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Abstract

We rewrite the variational evidence lower bound objective (ELBO) of variational
autoencoders in a way that highlights the role of the encoded data distribution. This
perspective suggests that to improve our variational bounds we should improve our
priors and not just the encoder and decoder.

1 Introduction

We’re interested in variational expectation-maximization (EM) in models of the form

pθ(x) =

∫
pθ(x | z)p(z) dz, (1)

where p(z) is a prior on latent variables z = {zn}Nn=1 and pθ(x | z) is a likelihood on observations
x = {xn}Nn=1 parameterized by θ . In particular, we focus on variational autoencoders (VAEs, also
known as DLGMs) [1, 2], in which the prior and likelihood follow from the generative model

zn
iid∼ N (0, I), xn | zn ∼ N (µ(zn; θ), Σ(zn; θ)), n = 1, 2, . . . , N, (2)

where the mean µ(zn; θ) and the covariance Σ(zn; θ) depend on the latent variable zn through a
neural network with parameters θ. We write joint densities as products of independent densities,

p(z) =
∏
n

p(zn), pθ(x | z) =
∏
n

pθ(xn | zn). (3)

The model is fit by maximizing the log evidence lower-bound (ELBO) L,

log pθ(x) = log

∫
pθ(z,x) dz = log

∫
qφ(z |x)

pθ(z,x)

qφ(z |x)
dz ≥ Eqφ(z |x) log

pθ(z,x)

qφ(z |x)
, L(θ, φ),

(4)
where each term in the variational density qφ(z |x) =

∏
n qφ(zn |xn) is a Gaussian in which the

mean µ(xn;φ) and covariance Σ(xn;φ) depend on the observation xn through a neural network with
free parameters φ. In these models, the variational distribution qφ(zn |xn) acts as a stochastic “en-
coder” from an observation xn to a distribution on the latent variable zn, and the likelihood pθ(xn | zn)
acts as a stochastic “decoder” from the latent variable zn to a distribution on the observation xn.

There are several ways to rewrite the objective L(θ, φ), and each provides its own perspective.

Evidence minus posterior KL. One form of L(θ, φ) emphasizes that the lower bound becomes
tighter as the variational distribution better approximates the posterior:

L(θ, φ) = log pθ(x)−KL(qφ(z |x) ‖ pθ(z |x)). (5)

Thus we can improve the ELBO by improving the model log evidence log pθ(x), through the prior
p(z) or the likelihood pθ(x | z), or by improving the variational posterior approximation qφ(z |x).

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Average negative energy plus entropy. Another way to rewrite the ELBO is as
L(θ, φ) = Eqφ(z |x)[log pθ(z,x)] + H[qφ(z |x)], H[qφ(z |x)] , −Eqφ(z |x) log qφ(z |x), (6)

where the log joint log pθ(z,x) is interpreted as the negative energy in a Boltzmann distribution. Since
we choose (θ, φ) to maximize the ELBO, this version highlights that a good posterior approximation
qφ(z |x) must assign most of its probability mass to regions of low energy (i.e. high joint probability
density) while also maximizing the entropy of qφ(z |x). This perspective is useful in contrasting
variational EM with a maximum a-posteriori (MAP) approach; while MAP need only find a single
value of z that maximizes the joint density (even if it lies in a region with very low posterior mass),
the entropy term in the ELBO prevents qφ(z |x) from collapsing to an atom.

Average term-by-term reconstruction minus KL to prior. Finally, we can write

L(θ, φ) =
1

N

N∑
n=1

Eqφ(zn | xn) [log pθ(xn | zn)]−KL(qφ(zn |xn) ‖ p(zn)). (7)

For each observation index n, this version has a reconstruction term for the nth observation and a KL
divergence from each encoding distribution to the prior. We can interpret this KL-divergence term as
a regularizer that is minimized when qφ(zn |xn) = p(zn) for all z; this perspective has been used to
explain the tendency of variational EM to “prune out” many of the latent dimensions in z [e.g., 3].

Can we do more? This last decomposition is interesting, but it leaves an important question
unanswered: what is a “reasonable” value for this KL-divergence term to take on? Ideally it would be
small, but we do not want or expect it to approach 0, since that would imply that xn and zn were
almost independent, whereas virtually all of our modeling power comes from strongly coupling xn to
zn. So if the KL term is large, is that a sign of underfitting, overfitting, or neither?

In the following section, we show that this KL term can be further decomposed in terms of the
average encoding distribution, which we define as

qavg
φ (z) ,

1

N

N∑
n=1

qφ(z |xn). (8)

In fact, we show that the marginal KL divergence KL(qavg
φ (z) ‖ p(z)) is hidden in (and a major

contributor to) the ELBO. This marginal KL is important because, unlike the individual terms
qφ(zn |xn), the average encoding distribution qavg

φ (z) can be made arbitrarily close to the prior p(z)
without sacrificing model power. Indeed, if the data are drawn from the model, xn ∼ pθ(x), and the
posterior approximation is accurate, qφ(z |xn) ≈ pθ(z |xn), then for large N we would expect

p(z) =

∫
pθ(z |x)pθ(x) dx = Ex∼pθ(x)pθ(z |x) ≈ 1

N

∑
n

pθ(z|xn) ≈ 1

N

∑
n

qφ(z|xn) = qavg
φ (z).

2 Rewriting the ELBO

In this section, we drop parameter subscripts to simplify the notation. To write the ELBO in a way
that includes the average encoder distribution qavg(z), it is convenient to treat the index n as a random
variable. While the manipulation is entirely algebraic, this treatment makes the steps simpler and the
result more interpretable. In particular, define the joint densities

q(n, z) , q(n)q(z |n), q(z |n) , q(z |xn), q(n) ,
1

N
, (9)

p(n, z) , p(n)p(z |n), p(z |n) , p(z), p(n) ,
1

N
, (10)

where p(z) denotes a standard Gaussian prior density from z ∼ N (0, I). Note that the average
encoder distribution qavg(z) is now simply the marginal q(z) =

∑N
n=1 q(z, n).

Using this notation, we can write the second term in the VAE objective (4) as

1

N

N∑
n=1

KL(q(zn |xn) ‖ p(zn)) = KL(q(z) ‖ p(z)) +
(
logN − Eq(z)[H[q(n | z)]]

)
(11)

= KL(q(z) ‖ p(z)) + Iq(n,z)[n, z], (12)
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where Iq(n,z)[n, z] = Eq(n,z)[log q(n,z)
q(n)q(z) ] denotes the mutual information of n and z in q(n, z). To

check this expression, write

1

N

N∑
n=1

KL(q(zn |xn) ‖ p(zn)) =
∑
n

q(n, z) log
q(n, z)

p(n, z)
(13)

= KL(q(z) ‖ p(z)) + Eq(z)[KL(q(n | z) ‖ p(n))] (14)

= KL(q(z) ‖ p(z)) +
(
logN − Eq(z)[H[q(n | z)]]

)
, (15)

where the first equality can be checked by expanding p(n, z) and q(n, z) and canceling the p(n) and
q(n) factors, the second equality follows from the chain rule and splitting the log, and the last line
follows from using p(n) = 1

N . To check the mutual information expression, write

Iq(n,z)[n, z] = Eq(z)
[
Eq(n | z)

[
log

q(n | z)
q(n)

]]
= logN − Eq(z) [H [q(n | z)]] . (16)

Thus substituting the KL expression (12) into the ELBO (4), we can write the ELBO in three terms,

L(θ, φ) =

[
1

N

N∑
n=1

Eq(zn | xn)[log p(xn | zn)]

]
︸ ︷︷ ︸

1 average reconstruction

−
(
logN − Eq(z)[H[q(n | z)]]

)︸ ︷︷ ︸
2 index-code mutual info.

− KL(q(z) ‖ p(z))︸ ︷︷ ︸
3 marginal KL to prior

.

(17)

3 Qualitative perspectives

We can make several observations about the ELBO expression given in (17). First, the two terms 1
and 2 are in tension with each other because to get a good average reconstruction score for 1 , we
typically need each encoding zn to be specific to its corresponding observation xn and hence q(n | z)
should have low entropy. Term 2 acts as a regularizer, in that it encourages the encodings q(z |xn)
to overlap for distinct observations n, but this effect is likely to be weak relative to the reconstruction
term 1 . Interestingly, 2 is bounded above and below, because

0 ≤ logN − Eq(z)H[q(n | z)] ≤ logN. (18)

Empirically, we have found that reconstructions are very precise and, correspondingly, q(z |n) is
very concentrated relative to q(z), resulting in 2 is close to its maximum value of logN .

Second, while q(z) appears in all terms, p(z) only appears in 3 . Thus when considering choosing
priors p(z) to optimize the ELBO, only this term is affected. Observe that we could set 3 to zero
without sacrificing model power by simply defining the prior to be q(z). This choice would not be
amenable to scalable computation because it is difficult to evaluate 2 in isolation: to normalize
q(n | z) at each evaluation requires accessing allN observations (and the normalization also precludes
us from making unbiased Monte Carlo estimates). Setting 3 to zero may also be undesirable due
to the potential for overfitting or the inability to use the prior to sculpt the latent representation [4].
Nevertheless, because 3 can in principle be set to zero, whenever it is large it indicates a very strong
and potentially unwanted regularization effect from the prior.

4 Basic empirical results

To get a sense for the new terms in (17), we fit a basic variational autoencoder to a binarized MNIST
dataset. The encoder and decoder each had two hidden layers with 500 units each and used softplus
nonlinearities, and we fit them using the Adam optimizer [5]. For more details, see the code.

After optimization, we estimated the marginal KL term 3 via Monte Carlo:

KL(q(z) ‖ p(z)) ≈ 1

S

S∑
s=1

log
q(ẑs)

p(ẑs)
, ẑs | n̂s

iid∼ q(z |xn̂s), n̂s
iid∼ Unif({1, 2, . . . , N}), (19)
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ELBO Avg. KL Mutual info. 2 Marg. KL 3

2D latents -129.63 7.41 7.20 0.21

10D latents -88.95 19.17 10.82 8.35

20D latents -87.45 20.2 10.67 9.53

Table 1: Estimated values for ELBO terms on binarized MNIST. Note that the values in the average KL
column, which are computed as 1

N

∑
n KL(q(zn |xn) ‖ p(zn)), equal the sum of the corresponding

mutual information and marginal KL terms.

for sample indices s = 1, 2, . . . , S, which requires total time proportional to NS to compute. We
also computed the average KL 1

N

∑N
n=1 KL(q(zn) ‖ p(zn)) analytically in the usual way and hence

estimated the mutual information term 2 by subtraction. As shown in Table 1, while the marginal KL
term 3 could in principle be set to be very small, it still contributes to and significantly reduces the
ELBO value for nontrivial dimension sizes. We also see that for nontrivial dimension sizes the mutual
information term 2 is near its maximum value of logN ≈ log(60000) < 11.0021, indicating that
the individual encoding distributions q(z |xn) do not have significant overlap.

These results confirm that our current encoder and decoder models (and optimizers) find it difficult
to match q(z) and p(z). This issue has also been observed by Makhzani et al. [6], who address it
by replacing the KL(q(zn) ‖ p(zn)) term in the ELBO with an adversarial loss. But our theoretical
analysis suggests that we need not abandon the principle of maximum (marginal) likelihood; if
DLGMs find it difficult to produce unimodal Gaussian marginal posteriors, then perhaps we should
investigate multimodal priors that can meet q(z) halfway.

5 Conclusion

This new decomposition of the ELBO provides some new perspectives on the role of the prior and
the encoded data distribution. In particular, we split the average KL term of (7) into an index-code
mutual information term and a marginal KL term from the encoded data distribution to the prior,
as in (17). Evaluating these terms separately, we found that for nontrivial latent dimension sizes
the marginal KL term, while it could in principle could be made very small, has large detrimental
impact on the ELBO. In addition, we found that the mutual information term seems to be maximized,
which is consistent with intuition and suggests that to improve the ELBO value we should focus on
improving the marginal KL term. This new ELBO decomposition also provides a computational
diagnostic to evaluate when underfitting may be caused by a rigid prior that the encoder and decoder
are unable to match. In future work it may prove fruitful to investigate alternative, multimodal priors
that can “meet in the middle” with the encoder and decoder networks.
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