̂
= {y = µ

✓̂
+ v

✓̂
/�

✓̂
+ r}

separates
?
L
✓̂
into halves having I(y) > 0 or < 0. By definition, the stable region R

✓̂
is the good

half,

R
✓̂
= {y : y = µ

✓̂
+ bv

✓̂
+ r, b < 1/�

✓̂
}.

Large values of the curvature move B
✓̂
closer to µ

✓̂
, destabilizing the MLE, allowing I(y) to vary

more from i
✓̂
and even to go negative. Since Cov

✓̂
(y) = Ip in our transformed coordinates, we have

the approximation

Pr
✓̂
{I(y) < 0} .

= �(�1/�
✓̂
),

� the standard normal cdf.

Figure 4.14: See text.

What happens in multiparameter curved exponential families, that is, those with q > 1? A

schematic answer appears in Figure 4.14. The stable region R
✓̂
is now a convex subset of

?
L
✓̂
. For

a given unit vector u in p-dimensions, let

Fu =
n
f
✓̂+�u,� 2 ⇤

o

be a one-parameter subfamily of F , as in Section 2.6. Here ⇤ is an interval of R1 containing 0 as an

interior point. Fu determines Fisher information iu and curvature �u at � = 0, and also direction

vector
?
⌘u/iu�u.

Finally, let au be the angle between
?
⌘u and

?
L
✓̂
(au = 0 if q = 1), and wu the unit projection
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vector of
?
⌘u into

?
L
✓̂
. The q = 1 theory yields a half-space Ru of

?
L
✓̂
as the stable region for family

Fu. Its boundary Bu lies at distance du from µ
✓̂
and it can be shown that

du = 1
�
[cos(au) · �u] . (4.22)

Theorem 3. The observed Fisher information matrix I(y) = �l̈
✓̂
(y) is positive definite if and only

if y is in the stable region

R
✓̂
=
\

u

Ru, (4.23)

where the intersection is over all p-dimensional unit vectors.

All of this is verified in Efron (2018). An example having p = 37 and q = 8 (dimension
?
L
✓̂
= 37� 8 = 29) appears in Section 4.8.

Homework 4.28. In family Fu, show that at � = 0,

(a) The expected Fisher information iu is u0i
✓̂
u;

(b) the observed Fisher information Iu(y) = u
0
I(y)u;

(c) u
0
I(y)u = u

0
i
✓̂
u · (1� b/du), where y = µ

✓̂
+ bwu + r, with r in

?
L
✓̂
and orthogonal to wu.

Once again, large curvatures move the critical boundary B
✓̂
closer to µ

✓̂
, increasing conditioning

e↵ects and potentially destabilizing the MLE. Note that not all choices of u contribute to B
✓̂
. In

our examples, some choices give enormous values of du, so that Bu lies far beyond B
✓̂
.

Figure 4.15 shows a toy example from Efron (2018). The observed data y comprises seven

independent Poisson observations,

yi
ind⇠ Poi(µi), i = 1, 2, . . . , 7, (4.24)

y = (1, 1, 6, 11, 7, 14, 15). A hypothesized model supposes that

µi = ✓1 + ✓2xi for xi = �3,�2,�1, 0, 1, 2, 3. (4.25)

In this case, G is a (p = 7)-parameter exponential family, having F as a two-parameter curved

subfamily. (If instead we had taken logµi = ✓1 + ✓2xi, F would a two-parameter GLM.)

Homework 4.29. Write an explicit expression of F for this G.

Direct numerical calculation gave MLE ✓̂ = (✓̂1, ✓̂2) = (7.86, 2.38) in model (4.24)–(4.25), illus-

trated by the straight line fit ✓̂1+✓̂2xi in Figure 4.15. The observed and expected Fisher information

matrices were calculated to be

i
✓̂
=

 
2.63 �5.75

�5.75 14.98

!
and I(y) =

 
3.00 �6.97

�6.97 23.00

!
.
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Figure 4.16. Toy Example: y[i]~Poi(mu[i]) for i=1,2,...7;
Curved model: mu[i]=theta0+theta1*x. MLE line theta=(7.86,2.38)

x

y

Figure 4.15: Toy example. yi ⇠ Poi(µi) for i = 1, 2, . . . , 7; curved model µi = ✓0 + ✓1xi; MLE line
✓̂ = (7.86, 2.38).

Model (4.24)–(4.25) is a (p, q) = (7, 2) curved family, making
?
L
✓̂
in Figure 4.15 a five-dimensional

flat space. Direction-distance pairs (wu, du) were calculated for 101 choices of u, u(t) = (cos t, sin t),

t = k⇡/100 for k = 0, 1, . . . , 100. Somewhat surprisingly, wu was always the same,

w = (�0.390, 0.712, 0.392, 0.145,�0.049,�0.210,�0.340); (4.26)

du took on its mininum value dmin = 2.85 at u = (0, 1), with the other du’s ranging up to 1133. In

this case, the stable region Ru was a half-space of
?
L
✓̂
, with boundary B

✓̂
minimum distance 2.85

from µ
✓̂
(after transformation to standard coordinates (4.21)).

The observed information matrix I(bw), w as in (4.26), decreases toward singularity as b in-

creases; it becomes singular at b = 2.85, at which point its lower right corner equals 0. Further

increases of b reduce other quadratic forms u(t)0I(bw)u(t) to zero, as in Homework 4.28(c).

Homework 4.30. (a) Why was it the lower right corner?

(b) Given a list of du(t) versus t, which choice u(t)0I(bw)u(t) would give the second zero?

From y ⇠ (0, Ip) in our transformed coordinates, we get

b = (y � µ
✓̂
)0w ⇠ (0, 1)

for the projection of y along w. Using Homework 4.28(a), applied to u = (0, 1), the lower right
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corners of I(y) and i
✓̂
have

I11(y)/i✓̂11 ⇠ (1, 1/2.852) = (1, 0.352),

so we can expect conditioning e↵ects on the order of 35%.

Penalized maximum likelihood estimation The performance of maximum likelihood esti-

mates can often be improved by “regularization”, that is, by adding a penalty term to the log

likelihood in order to tamp down volatile behavior of ✓̂, this being especially true when the number

of parameters p is large.

We define the penalized log likelihood function m✓(y) to be

m✓(y) = l✓(y)� s✓,

where s✓ is a non-negative penalty function. Two familiar choices are s✓ = c
P

p

1 ✓
2
j
(“ridge regres-

sion”) and s✓ = c
P

p

1 |✓j | (“the lasso”), c a positive constant. The “g-modeling” example of the

next section uses c(
P

p

1 ✓
2
j
)1/2. Larger values of c pull the penalized maximum likelihood estimate

(pMLE) more strongly toward 0 (using definitions such that ✓ = 0 is a plausible choice in the

absence of much data).

By definition, the pMLE is the value of ✓ maximizing m✓(y). In a (p, q) curved exponential

family F , the equivalent of the score function condition l̇✓(y) = 0 is ṁ✓(y) = 0 or, as in (4.5),

⌘̇
✓̂
(y � µ

✓̂
)� ṡ

✓̂
= 0,

where ṡ✓ is the q-dimensional gradient vector (@s/@✓j). For a given value of ✓̂, the set of y vectors

satisfying this is the (p, q)-dimensional hyperplane
?
M

✓̂
,

?
M

✓̂
= {y : ⌘̇0

✓̂
(y � µ

✓̂
) = ṡ

✓̂
}. (4.27)

?
M

✓̂
lies parallel to

?
L
✓̂
(4.6), but o↵set from µ

✓̂
.

In Euclidean distance, the nearest point in
?
M

✓̂
to µ

✓̂
is

⌫
✓̂
= µ

✓̂
+ ⌘̇

✓̂
(⌘̇0
✓̂
⌘̇
✓̂
)�1

ṡ
✓̂
,

having squared distance

k⌫
✓̂
� µ

✓̂
k2 = ṡ

0
✓̂
(⌘̇0
✓̂
⌘̇
✓̂
)�1

ṡ
✓̂
,

these being standard projection calculations.

Homework 4.31. Draw the pMLE equivalent of Figure 4.1.
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By analogy with the observed information matrix I(y) = �l̈
✓̂
(y), we define

J(y) = �m̈
✓̂
(y) = I(y) + s̈

✓̂
,

s̈ the q ⇥ q matrix (@2s/@✓j@✓k). J(y) plays a central role in the accuracy and stability of the

pMLE, as discussed in Efron (2018). For instance the influence function (4.8) becomes

@✓̂

@y
= J(y)�1

⌘̇
0
✓̂
.

Versions of Figure 4.13 and Figure 4.14 apply to the pMLE as well, with J(y) and ⌫
✓̂
playing the

roles of I(y) and µ
✓̂
.

4.8 Empirical Bayes theory
5

A typical empirical Bayes estimation problem begins with a collection ✓1, ✓2, . . . , ✓N of real-valued,

unobserved parameters sampled from an unknown probability density,

✓i
ind⇠ g(✓) for i = 1, 2, . . . , N. (4.28)

Each ✓i independently produces an observation xi according to a known probability density function

p(x | ✓),
xi | ✓i ⇠ p(xi | ✓i), (4.29)

for instance xi ⇠ N (✓i, 1) or xi ⇠ Poi(✓i).

We wish to estimate the ✓i, perhaps a specific one of them or perhaps all. If the prior density

g(✓) were known, Bayes rule would yield ideal inferences based on the posterior density g(✓i | xi).
It came as a pleasant surprise to statisticians in the 1950s6 that, in situation (4.28)–(4.29), it is

often possible to do nearly as well without knowledge of g(·).
How this can be done is the subject of empirical Bayes theory. A key element is the marginal

density f(x),

f(x) =

Z

T
p(x | ✓)g(✓) d✓, (4.30)

T the sample space for the ✓’s. The observed data x = (x1, x2, . . . , xN ) is a random sample from

f(x),

xi
iid⇠ f(·), i = 1, 2, . . . , N,

which is all the statistician gets to see.

In what follows, we will bin the data as in Section 3.4, partitioning the x-axis into K bins Zk,

5The notation in this section is specialized to empirical Bayes calculations, and di↵ers from that in Section 1.6.
The main reference again is Efron (2018), “Curvature and inference for maximum likelihood estimates.”

6This work was pioneered by Herbert Robbins in key papers in the early 1950s; he coined the name “empirical
Bayes”.
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and letting yk = #{xi 2 Zk} be the count in bin k. The count vector y = (y1, y2, . . . , yK) is a

su�cient statistic for the discretized data. It has a multinomial distribution (Section 2.9)

y ⇠ MultK(N,f),

where f = (f1, f2, . . . , fK) is a discretized version of f(x),

fk =

Z

Zk

f(x) dx.

Here is a schematic diagram of the empirical Bayes model (4.28)–(4.30):

g �! f �! y ⇠ MultK(N,f). (4.31)

We observe y and wish to estimate various functions of g, perhaps

E{✓ | x} =

Z

T
✓p(x | ✓)g(✓) d✓

�
f(x).

E�cient estimation requires some form of parametric modeling. There are two basic choices,

modeling g or modeling f , each with advantages and disadvantages.

We begin with an example of f -modeling. A di↵usion tensor imaging (DTI) study compared six

dyslexic children with six normal controls at 15,443 brain locations, or voxels. Here we will analyze

only the N = 477 voxels located at the extreme back of the brain. Each voxel produced a statistic

zi comparing dyslexics with normals — zi playing the role of xi in (4.29) — and a reasonable model

for this is

zi ⇠ N (✓i, 1), i = 1, 2, . . . , N = 477,

with ✓i the true “e↵ect size” for voxel i. The investigators were hoping to pinpoint voxels having

✓i much di↵erent than 0.

The left panel of Figure 4.16 shows a histogram of the 477 z-values, and a smooth fitted curve

obtained from a Poisson GLM regression, as in Section 3.3. Letting ck be the centerpoint of bin

Zk and c = (c1, c2, . . . , cK),

f̂ = glm(y ⇠ poly(c,5),Poisson)$fit/N

estimates the marginal density f(z); the smooth curve is N · f̂ .

Some familiar empirical Bayes results can be computed directly from f̂ without any need to

estimate the prior density g(✓). Two of these appear in the right panel of Figure 4.16: the solid

black curve shows Tweedie’s estimate (Section 1.5)

E{✓ | z} = z +
d

dz
log f̂(z),
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DTI data, N=477;

poly(df=5) fit
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Figure 4.16: Left panel DTI data, N = 477; poly(df=5) fit. Right panel Tweedie estimate E{✓ | z} at
z = 3 : E{✓ | z} = 1.93, fdr = 0.20.

while the dashed red curve is the local false discovery rate (Section 1.6)

cfdr(z) = cPr{✓ = 0 | z} .
= �(z)

�
f̂(z),

�(z) = exp{�z
2
/2}/

p
2⇡.

Homework 4.32. What is an estimate of E{✓ | z = 3 and ✓ 6= 0}?

But what if we need to estimate something not in the small catalog of those having direct

expressions in terms of f̂? Reverting to the (✓i, xi) notation of (4.28)–(4.29), some examples might

be

Pr{|✓| > 2} or E{e�✓ | x}. (4.32)

This is where g-modeling becomes essential. We assume that the prior density g(✓) belongs

to a multiparameter exponential family, say g�(✓), � an unknown p-dimensional parameter vector.

Corresponding to each choice of � is a marginal density f�(x) (4.30). The schematic diagram (4.31)

becomes

� �! g� �! f� �! y ⇠ MultK(N,f�). (4.33)

Now we are dealing with a “hidden exponential family”, ✓ ⇠ g�(·).
The disadvantage of g-modeling is that x ⇠ f�(·) is not an exponential family,7 making it more

di�cult to find the MLE �̂. The advantage is that having found �̂ we have a direct estimate g
�̂
(·)

of the prior, and of all quantities such as (4.32).

7Except in the case where g� represents a normal regression model and x | ✓ is also normal.
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Here is a brief description of the MLE calculations, taken from Efron (2016), “Empirical Bayes

deconvolution estimates”, Biometrika 1–23. It simplifies the discussion to take T , the ✓ sample

space, to be discrete, say

T = {✓(1), ✓(2), . . . , ✓(m)},

so that the prior g(✓) can be represented as an m-vector g = (g1, g2, . . . , gm), gj = Pr{✓ = ✓(j)}.
As before, the x’s will also be discretized, with sample space

X = {x(1), x(2), . . . , x(K)}

and marginal density f = (f1, f2, . . . , fK). Defining the K ⇥m matrix P ,

P = (pkj), pkj = Pr{x = x(k) | ✓ = ✓(j)},

we have fk =
P

j
pkjgj or f = Pg.

The p-parameter exponential family for g� is written as

g� = e
Q���(�)

, (4.34)

Q an m⇥ p matrix having jth row q
0
j
; that is,

gj� = e
g
0
j���(�)

 
�(�) = log

mX

l=1

e
q
0
l�

!
.

Then y ⇠ MultK(N,f�) will be a (K, p) curved exponential family,8 with y in the simplex SK , as

in Figure 4.3.

Model (4.33)–(4.34) yields simple expressions for the score function and Fisher information.

Define wkj(�) = gj�{pkj/fk� � 1} and let Wk(�) be the m-vector

Wk(�) = (wk1(�), wk2(�), . . . , wkm(�))0 ,

with W+(�) =
P

K

1 Wk(�). It turns out that

l̇�(y) = Q0
W+(�)Q,

I(y) = �l̈
�̂
(y) = Q0

 
KX

k=1

Wk

⇣
�̂

⌘
ykWk

⇣
�̂

⌘0
� diag

n
W+

⇣
�̂

⌘o!
Q,

and i� = Q0

 
KX

i=1

Wk(�){Nfk�}Wk(�)
0

!
Q,

diag{W+(�̂)} denoting the diagonal matrix having entries W+j(�̂).

8Notice the change of notation to (K, p) from (p, q) used previously.
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Homework 4.33. Show that wkj(�) = g(✓ = ✓(j) | x = x(k))� g(✓ = ✓(j)).

The MLE �̂ can be found by direct numerical maximization of the log likelihood, employing say,

the R algorithm nlm. (Making use of the previous expression for l̇�(y) accelerates the convergence

rate.) Because y ⇠ MultK(N,f�) is not an exponential family there is the possibility of multiple

local maxima. Regularization, as in Section 4.7, greatly improves the performance of �̂. In what

follows, the penalty function for the pMLE will be

s� =

0

@
PX

j=1

�
2
j

1

A
1/2

.

Homework 4.34. Show that

ṡ� =
�

k�k and s̈� =
I � ��

0

k�k2

k�k .

G-model (4.34) was applied to the DTI data of Figure 4.16, N = 477, taking the ✓ sample space

to be T = (�2.4,�2.2, . . . , 3.6), m = 31. The structure matrix Q for the hidden glm had p = 8

degrees of freedom,

Q = [�0, poly(T , 7)] , (4.35)

�0 indicating a delta function at ✓ = 0 — vector (0, 0, . . . , 1, 0, . . . , 0) having 1 in the 13th place —

and poly(T , 7) the m⇥ 7 matrix provided by the R function poly.

Specification (4.35) represents a “spike and slab” prior g(✓). It allows a spike of “null” cases

at ✓ = 0, i.e., zero di↵erence betwen dyslexics and controls, and a smooth polynomial distribution

for the non-null cases. The MLE �̂ put weight 0.644 on the prior probability of 0, and estimated a

mildly long-tailed density ĝ(✓) to the right of zero. This is indicated by the solid red curve in panel

A of Figure 4.17, pictured against a histogram of the z-values.

An important question: is the pMLE estimation process stable for g-modeling? To this end, a

calculation of the stable region R
�̂
was carried out for the DTI data. The computations were done

after transformation to standardized coordinates (4.21),

µ
�̂
= 0 and V

�̂
= I8.

We wish to compute the boundary B
�̂
as in Figure 4.14, now in

?
M

�̂
(4.28), a 29-dimensional

hyperplane. (K = 37, the number of bins in the panel A histogram, minus p = 8 equals 29.)

With p = 8, as opposed to p = 2 in the toy example of Figure 4.15, choosing the vectors u

for the one-parameter bounding families Fu becomes challenging. For this analysis, 5000 u vectors

were chosen randomly and uniformly from the surface of the unit sphere S8 in R8. Each u yielded a

direction vector wu and a bounding distance du, as portrayed in Figure 4.15. Panel B of Figure 4.17
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Figure 4.17: Empirical Bayes g-modeling analysis of the DTI data of Figure 4.16. Panel A indicates fitted
slab and spike prior in red. Panels B, C, and D refer to stability calculations for the g-model fitting algorithm
as described in the text.
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is a truncated histogram of the 5000 du values,

20.2  du  678. (4.36)

The minimum of du over all vectors on S8 — found by direct numerical minimization — was 20.02,

suggesting that our 5000 random choices are enough to provide a good estimate of B
�̂
.

Even though the u vectors pointed in all directions on S8, the direction vectors wu clustered

closely around their average vector w̄. Panel C shows the histogram of angular distances in degrees

between the 5000 wu’s and w̄: 95% of them are less than 10 degrees.9

The stable region R
�̂
has its boundary more than 20 standard Mahalanobis units from µ

�̂
. Is

this su�ciently distant to rule out unstable behavior? As a check, 4000 parametric bootstrap Y
⇤

were generated,

Y
⇤
i ⇠ Mult37(477, f�̂), i = 1, 2, . . . , 4000,

and then standardized and projected into vectors y
⇤
i
in the 29-dimensional space

?
M

�̂
. Each y

⇤
i

yielded a worst-case value,

m
⇤
i = max

h

{y⇤0i wuh/duh, h = 1, 2, . . . , 5000};

m
⇤
i
> 1 would indicate that y⇤

i
fell outside the stable region R

�̂
.

Homework 4.35. Why is that last statement true?

In fact, none of the 4000 m
⇤
i
’s exceeded 0.16, so none of the y⇤

i
’s fell anywhere near the boundary

of R
�̂
. For the actual observation y, m equaled 0.002, locating it quite near to µ

�̂
. Observed and

expected Fisher information are almost the same, and probably would not vary much for other

possible observation vectors y⇤.

Panel D of Figure 4.17 shows the histogram of the 4000 m
⇤
i
values; 18% of them had m

⇤
i
< 0.

These represent y⇤
i
vectors having negative correlation with all 5000 wuh direction vectors, implying

that R
�̂
is open (going o↵ to infinity) in some direction, just as suggested in Figure 4.14.

Homework 4.36. Draw a schematic picture supporting this last conclusion.

4.9 The proportional hazards model D.R. Cox (1972), JRSS-B 187–220; (1975),

Biometrika 269–276

We return to the analysis of censored data (Section 3.6) but now in the more useful context of

regression models. The data for subject i is a triple set,10 (Ti, di, xi), i = 1, 2, . . . , N , where Ti is

a non-negative observed lifetime, xi is a p-vector of observed covariates, and di equals 1 or 0 as

subject i was or was not observed to die.

9A spherical cap of radius 10� on the surface of a 29-dimensional sphere covers only proportion 3.9⇥ 10�23 of the
“area” of the full sphere.

10Here we will use notation more standard in the survival analysis literature.



4.9. THE PROPORTIONAL HAZARDS MODEL 125

Table 4.2: Gehan survival data (partly artificial) from Chapter 12 of Venables and Ripley (1998).

T d age first treat

1 1 1 71 2 0
2 10 1 56 22 1
3 22 1 38 6 0
4 7 1 9 36 1
5 3 1 37 28 0
6 32 0 48 39 1
7 12 1 36 25 0
8 23 1 43 33 1
9 8 1 52 40 0

10 22 1 34 32 1
11 17 1 27 34 0
12 6 1 30 3 1
13 2 1 6 24 0
14 16 1 60 26 1
15 11 1 21 7 0
16 34 0 56 11 1
17 8 1 24 19 0
18 32 0 82 18 1
19 12 1 44 31 0
20 25 0 37 1 1
21 2 1 14 5 0
22 11 0 33 15 1
23 5 1 69 9 0
24 20 0 50 27 1
25 4 1 44 30 0
26 19 0 27 14 1
27 15 1 29 16 0
28 6 1 28 38 1
29 8 1 72 10 0
30 17 0 63 8 1
31 23 1 61 42 0
32 35 0 55 29 1
33 5 1 21 4 0
34 6 1 12 13 1
35 11 1 13 37 0
36 13 1 25 21 1
37 4 1 38 12 0
38 9 0 35 17 1
39 1 1 9 23 0
40 6 0 24 20 1
41 8 1 76 41 0
42 10 0 14 35 1
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If all the di equaled 1, that is, if there was no censored data, we could do a standard regression

analysis of T on x. The proportional hazards model allows us to proceed in the face of censoring.

There is a connection with generalized linear models, but that won’t be apparent for a while.

Table 4.2 shows the Gehan data, a partially artificial leukemia-survival data set. Survival time T

is in months; xi includes three covariates: age in years, first the month of first treatment (measured

from when the study began), and treat the treatment indicator, 1 for the new treatment and 0 for

the control. We wish to learn the e�cacy of the new treatment, as well as the possible e↵ects of

age and first.

The lifetime Ti of subject i is assumed to follow density fi(t), t � 0, with cdf Fi(t) =
R
t

0 fi(s) ds

and hazard rate

hi(t) = fi(t)
�
[1� Fi(t)]

so Pr{Ti  t + dt | Ti � t} .
= h(t)dt. The proportional hazards model assumes that the hazard

rates are related as follows:

hi(t) = h0(t)e
x
0
i� . (4.37)

Here � is an unknown p ⇥ 1 parameter vector, while h0(t) is a baseline hazard rate that does not

need to be specified.

Homework 4.37. Let Hi(t) be the cumulative hazard rate
R
t

0 hi(s) ds, and Si(t) = 1 � Fi(t), the

survival function.

(a) Show that Si(t) = e
�Hi(t).

(b) Denoting e
xi� = ↵i, show that Si(t) = S0(t)↵i (a relationship known as “Lehmann alternati-

ves”).

Let J be the total number of deaths observed, say

at times t(1) < t(2) < · · · < t(j) < · · · < t(J), and

assuming no ties for convenience. The risk set Rj

for event j is

Rj = {subjects under observation at time t(j)}.

In this little example there are N = 7 subjects,

J = 4 of whom were observed to die and 3 were

lost to follow-up (the open circles). R3 equals

{1, 3, 6, 7}, for instance. We also denote

ij = {index of subject who died at time t(j)},

i1 = 4, i2 = 5, i3 = 7, i4 = 1 in the example.

A simple but crucial result underlies the proportional hazards method.
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Lemma 8. Under the proportional hazards model, the probability that ij = i, i.e., that the death

occurred to member i of Rj, is

⇡i(� | Rj) =
e
x
0
i�

P
k2Rj

e
x
0
k�

. (4.38)

Homework 4.38. Verify Lemma 8.

Table 4.3: coxph output for the Gehan data.

�̂ se(�̂) z-value p-value

age �.021 .012 �1.75 .081
first �.006 .014 �.43 .660
treat �1.52 .420 �3.63 .000 ⇤⇤

Partial likelihood

Cox (1972, 1975) suggested using the partial likelihood

L(�) =
JY

j=1

e
x
0
ij
�

P
Rj

e
x
0
k�

=
JY

j=1

⇡ij(� | Rj) (4.39)

as if it were the true likelihood for the unknown parameter �. It is “partial” because it ignores all

the non-events, times when nothing happened or there were losses to follow-up. Nevertheless, it

can be shown to be quite e�cient under reasonable assumptions.

An excellent program, coxph, is available in the R package survival. To apply coxph to the

Gehan data of Table 4.2, first apply Surv, S = Surv(TT, d) (TT = T as T is not an allowable

variable name) then execute

result = coxph(S ⇠ age + first + treat).

This produced the results in Table 4.3. Treat was strongly significant. Its negative regression coef-

ficient �̂ = �1.52 shows that the new treatment, treat = 1, decreases the hazard rate and increases

survival as in Homework 4.37(a). Age is only borderline significant, and first is insignificant.

Homework 4.39. Run coxph(S ⇠ age + treat), coxph(S ⇠ treat), and coxph(S ⇠ age). What

are your conclusions?

The log partial likelihood l(�) = logL(�) is

l(�) =
JX

j=1

0

@x
0
ij� � log

X

Rj

e
x
0
i�

1

A .
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Taking derivatives with respect to � gives, in the notation of (4.38),

l̇(�)
p⇥1

=
JX

j=1

(xij � Ej(�)) where Ej(�) =
X

Rj

xi⇡i(� | Rj);

�l̈(�)
p⇥p

=
JX

j=1

Vj(�) where Vj(�) =
X

Rj

⇡i(� | Rj) (xi � Ej(�)) (xi � Ej(�))
0
.

(4.40)

Homework 4.40. (a) Verify (4.40). (b) Show that l(�) is a concave function of �.

The partial likelihood estimnate of � is defined by

�̂ : l̇
⇣
�̂

⌘
= 0,

0 a vector of p zeros, with approximate observed information matrix

Î = �l̈

⇣
�̂

⌘
.

These gave the estimates in Table 4.3, the square roots of the diagonal elements of Î being the

tabled standard errors. Considerable theoretical e↵ort has gone into verifying the asymptotic

normal approximation

�̂ ⇠̇ Np

⇣
�, Î

�1
⌘
.

GLM connection

Let nj = |Rj |, the number of subjects in risk set Rj . Expression (4.38) represents a multinomial

exponential family on nj categories, with ⌘l = x
0
l
� in (2.7). The proportional hazards model

amounts to a generalized linear model (Part 3) where the component observations are multinomials

of varying sizes nj .

Multicategory logistic regression A multicategory version of logistic regression (Section 3.2)

involves independent observations yi, i = 1, 2, . . . , N , each of which falls into one of L categories:

for instance, L = 3 with categories {Democrat, Republican, Independent}. A GLM model takes

Pr{yi in category l} = ⇡i(�, l) =
e
x
0
il�

P
L

k=1 e
x
0
ik�

, (4.41)

the xil being known covariate vectors.

Homework 4.41. (a) Describe the MLE analysis of model (4.41).

(b) Show how this reduces to the logistic regression model of Section 3.2.


