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Abstract. This article concerns the Bayes and frequentist aspects of empi-
rical Bayes inference. Some of the ideas explored go back to Robbins in the
1950s, while others are current. Several examples are discussed, real and
artificial, illustrating the two faces of empirical Bayes methodology: “oracle
Bayes" shows empirical Bayes in its most frequentist mode, while “finite
Bayes inference” is a fundamentally Bayesian application. In either case,
modern theory and computation allow us to present a sharp finite-sample
picture of what is at stake in an empirical Bayes analysis.
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1. INTRODUCTION

Empirical Bayes is the newest addition to the statistician’s arsenal of inferential
methodologies. By now, though, new isn’t very new. Robbins’ 1951 introduction of
compound decision procedures marks a starting point, with the name “empirical
Bayes” attached in his 1956 paper. The resulting era has provided us with more
than 65 years of experience and exploration. Zhang (2003) gives an excellent brief
review of Robbins’ work and subsequent developments.

Considering the enormous gains potentially available from empirical Bayes
methods, the effects on statistical practice have been somewhat underwhelming.
A paucity of appropriate data sets has been part of the bottleneck. To be effective,
empirical Bayes techniques require large numbers of parallel estimation or testing
problems. Modern scientific technology excels in this direction, but before the
introduction of microarrays in the 1990s, large-scale parallel inference problems
were thin on the ground. The big data era should be a favorable one for empirical
Bayes applications.

That being said, more data by itself might not fully open the floodgates. Empi-
rical Bayes has suffered from a philosophical identity problem. Not firmly attached
to either frequentism or Bayesianism, expositions of empirical Bayes typically ho-
ver uncertainly around the middle. In practice, empirical Bayes analysis employs
both frequentist and Bayesian inferential methods. The main purpose of this
paper is to clarify its dual nature. The basic ideas go back to the 1950s, but
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2 B. EFRON

substantial improvements in theory — and enormous improvements in computa-
tion — enable a sharper picture to emerge. A second purpose is to review some
of the current technology and show it in action, with an emphasis on accurate
finite-sample performance.

We will work in the following simplified framework: unobserved parameters
0; have each independently generated an observation z; according to a known
probability kernel p(x | 6),

(1) 2 M p(xi | 6;),  i=1,2,...,N.

Normal and Poisson distributions will be featured, x; ~ N (6;,1) and x; ~ Poi(6;),
these being the most familiar and also the most amenable choices. It is desired to
estimate the 6’s. Robbins’ key idea, and the launching point for empirical Bayes
theory, is that the entire data set © = (x1,x9,...,xy) can profitably be employed
in the estimation of each 0;.

Section 2 introduces “oracle Bayes”, as in Jiang and Zhang (2009), an artificial
construction we will use here to emphasize the frequentist side of empirical Bayes
applications. Later examples, both genuine and simulated, develop the Bayesian
side of the story, a salient difference being whether the statistician is interested
in individual inferences as opposed to some omnibus measure of accuracy for the
entire vector @ = (61,02, ...,0x). “Finite Bayes”, Section 6, makes the individual
inference problem explicit.

Empirical Bayes procedures typically add the assumption that the parameters
0; in (1) have been independently drawn from some hidden prior density

(2) 0, ™ g(6), i=12,...,N.

This raises the fundamental question of estimating g(-) from the observed data set
x. Nonparametric estimates are available (Laird, 1978) but here we will emphasize
parametric modeling as in Efron (2016). (Section 6 includes some comments on
nonparametric methods.)

The simplest case, where g(f) is assumed to be normal, relates to the James—
Stein estimator. Morris (1983) provided a normality-based theory of empirical
Bayes confidence intervals. A more general but less exact approach to posterior
intervals is discussed in Section 6, where the Type 3 bootstrap methodology of
Laird and Louis (1987) plays a role. Posterior interval inference emphasizes the
Bayesian side of empirical Bayes theory.

The marginal density f(z) obtained from (1)—(2),

(3) f@) = /T g(O)p(z | 9) do,

T the space of possible 6 values, is central to empirical Bayes procedures, since
(x1,22,...,2N) is no more than a random sample from f(-). In certain cases,
and in fact in most of the familiar empirical Bayes applications, only f(-) need
be estimated, thus avoiding the difficult deconvolution problems of estimating
g(+). This is true for the oracle Bayes setup of Section 2. Both f-modeling and g-
modeling — in the terminology of Efron (2014), that is, modeling f(x) or g(6) —
are discussed in what follows, the latter inherently more attuned to the Bayesian
side of empirical Bayes.
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BAYES, ORACLE BAYES & EMPIRICAL BAYES 3

Most of the methodology reported in this paper is not new. Technical matters
will mostly be deferred to the remarks of Section 8, clearing the way for a broad
discussion of the Bayesian and frequentist aspects of empirical Bayes applications.

2. ORACLE BAYES

Suppose we observe a normal version of model (1),

(4) 2 M N(6;,1), i=1,2,...,N,
and use the data set © = (xl,xg, - ,ZL'N) to form estimates él,ég,...,é]\[, our

goal being to minimize the expected average mean square error (ASE)
N
. 2
(5) ASE:EQ{Z@Z»—GZ») /N}
i=1

The expectation here is over model (4), with the 6;’s fixed.
Using the maximum likelihood estimates (MLEs) 6; = x; yields

(6) ASEvig = 1.

However, a friendly Oracle has told us the order statistic of the true 6; values,
that is, their ordered values from smallest to largest

(7) 0,04 = {9<1>,9(2>, . .,9<N>},

but not which observation x goes with which 6, allowing us to do better. The
oracle Bayes setup (4)—(5) is pursued in Jiang and Zhang (2009), where sharp
asymptotic properties of empirical Bayes procedures are developed.

Let §(6) denote the discrete density putting probability 1/N on each point #(*),

(8) 3(0) = ié(@—e(“) /N,

d(-) the delta function at zero. Thanks to the Oracle we can compute eg(z), the
Bayes posterior expectation of € given x, for prior g(-),

9) eg(z) = Z 0 ¢ (ac - 9(’)) Z ) (w - 9(1)> ,
i=1 i=1

with ¢(x) the standard normal density exp{—x2/2}/v/27. The estimates

(10) 0 = eg(xi)

will beat ASEnpg = 1. A standard argument shows that the resulting ASE is the
squared-error Bayes risk for estimating a single 6 from x ~ A(6, 1), given prior

g(0).

In the example of Figure 1, 8,4 comprises N = 1500 values located in “two
towers”, 500 between —1.7 and —0.7, and 1000 between 0.7 and 2.7, as shown
by the solid red histogram.. The black dashed histogram indicates 1500 x; values
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Fic 1. Two towers example: N = 1500 parameters 0; are known to follow the Oracle’s solid

red histogram, 500 in the left tower, 1000 in the right. We observe x; o N(0:,1) for i =
1,2,...,1500 (dashed black histogram) and wish to estimate (01,02, .. .,01500). Using the Oracle’s
information reduces ASE by more than 40%; empirical Bayes methods allow us to do almost as
well without the Oracle’s help.

from a particular realization of (4). (The position of the towers was chosen to
make the marginal density of the z;’s just barely bimodal.)

Formula (28) of Section 3, applied to the oracle Bayes estimation rule (9), gave
expected average squared error

(11) ASE; = 0.563

for the two towers prior g. Compared with ASEy g = 1.0, the Oracle’s informa-
tion has saved us more than 40% of the average estimation error.

Of course, real-life oracles are in short supply. This is where empirical Bayes
makes its entrance: the full data set * = (z1,22,...,2n) is used to form an
estimate g(-) of the empirical density g(-), from which we calculate its Bayes
posterior expectation,

(12) eg(x) = [r9§/(9)¢>(96 —0) d9//79(9)¢($ —0) do,

yielding estimates 0; = eg(x;).

These cannot be as accurate as the oracle Bayes estimates eg(x;), but the
empirical Bayes regret may be surprisingly small. The g-modeling methods of
Table 1 in Section 4 give

(13) EBregret = ASE; — ASE; = 0.008,

so ASE; = 0.571 is still more than 40% less than ASEyg. Effectively, we have
fashioned our own oracle from the data. The EBregret formula in Section 4 sug-
gests regret declining as 1/N with sample size. Reducing N from 1500 to 150 in-
creases EBregret to about 0.08, giving ASE5 = 0.64, still much less than ASEyE.
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All of these inferences are frequentist in nature. First of all, ASE is a frequentist
criterion. Moreover, the Bayesian assumption 6; nd g(0) (2) plays only a motiva-
tional role behind g or g, and is irrelevant to their application. In Figure 1, for
example, the 6’s of the left tower might relate to traffic accidents and those of the
right to flood damage claims, or there might be dozens of other 6 types among
the 1500. Even so, the 40% reduction in ASE could still be meaningful, say to an
insurance actuary planning next year’s rates.

The Bayesian side of empirical Bayes emerges when we take an estimated prior
§(0) seriously for the inference of an individual parameter 6;, perhaps through
the posterior density

(14) 9(0; | z5) = §(0:)p(ai | 0:) ) f(2:),

f the marginal density (3) corresponding to §g. Now we wouldn’t want to mix
traffic accidents with flood claims.

This brings up the question of relevance: what cases can legitimately be com-
bined in an empirical Bayes analysis? An example of the tension between omnibus
accuracy — that 40% reduction — and individual relevance will be taken up in
Section 7 in the context of an fMRI study. Efron and Morris (1972) considered
relevance questions in terms of the James—Stein estimator, perhaps the best-
known empirical Bayes construction. See also Chapter 7 of Efron and Hastie
(2016). Section 6 here, on “finite Bayes”, directly examines the estimation of a
single 6; of interest within an empirical Bayes framework.

3. BAYES RISK AND REGRET

The oracle Bayes model looks more familiar if we let the number of cases NV
go to infinity in (1)—(2). Then g(#) (8) converges to g(#), and the inference for
any one 6; follows from the usual single-case Bayesian setup,

(15) 0~g@) and z|6~p(z|0).

In other words, standard Bayes ¢s oracle Bayes, where past experience has pro-
vided the oracle.

The next two paragraphs review Bayesian estimation of 6 for model (15). We
assume that = given 6 is unbiased with variance V' (0),

(16) x| 6~ (0,V(0)),
and denote the posterior expectation and variance of 6 given x by
(17) 0]z~ (eg(x), vg(x));

6= eq(z) is the Bayes estimate of 6 under squared error loss. Its overall Bayes
risk Ry is

Ry =E{(0-0)"} = [ [ (es@)—0)*nia |0)g00) at

(18)
= [ w@)s(@),
X
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6 B. EFRON

where f(x) is the marginal density (3) and X is the sample space of the observa-
tions z.

Now suppose that instead of e4(x), we must use some other estimate 0 =é(x).
This increases the overall risk versus prior ¢g(6) to

g RWO=F {e@) =0} = B{(e() = eg(@) + e5(x) = 0)* ]
= Ry + E{(é(2) — e4(2))°},

so our regret is

(20) R(g.6) =Ry = [ (e(w) = ey(@)” f(z) do.

The unbiased estimate é(x) = x has Bayes risk

(21) R(g,¢) = /T V(0)9(6) do =V,

the average variance. Formula (20) provides a convenient expression for R, that
we will use later.

LEMMA 3.1.

(22) Ry=Vy— [ (@ cy@)f(a) do.

The difference between x and e4(x) determines the amount of Bayesian savings
available.

Tweedie’s formulas (Efron, 2011) provide useful expressions for ey(x) and
vg(z). Suppose p(z | 0) in (15) is a one-parameter exponential family,

(23) px | 0) = " Opy(a),

with natural parameter 6, sufficient statistic x, normalizing function (@), and
base density po(x). Let I(x) be the log of the marginal density f(z) (3) and
lo(xz) = logpo(z). Tweedie’s formulas give convenient expressions for eq(x) and

Ug(,.’L‘) (17)7

eg(a) = E{0 | 2} = i(z) + lo(2),

(24) ?) + ol
vy(@) = Var{6 | } = () + lo(a),

the dots indicating first and second derivatives with respect to z. See Remark A
of Section 8.
The normal case (4) has densities p(z | ) equaling

(25) e—(m—9)2/2/ [om — 601—02/2¢(x)’
so po(z) in (23) is ¢(z) and lo(z) = —2%/2 —log v/27. Tweedie’s formulas become
(26) eg(x) =z +1i(z) and wvy(x)=1+I(x).

imsart-sts ver. 2014/10/16 file: B-0B-EB.tex date: October 31, 2017



BAYES, ORACLE BAYES & EMPIRICAL BAYES 7

(See Remark B of Section 8 for z; ~ N'(6;,02), 0% known.) From (18) we obtain
the overall Bayes risk R,
00 oo,

(27) Ry= [ (1+i@) fa) de=1- / i(2)2f () da,

the final expression obtained by integrating I(z) = f(x)/f(z) — (f(x)/f(z))2. Tt

can also be written as

(28) Ry=1- /Oo (x — eg(x))2 dx

— 00

using (26), this being the same as Lemma 3.1 (22) since V; = 1 in situation (4).

e(x)+-sqrt(v(x))

AN A A A A A A a
25, 5 10 16 50 84 90 95 975

T “ T T T T
-4 -2 0 2 4

x value
F1G 2. Posterior expectation eg(x) (9) for the oracle prior g(-) of Figure 1; vertical dashed bars

indicate + one posterior standard deviation vg(x)'/?. Dashed red line is main diagonal. Small
triangles show the indicated percentiles for the marginal density f5(z).

Figure 2 shows eg(x) (9), the posterior expectation E{f | x} for the oracle
prior (8). Numerical integration of formula (28) gives (11),

(29) ASE; = Rz = 0.563.
The dashed vertical green bars indicate Bayes posterior variability
(30) eg(x) £ vg(x)'/2.

To restate a previous point, Figure 2 is a purely frequentist construction: it
depends only on .4 (7) and not on any Bayesian assumptions regarding the 6;’s,
such as (2). Assumption (2) becomes crucial if we use the figure for statements
of posterior inference such as

(31) Pr{0; € eglw;) + 1.96v5(2i)/? | 2} = 0.95,
as discussed in Section 6.
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8 B. EFRON

4. F-MODELING AND LINDSEY’S METHOD

We would like to estimate the Bayes risk R, or ASE (5), from the observed
data @ = (z1,z2,...,2N), without the help of an oracle. Looking at Figure 1, a
simple procedure suggests itself:

1. Estimate the marginal density f(z) (3) by a smooth curve f(z) drawn
through the bar tops of the black dashed histogram.
2. Estimate the conditional expectation ej(z) = E{f | z} according to (26),

N

(32) é(x) =z + % log f(z).

3. Estimate Rg using Lemma 3.1 (22).

Step 1 is a definitional statement of f-modeling. Nonparametric or semiparame-
tric techniques are available, but efficiency is crucial here. A parametric approach
using Lindsey’s method, as in Section 5.2 of Efron (2010), is particularly easy to
implement. The sample space X is partitioned into K bins; for bing we compute
the count y; of observations it contains,

(33) Yk = #{x; in bing},

and also its centerpoint x ;). Figure 1 hs K = 109 bins, each of width 0.10, with
yr. proportional to the height of the black bars.

In the computations that follow, f = (f1, f2,..., fx) will represent a discrete
probability distribution for observation x,

(34) fr = Pr{x € bing},

with f = (f1, f2,..., fx) denoting the marginal density induced by Ooq (7)
and f = ( fi, fareens fK) the density corresponding to f (z); similarly, we write
é = (é1,69,...,¢éx) for the vector of estimates (32) evaluated at the bin centers
Lindsey’s method uses Poisson regression to estimate f(z). The counts yj are
taken to be independent Poisson variates with expectations proportional to f,

(35) e B Poi(N - f)  fork=1,2,... K;
log f is assumed to have a linear form
(36) log f = M5,

M a given N X p structure matrix and 8 an unknown p-dimensional parametric
vector; finally f is estimated by Poisson regression,

(37) f =gln(y ~M, poisson)$ fit/N

in R notation.
The three-step algorithm was carried out using the data from the black dashed
histogram of Figure 1, with

(38) M = ns(m(), df = 7),
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x() = (71, T(2),- - - ,T(k)) the vector of bin centers and “ns” indicating natural

splines, here invoked with 7 degrees of freedom. It gave estimated Bayes risk (22)

K
(39) R=1-" fulzg) — ér)? = 0.541.
k=1
Its actual ASE versus 6yq from the Oracle was, using (11) and (20),

K
(40) R(g,e) = Rg+ Y fu(ér —exr)* = 0.580.
k=1

So EBregret = 0.580 — 0.563 = 0.017.

0.002

0.001
1

log (count/1500)
E{theta|x}

0.000
1

-0.001
L

bin center x value

Fic 3. Estimating Bayes risk (ASE) from the sample of N = 1500 observations in Figure 1.
Left panel: Open circles log{yx /N}; black solid curve log{ fi.}, true oracle marginal density; red
dashed curve log{fk} from f-modeling. Right panel: Corresponding estimates of e(x) = E{0 |
z}; green dotted curves are from g-modeling.

The fitting procedure is illustrated in the left panel of Figure 3: open circles
plot the log counts versus bin centers (ignoring zeros),

(41) (2 log{ys/NY), k=12, K;

the black curve plots f;, the Oracle’s true marginal density (11); and the red
dashed curve plots fk, the estimated density from Lindsey’s method (37).

It looks like a close fit, but going from f(z) to é(z) (32) (using finite differences
of log fk) exacerbates small errors, especially near the extreme values of x. This
is seen in the right panel of Figure 3, where the true é(x) is compared with é(x).
The error in (40), 3 fr(éx — €x)?, is mitigated by the small values of fj near the
extremes, but is still substantial.

A second pair of estimates f(z) and é(z) are shown as the green dotted curves
in Figure 3. These are based on g-modeling as described in Section 5, where
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10 B. EFRON

exponential family models are applied to g(#) rather than f(x). The prior g(6) is
hidden in empirical Bayes applications, which makes g-modeling inherently more
involved than f-modeling, but often less noisy.

TABLE 1
Simulation study of 100 samples (4), N = 1500, from Oorq in Figure 1. Estimated Bayes risk R
(39) and actual Bayes risk (ASE) R(g,é) (40) computed using f- and g-modeling (both methods
employed natural spline models with 7 degrees of freedom); g-modeling reduced EBregret by
more than half. “Formula EBregret” used f-modeling as in Lemma 4.1 (47) and g-modeling as
in Remark F of Section 8. The value EBregret = 0.008 in (13) is from the entry 0.0082 here.

Estimated True True Formula
Bayes Risk Bayes Risk EBregret EBregret

f g f g f g f g

mean .557 .589 581 .571 .0184 .0082 .0119 .0064
stdev .024 .018 .007 .003 .0074 .0031 .0010 .0011

That is the case here. Table 1 reports on a simulation study in which 100
samples © = (z1,z9,...,2N), N = 1500, were drawn according to (4) with the 6
values equaling 6,.q in Figure 1 and the fitting done as in (38); R and R(g, ), (39)
and (40), were computed for each sample, for both f- and g-modeling. The table
lists means and standard deviations for the 100 trials; g-modeling was consistently
less noisy and more accurate. In particular, the EBregret R(g, é) — Rz was halved
by g-modeling.

In addition to estimating the Bayes risk (39) from the observed data x, we
might wish to estimate the empirical Bayes regret R(g, é) — Ry,

K
(42) EBregret = »  fu(ér — er)?.
k=1

This is more difficult since regret is the difference of two risks. A useful but not
fully dependable delta method formula is discussed next.

Let ur = N fi so that yg d Poi(pg) for £ = 1,2,..., K in (35), or more
succinctly,

(43) y ~ Poi(p).

Poisson generalized linear models (GLMs) assume that the vector log(p) = (- - -
log(px) - -+ ) is of the form

(44) log(p) = M,

where M is a known N X p structure matrix and [ is an unknown p-dimensional
parameter vector. (p = 8 in (37)—(38), including the intercept term.)
Also let M be the N x p matrix

(45) M =DM,

where D is an operator that differentiates the rows of M. For ease of application,
if z() is a regular grid of points with spacings A then we can take D to be the
N x N matrix having kth row

(46) (O,O,...,0,—1/A,0,1/A,0,...,0),

the nonzeros in places k — 1 and k + 1 (with modifications at kK = 1 and K).
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LEMMA 4.1. A delta method estimate for EBregret is
_ 1 Lo s R
(47) EBregret = i trace { (M diag (f) M) (M diag (f) M)} ,
diag(f) the diagonal matriz with entries fy.

A derivation is given in Remark B of Section 8. Lemma 4.1 approximates
(éx—ex)? by an estimate of Var(éy), ignoring bias. Bias, however, is a major factor
in the example of Figure 1, where the smooth model (38) is poorly matched to the
discontinuous two towers prior. For the 100 trials involved in Table 1, Eﬁregret
from (47) averaged 0.0119, compared to 0.0184 for the true EBregret.

A less pathological situation is the gamnormal example featured in Section 6,
where 0,4 is determined by

(48) 0; ! Gammag /3 fori=1,2,..., N = 3200,
Gammag a gamma variate with 9 degrees of freedom, and z; ot ar (O, 1) as
before. It has oracle ASE Ry = 0.489.

TABLE 2
Simulation study of 100 samples (4), N = 3200, from fized Oora determined by (48); true ASE
Rg = 0.489; see Section 6. Both f- and g-modeling employed natural spline models with 5
degrees of freedom. Now f-modeling is more competitive, and the sample-based EBregret
formulas are more accurate.

Estimated True True Formula
Bayes Risk Bayes Risk EBregret EBregret

f g f g f g f g

mean 481 494 496 493 .0068 .0036 .0060 .0032
stdev .014 .013 .005 .001 .0052 .0014 .0002 .0008

A simulation study similar to that in Table 1 was run for situation (48), with
the results reported in Table 2. Here both f- and g-modeling relied on natural
splines with 5 degrees of freedom. Now f-modeling was more competitive, though
it still gave larger and more variable realizations of EBregret. Formula (47) avera-
ged 0.0060 compared to 0.0068 for the average true regret. A data-based formula
for estimating EBregret — which does include a bias term — is discussed in
Section 8. It performed moderately well in Table 1 and Table 2.

5. POISSON OBSERVATIONS AND G-MODELING

The very earliest empirical Bayes papers — Fisher, Corbet and Williams
(1943), Good and Toulmin (1956), Robbins (1956) — involved Poisson obser-

vations x;,

(49) 0; " g(0), x; ™ Poi(¢;) fori=1,2,...,N.

Poisson data is more interesting than the normal case (4) in the sense that there
is more than one obvious path to follow.
Robbins provided a notable Poisson formula for eg(x) = E{0 | x},

(50) eg(x) = (x+ 1) f(z+1)/f(x),
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12 B. EFRON

where f(x) is the marginal density of z,

(51) f(x) = /T p(x | 0)g(0) db,

p(z | 0) = e 997/ for x = 0,1,2,.... See for example, Chapter 6 of Efron and
Hastie (2016). Similar reasoning gives the conditional variance vy(x) = Var{f |

)
(52) vg(x) = eg(2) (eg(2 +1) = eg(x)) .

Formulas (50) and (52) provide an impetus for f-modeling: in an empirical Bayes
situation, where g(+) is unknown in (49), we need only estimate f(-) to approach
the Bayes estimate and its risk.

TABLE 3
Corbet’s butterfly data. After two years in Malaysia, Corbet had trapped 118 species just one
time each, 74 species twice each, etc., N = 501 species in total. He asked Fisher to calculate
how many new species would be seen if trapping continued for another year.

x 1 2 3 4 5 6 7 8 9 10 11 12
y 118 74 44 24 29 22 20 19 20 15 12 14

zr 13 14 15 16 17 18 19 20 21 22 23 24
y 6 2 6 9 9 6 10 10 11 5 3 3

Corbet’s butterfly data, Table 3, has a claim to being the initial vehicle for em-
pirical Bayes analysis. Alexander Corbet, prominent naturalist, had been trapping
butterflies in Malaysia (then Malaya) for two years in the early 1940s: 118 very
rare species had been trapped just once each, 74 twice each, etc., as shown in the
table,

(53) Yz = #{species having z; = x}

for x = 1,2,...,24. The total number in the table is N = 501 = }_ y,. Corbet
asked R.A. Fisher how many new species he could expect to see if he continued
trapping for one more year. We will return to the answer at the end of this section.

We assume model (49), that species i is observed according to a Poisson dis-
tribution having expectation ;, but with an important modification: that z; is
only observed if it falls into

(54) X ={1,2,...,24};

that is, x; follows a truncated Poisson distribution,

(55) 0, % g(0), ;"™ Poix(6;),
Poiy () having density function

(56) p(z | 0) = e 007/ (x!Py) for x € X,

where Py = 3"y 7907 /z!. Truncation modifies the marginal density f(z) and the
effective prior density g(6), but Robbins’ formulas (50) and (52) remain valid as
stated; see Remark D.

imsart-sts ver. 2014/10/16 file: B-0B-EB.tex date: October 31, 2017



BAYES, ORACLE BAYES & EMPIRICAL BAYES 13

& ns(df=5)

number species

Zipf

number times seen

Fic 4. Corbet’s butterfly data. Red points are the (z,y) data from Table 3; solid black curve is
natural spline Poisson regression fit, 5 degrees of freedom (57). Light green dashed curve follows
Zipf’s law: 9o = y1/x.

The points in Figure 4 plot y versus z from Table 3. A smooth curve N - f (z)
has been fit to the points by Lindsey’s method (37), using a natural spline model
on X with five degrees of freedom,

A~

(57) f=glm(y ~ ns(X, df =5), poisson)$ fit/N,

with % in (33) the same as = here; notice that the Poisson assumption in (57) is
distinct from that in (49). The fit is excellent: chi-squared = 12.2 on 18 =24 —6
degrees of freedom.

The famous (or notorious) Zipf’s law predicts

(58) Yo = Y1/T forz=1,2,...,

plotted as the light dashed curve in Figure 4. This also fits reasonably well: chi-
squared 28.1 on 23 = 24 — 1 degrees of freedom, p-value 0.21. Zipf’s law interacts
in a surprising way with Robbins’ formula (50): if f(x) is proportional to 1/x
then

(59) e?ipf(x) =z

That is, the Bayes estimate E{0 | x} is identical to the “MLE” 6 = x. (The
quotes are a reminder that 6 = x is not exactly the MLE for a truncated Poisson
distribution, a distinction ignored in the next paragraph.)

The Poisson family has variance V(6) = 6 in (16), so that V, (21) equals
J79(8)0 db, the overall expectation of §; this is the same as the marginal expec-
tation of x, suggesting the estimate

~

(60) V=12
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14 B. EFRON

for use in (22), equaling 6.60 for the butterfly data. Lemma 3.1 then gives Bayes
risk

(61) Ry =6.60— Y fu(z—ey(x))?,
X

the second term, or Bayes savings, depending on the discrepancy between ey (x)
and x = eglpf(x).

15 20
1

E{theta|x}
10
1

0 5 10 15 20 25

X

F1G 5. Solid black curve is Robbins’ estimate (62) for E{0 | x} based on natural spline estimate
f(z) in Figure 4; red dashed curve is g-modeling estimate described in the text. It closely follows
Zipf’s estimate E{0 | x} = x.

The solid black curve in Figure 5 shows

(62) ég(z) = (x + 1) f@ + 1)/ f(x)

from the Robbins f-modeling estimate in Figure 4. Substituting f, = f(z) and
eq(z) = é4(x) in (61) yields the risk estimate

(63) R, = 6.60 — 2.33 = 4.27.

This looks suspect. Robbins’ formula has magnified the small bumps seen in
Figure 4 into large waves in Figure 5, particularly at the right side where the
counts are small. With a sample size of only N = 501, it is easy to believe that
estimates (62) and (63) are dangerously noisy.

The red dashed curve in Figure 5 is based on g-modeling; that is, an estimate
of the prior §(#) has been obtained from the butterfly data by a method described
below, directly yielding the posterior expectation

(64) eg(x) = Eg{0 | z}.
Now 7?,9 = 6.60 — 0.048 = 6.55 which perhaps seems more reasonable.
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Poisson inference problems are often better phrased in terms of the natural
parameter

(65) A =log#.

This is attractive here since the butterfly data is concentrated at small values,
where 6 itself is a blunt instrument. Tweedie’s formulas (24) for the Poisson family
are

eq(x) = B{\ | x} = lgamma(z + 1) + I(z),

(66) ) )
vg(z) = Var{\ | 2} = lgamma(z + 1) + [(z),

the same holding for the truncated Poisson, Remark D. Here lgamma is the log
gamma function, the dots indicating first and second derivatives, and I(z) =
log f(x) as before. See Section 2 of Efron (2011).

e}
™

25 3.0

2.0

E{lam|x}
1.0 15

0.5

0.0
I

FIG 6. Estimates of E{\ | x}, A = log 0, butterfly data. Black solid curve: f-modeling estimate,
Tweedie’s formula using f from Figure 4. Red dashed curve: g-modeling estimate as explained
in text. Green dotted curve: MLE (x,logx).

Figure 6 is the version of Figure 5 that applies to A rather than 6. The same
f-modeling estimate f(z) that gave é(z) from Robbins’ formula (50) now gives
the solid black curve “fmod”, using (66) with [(x) replaced by I(z) = log f(x).
Likewise, the same g-modeling estimate §(#) for the prior density ¢g(f) now gives
the red dashed curve “gmod” for E{\ | 2} using Bayes rule,

| gt = JT10809(0)p(x | 0) db
o Falrl ek = Jrg@)p(x | 60) db

It closely tracks the light dotted green MLE curve (z,logx), the logarithmic
version of Zipf’s law.

Table 4 shows estimates of Bayes risk R, — or, more directly for the population
of 501 species in Table 3, the ASE (5) — and of the empirical Bayes regret (13)
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TABLE 4
Estimates of Bayes risk Ry and empirical Bayes regret EBregret for A =log 8, butterfly data.
f-modeling: Ry using (18), EBregret from Lemma 4.1 (47). g-modeling: R4 using (18),
EBregret as described in Remark F.

Bayes risk R, EBregret

f-modeling .316 .002
g-modeling 334 .018

for A, for both f- and g-modeling. The risk estimates are not very different, 0.316
versus 0.334, the latter being nearly the same as that for Zipf’s rule A= log x.
Lemma 4.1’s estimate EBregret = 0.0024 for f-modeling seems small, but was
verified by a bootstrap simulation: 200 multinomial samples y(j) of size N = 501
were drawn from f; f(j) and é(j), (57) and (62), were calculated; and regret
estimated according to the last term in (20). The 200 bootstrap regret estimates
averaged 0.0026. Regret associated with g-modeling was estimated by a method
described in Section 8, Remark F.

The basic idea of g-modeling (Efron, 2016) is simple: the prior density g(0) is
modeled as a low-dimensional exponential family, for example,

J
(68) log gs(0) = Z ﬂjGj;
j=0

gs(+) induces a marginal density fg(x) as in (3); finally, ¢ = g5(+) is found by
numerical maximization of the log likelihood,

N
(69) B = arg mﬂax {Z log fg(xz)} .

i=1
Some details appear in Remark F of Section 8.

TABLE 5
The g-modeling estimate of E{\ | z} in Figure 6. Comparison of the posterior standard
deviation of X given x with the frequentist root mean square error of E{\ | z}.

x E{\|z} sd{\|z} Freq RMSE

2 0.40 731 078
6 1.74 432 .033
10 2.27 313 .024
14 2.59 .260 .019
18 2.84 237 .024
22 3.05 229 .058

For the butterfly data, g(#) was assumed to follow a natural spline with five
degrees of freedom; this is a version of (68) with the powers 67 replaced by a
different set of basis polynomials, B-splines (Hastie, Tibshirani and Friedman,
2009, Chap. 5). Table 5 shows the resulting estimate of the posterior mean and
standard deviation of A given x.

The final column gives the frequentist root mean square errors (RMSEs) of
E{X | z}, the red dashed curve in Figure 6, which are seen to be rather small.
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Fic 7. Left panel: Estimated prior density for A = log 0, butterfly data, based on natural spline
model with 5 degrees of freedom for g(0). Right panel: Corresponding estimate of cdf. Red bars
indicate 1 root mean square frequentist error; see Remark F.

Empirical Bayes estimation, more than full Bayes, encourages frequentist calcu-
lations of accuracy. Remark F reviews the RMSE calculations.

The estimate of prior density g¢(f) obtained by maximum likelihood in the
natural spline model is graphed in the left panel of Figure 7. Actually, §(6)
has been transformed to a density g(\) for A = log6, i.e., g(\) = g(6)0, to
avoid the pile-up of g(f) near § = 0. The right panel shows the estimated cdf
G(9) = fog g(t) dt, again plotted versus . Speaking loosely, A is close to uniform
between —1 and 3.

The red vertical bars in Figure 7 indicate + one frequentist root mean square
error. We see that the cdf is estimated more accurately than the density itself.
Empirical Bayesian estimation of quantities beyond the scope of f-modeling are
permitted by g-modeling, for instance Pr{f < 1| z = 3} (calculated to be 0.126
here).

Empirical Bayes can be said to begin with Corbet’s question to Fisher: “How
many new species can I expect to find in one more year of trapping?” It can be
shown that the expected number of new species in t years of additional trapping,

say new(t), is
1— —0t/2
(70) E{new(t)} = N/ e ¢
—e”

See Remark G. The solid curve in Figure 8 shows the g-modeling values of new(t),
with frequentist standard deviation indicated by vertical bars. At year t = 1 we
get

(71) E{new(1)} = 47.6 £ 4.4.

g(0) db.

Good and Toulmin’s (1956) nonparametric f-modeling estimate, indicated by red
dots in Figure 8, gave 45.2 + 9.3. See Section 11.5 of Efron (2010).
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# new species
40 60 80 100 120
1 1 |

20
I

T T T T T
0 1 2 3 4

additional years

Fic 8. Estimated number of new butterfly species captured in t additional years of trapping,
obtained by substituting g-modeling estimate G(0) in (70). Red dots show Good and Toulmin’s
nonparametric f-modeling estimate; green vertical bars indicate £1 frequentist RMSE for the
solid curve.

Once again, the assumption 6; nd g(0) (2) plays only a motivational role here;
§(0) in Figure 7 estimates g(f), the empirical density of 0.4 (7), regardless of
0,.q4’s provenance. We don’t have a butterfly oracle for guidance but Table 4 says
we hardly need one. The more-Bayesian side of empirical Bayes analysis shows
itself in the next section, where we consider posterior inferences for individual
parameters 0;.

6. FINITE BAYES INFERENCE
We return to empirical Bayes model (1)—(2),

(72) 0; ™ g(0) and z; ™ N(6;,1)
for i = 1,2,..., N, with g(-) unknown and the 6; unobserved. One more x has

been observed, independent of the N other observations, say
(73) zo ~ N (6o, 1),

withe the unobserved 6y drawn independently from g(:). Our goal is to assess
the posterior distribution of 6y given xy and & = (z1, z2,...,2y). Unlike ASE in
Section 2, now we are specifically interested in 6y, not some omnibus loss function
over all the 6;’s.

An example appears in Figure 9: zg = 5, while of the N = 50 others & =
(x1,22,...,2N), 47 are less than 5. What can we say about 637 This can be called
the finite Bayes inference problem. If N were infinity we could deconvolute @ to
learn g(6) exactly, and then use Bayes rule to calculate g(6y | z¢)—which is to say
that standard Bayes is finite Bayes with N = oo.
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Fic 9. Finite Bayes inference. We observe xo = 5 and N = 50 other values x1,x2,...,TN
indicated by the histogram. All 51 x;’s are obtained independently as in (72). What can we say
about 0o, the parameter that produced xo?

A fully Bayesian approach to the finite Bayes problem would begin by putting
a hyperprior h(g) on the choice of g(-). This is the Bayes empirical Bayes ap-
proach of Deely and Lindley (1981). Choosing h(+) is an uncertain task, however,
and having done so it still can be difficult to compute the resulting posterior
distribution for y. Instead, we will employ empirical Bayes g-modeling estimates
J(+), g-modeling being necessary here for the calculation of §(6y | zo). Now the
assumption that all the 6’s are generated from 6 ~ g(-) is crucial. It is what makes
the “sibling” observations x1,xs,...,x N relevant to the inference of 6.

Morris (1983) considered the question of setting accurate empirical Bayes con-
fidence intervals in the case where the prior density is normal, the James—Stein
case. In the simplest situation we have

(74) 0, N0, 4), =z |6 N(0;,1),
fori=1,2,..., N, A unknown, so that
(75) 0i | zi ~ N (Bw;, B) [B=A/(A+1)].

The James—Stein rule éz = Exz substitutes the unbiased estimate
R N
(76) B=1-(N-2)/ a7
i=1

for B. Looking at (75), this suggests
(77) Bz + 2172/ B1/2

as a level 1 —a posterior interval for 0; given x;, where 2(®) is the standard normal
quantile ®~'(a), e.g., 2(%9) = 1.96.
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The trouble, as Morris points out, is that (77) doesn’t take into account the
variability of B as an estimate of B. A wider interval,

s (B

is necessary to give more accurate 1 — « coverage. With N = 20, B=1 /2, and
x; = 3, for example, (78) is 22% wider than (77). Interval (78) approximates
what we would get from a full Bayesian analysis of (74) that began with an
uninformative hyperprior on A.

Morris’ intervals are based on the assumption of a Gaussian prior. Here we
will discuss g-modeling approaches to more general finite Bayes inference pro-
blems, substituting computer power for mathematical analysis in going from the
equivalent of (77) to (78).

The finite Bayes computations of this section proceed in five steps:

(78) By + 210/ {B +

1. Data set x gives an estimated prior density g(¢) by g-modeling.
2. The estimated marginal density f(x) = [ G(0)p(z | ) d is computed.

3. Parametric bootstrap data sets @* = (2%, 3, ..., 2%) are drawn fronm f(-),
(79) 2™ f) fori=1,2,...,N.

4. Data set x* gives §*(f) using the same g-model as in Step 1.
5. Some large number B of bootstrap priors ¢g*(-) are averaged to give a cor-
rected prior,

B
(30) 3(0) = 5 >-9%(0).

The idea here, taken from Laird and Louis (1987), is that the bootstrap distri-
bution of §*(f) mimics the posterior variability of g(f) given x in a full Bayesian
analysis that began with an uninformative hyperprior h(g). If so, the corrected
posterior density

(81) (60 | w0) = §(60)p(z0 | 60)/f (20)

— here f(xg) = Jrp(xo | 0)g(0)dl, with p(z | §) = ¢(x — §) — approximates
9(6p | zo) from a full Bayesian analysis.

The solid black curve in Figure 10 graphs g(6p | zo = 5) from the 50 observa-
tions in Figure 9. It assumed model (72), and was computed using the five-step
algorithm; the g-model was a natural spline with five degrees of freedom, with
B = 1000 in (80). The green dotted curve is (), while the red dashed curve is
the likelihood function ¢(0y — xg) for Oy given just xy = 5-that is, ignoring the
50 sibling observations. Not ignoring them has a powerful effect on our beliefs
concerning 6p: (0o | z¢) has its maximum at 6y = 3.8, compared to the MLE 5,
and puts only 18% of its posterior probability above 5.

The gamnormal example (48) comprises N = 3200 values 6; obtained from a
Gammayg /3 distribution (mean = 3 and variance = 1) and 3200 corresponding

observations z; ind A (0;,1). The first 50 z;’s are those in the histogram of Fi-

gure 9. A light black beaded curve in Figure 10 traces the true posterior density
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F1c 10. Solid black curve: Corrected posterior density §(6o | xo = 5) from the 50 observations
z; in Figure 9, using model ns(0,df = 5). Green dotted curve: Estimated prior g(0) (80)
B = 1000. Red dashed curve: Likelihood ¢(6 — x¢). Light beaded curve: True posterior
density g(0o | zo) based on Gammayg /3 prior.

TABLE 6
Ratio of spreads of corrected densities g(0) (80) compared to uncorrected g-model estimates
§(0), assuming natural spline model with df = 5. Data @ is first N observations of the 3200
gamnormal draws. Each g(-) based on B = 1000 bootstrap replications. “Spread” is distance
between ath and (1 — a)th quantiles, averaged over o = 0.90,0.80,0.70, 0.60.

N 15 25 50 100 200 400 800 1600 3200
ratio 1.65 1.45 127 1.11 1.06 1.04 .96 .97 .96

9(6p | zo = 5) based on the Gammayg /3 prior; (g | xo) is seen to be reasonably
accurate considering its basis of only 50 siblings.

Correction (80) is impactful in this case, both g(#) and g(fy | xo = 5) being
more than 25% wider than the uncorrected versions. Increasing the number N of
sibling observations, from 50 to 100, 200,...,3200, quickly decreases correction
effects, as seen in Table 6. Even for N = 50, g(6y | z¢) was only a modest
improvement over the uncorrected §(6y | zo) as far as comparisons with the true

9o | o) go.
Correction method (80) has its critics — Carlin and Gelfand (1991) and Section
5 of Efron (1996) — who provide more accurate but also more involved boot-

strap algorithms. Applied to the Morris Gaussian prior situation (74), (80) gives
corrections similar to (78), e.g., 27% dilation compared to 22% in the example
following (78). Laird and Louis (1987) provide some favorable simulation results.
As Table 6 suggests, correction effects are likely to be small when N is in the
thousands range. In any case, the bootstrap replications §*/(-) (80) can also be
used to assess frequentist standard errors — of §(0 | z), E{6 | =}, etc. — which
will be the same as the Laird—Louis assessments of Bayesian accuracy.

How many sibling observations are enough? An answer must depend on the
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shape of the true prior density g(#) and the assumptions of the g-modeling proce-
dure. In the gamnormal example, employing a natural spline model with df = 5,
useful results were obtained for NV as small as 15.

C -,
= -
. - -
S e - - -

limits

~ A ~
-~ 0.5
-~
-~
S,
T T T e e e e e e i m s m e = o
o S~ T ..
s T e e 0.1
————————
\ ___________ .05
7 15 25 50 100 200 400 800 1600 3200

log number sibllings N

Fic 11. Smoothed posterior percentiles 2%, 5%, ...,98% of corrected estimates §(6o | o = 5)
based on first N siblings, gamnormal example, as N increases. Points at extreme right are
percentiles of true posterior g(6o | zo = 5) for 6 ~ Gammag /3. See Remark H.

This doesn’t mean that larger values of N are pointless. Figure 11 graphs the
percentiles of the corrected posterior densities g(6y | zo = 5) as N increases from
15 to 3200 in the gamnormal example; B = 1000 bootstraps for each N. (There
has been some smoothing; see Remark H.) What is perhaps surprising is that
some “learning” is going on even for large NV, as seen most vividly in the decline
of the 0.98 percentile curve.

Points at the extreme right of Figure 11 show percentiles of the true posterior
density g(fp | o = 5). These are not quite the same as what we would get by
extending the figure’s range toward N = oo. The class of prior densities obtainable
from natural spline models with five degrees of freedom does not include the
Gammayg /3 density, causing a small amount of modeling bias.

Nonparametric g-modeling is an appealing remedy for modeling bias: in empiri-
cal Bayes situations such as (49)—(72), we find the prior distribution that maximi-
zes the likelihood of the observed data & without restrictions on the form of g(+).
Impressive theoretical work on nonparametric maximum likelihood (NPMLE)
solutions (Kiefer and Wolfowitz, 1956; Laird, 1978) still left the problem compu-
tationally forbidding. Progress in convex optimization (Gu and Koenker, 2016)
has now crossed that river. Extensive theoretical and computational calculati-
ons in Jiang and Zhang (2009) demonstrate excellent performance for NPMLE
methods, for model (72), in terms of the ASE criterion (5).

Application of g-modeling to the full gamnormal data set, N = 3200, were
carried out using natural spline models ns(f, df) with df = 5, 20, and 80. The
last of these approximate NPMLE. Figure 12 shows the resulting uncorrected
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F1G 12. Prior density estimates §(0) based on all N = 3200 gamnormal observations. For natural
spline g-models and degrees of freedom 5, 20, and 80. Light black dashed curve is the true prior
density Gammayg /3.

estimates g(6). For df = 80, §() is almost a discrete distribution supported on
three points, in agreement with Laird’s characterization of NPMLE solutions.
The three g(-) estimates had EBregret 0.008, 0.009, and 0.006, respectively. The
oracle ASE (5) was 0.489, making empirical Bayes regret negligible in this case.

In the finite Bayes setup, the sibling observations x; are related to the object
of interest §y through the Bayesian relationship 6; ~ g(-) for i = 0,1,2,..., N.
Suppose instead the relationship is through a regression model

(82) 0;=cB (i=0,1,2,...,N),

where the ¢; are known covariate vectors and 3 is an unknown parameter vector.
Under mild conditions, as N — oo the MLE 6 converges in distribution to the
true value 0y. This isn’t the case for the finite Bayes situation, where the best we
can hope for is convergence to the true posterior density g(fp | o). In this sense,
sibling observations are weaker than regression observations xz; = ¢} +¢; but, as
Figure 10 shows, they can still have a powerful effect on our beliefs about 6.

The NPMLE approach is less appropriate for finite Bayes inference problems.
Applied to the situation in Figure 9, it would give a posterior estimate of g(6y | o)
supported on just a few discrete points. A “smooth” model for g(-), such as ns(6,
df = 5), is a bet on its smoothness. Betting isn’t necessary for omnibus criteria
like ASE but becomes crucial for finite Bayes calculations.

7. RELEVANCE

We return to the question of relevance raised at the end of Section 2: which
other cases are relevant to our beliefs concerning a particular parameter 67

Questions of relevance can be especially pressing when the individual observa-
tions are accompanied by covariate information. Such a situation is illustrated in
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Figure 13: 12 children, six dyslexic and six normal controls have received a DTI
(diffusion tensor imaging) scan, measuring fluid flow at N = 15,443 brain locati-
ons or vozels. Each voxel provided a two-sample statistic z comparing dyslexics
with normal controls, with

(83) zi~N(6i,1),  i=1,2,...,N = 15,443,

to a good approximation; d; is the effect size for voxel;, and of course the investi-
gators were interested in voxels having §; much different than zero. (See Section
15.6 of Efron and Hastie, 2016.)

z value
adjusted z-value

X=

-4
L

20 30 40 50 60 70 80 20 30 40 50 60 70 80

distance d distance d

Fic 13. DTI data. Left panel: z-values z; plotted vertically versus vozel distance from back
of the brain d;; red curve c(d) is smoothing spline, df = 13; large red dot (do, z0) = (60, 3.0).
What is the posterior distribution of do, the expectation of zo? Right panel: Vertical axis is
z; = 2z — c(d;); now the red dot at dy = 60, xo = 3.0 — 0.7 = 2.3. The expectation of xo is
0o = 6o — 0.7.

The left panel of Figure 13 plots the z; vertically versus d;, the voxel distance
from the back of the brain. The large red dot indicates “voxely”, a location where
effect size dg is of particular interest. It has coordinates

(84) (do, z0) = (60,3.0).

What can we say about dg, based on (84) and the 15442 other (d;, z;) observations?

The distance covariate induces substantial effects, raising or lowering the entire
distribution of z-values for varying values of d. A smoothing spline with 13 degrees
of freedom, ¢(d), fit to z; as a function of d;, appears as the solid red curve in the
left panel. Subtracting ¢(d) from the observations z; yields standardized values
T,

(85) Ty = 25 — C(dz)
In what follows we will analyze the model
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see Remark I. Since ¢(dy = 60) = 0.70, we have

(87) 6p = 69 — 0.70

as the parameter of interest, with the red dot corresponding to
(88) xo = 20 — 0.70 = 2.30.

The adjusted points (d;, ;) plotted in the right panel seem better behaved,
but still with some heterogeneity visible as a function of d. We wish to calculate
a finite Bayes posterior distribution for 6. First though, we have to decide which
of the N — 1 other points x; are legitimate siblings for xg. All of them? Only
those with 50 < d < 707 Only those with d = 607

0.08
1

0.06
I

=2.3)

g(thetaO|xO0:
0.04
Il

0.02
I

0.00

x0=2.3

theta0

Fic 14. g-modeling estimates of §(6o), the finite Bayes posterior density for 0o (87) for the five
choices of sibling set shown in Table 7.

Uncorrected g-modeling estimates §(0y | xg = 2.3) were computed using a nat-
ural spline model with five degrees of freedom, and with five different choices of
the sibling set as described in Table 7. The resulting estimated posterior densities
g(0o | xo = 2.3) appear in Figure 14, numbered as in that list. In this case,
choice (1), using all 15,442 others as siblings, moves the estimated conditional
distribution of 6y given xg = 2.3 to the left, compared with the more restrictive
choices (2) through (5). Table 8 provides some numerical comparisons: E{fy | zo}
increases from 0.557 for choice (1) to 1.32 for choice (5), while the posterior
probability of 8y exceeding 2.3 goes from 0.036 to 0.197.

Restricting the sibling set in the name of greater relevance can potentially
destabilize the estimated posterior density §(fy | zo). This is seen in Table 8,
where decreasing the sample size N increases the frequentist standard error of
the estimated posterior expectation E{fy | xo}, most noticeably for the smallest
set, N = 186.

None of this is very reassuring. Adjusting for covariates — going from the left
panel to the right in Figure 13 — is helpful in strengthening relevance, but at
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TABLE 7
Five choices of the sibling set for xo, from N — 1 = 15442 other points (d;, z:), DTI data.

(1) All 15442 others.

(2) Those with 40 < d < 80.
(3) Those with 50 < d < 70.
(4) Those with 55 < d < 65.
(5) Those with d = 60.

TABLE 8
Top 2 rows: Finite Bayes posterior expectation and standard deviation of 6o (87) for the 5
decreasing choices of sibling set shown in Table 7. 3rd row: Frequentist standard error of the
top-row estimate; see Remark F. 4th row: Estimated posterior probability that 6y exceeds 2.3.
5th row: Sample sizes N of the five choices in Table 7.

o @ B @ 6
all  40-80 50-70 5565 60

E{y | zo = 2.3} 557 735 115 140 1.32
sd{fp | x0 = 2.3} 692 t4r 796 769 779
frequentist sd(E) .043 .048 .051 .060  .146
Pr{fp > 23|20 =23} 036 .048  .109  .186 .197
N 15443 10462 5249 2401 186

least in this example it is not a cure. At some level, the choice of relevant siblings
is a scientific question rather than a purely statistical one. Perhaps we can expect
the neuroscientists who provided the DTI data to say what relevance means here;
perhaps not. In Bayes (as opposed to empirical Bayes) applications, the assertion
of a prior density g(f) amounts to a statement of an infinite catalog of perfectly
relevant siblings. Empirical Bayes applications like that in Figure 13 illustrate
the sometimes heroic nature of such statements.

There are situations where purely statistical evidence might cast doubt on
relevance, for example in Figure 9, where 47 of the 50 putative siblings lie to the
left of the index case xg = 5. A procedure for allowing discordant values of xg to
“opt out” of an empirical Bayes analysis is described in Section 4 of Efron (1996):
we assume that the prior density g(f) is a mixture of two components, a main
one g4(f) and a much broader opt-out alternative gg(6),

(89) 9(0) = haga(0) + hpgp(0),

ha and hg = 1 — h4 being the respective hyperprior probabilities. This gives
marginal density f(6) (3),

(90) f(x) = hafa(x) + hpfp(2),
with fa(z) and fp(z) the respective marginals. In what follows, we will set
(91) fB(x) = fo(z)/c,

where fy(x) is a given, possibly improper, density function and ¢ is a constant to
be determined.
Bayes rule yields posterior probabilities ha(z) and hg(z) given x, with

ha(@) _ ha fa(z) _ ha fa(z)
hg(z) hp fB(2) hg fo(z)’
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or equivalently,

h -1
(93) hp(z) = [1 +e ﬁ J;;;‘((j))
Since it is always true that hp = [, hp(x)f(x)dx, we get the identity
_ ha fa(z)]™
(94) hp = /X f(z) [1 +c s fol@) dx.

This determines ¢, and also hp(x) (93).
The opt-out analysis was applied to the situation in Figure 10, where the
observed data is @ = (1, z2,...,x50), with the following specifications:

e hy =0.95 and hg = 0.05.

o fo(z) =1 for all 2.

e fa(x) equal f(z) the marginal density obtained from §(-), the green dotted
curve. (See Remark J.)

e The expectation with respect to the marginal f(z) in (94) replaced by

1 & ha fa(z)]™
95 — {1 +c— .
(95) 50 = he fo(zi)
Then (93) gave hp(5) = 0.088 as the estimated probability that xg =5 is not
from the same model (72) that produced x1, xa, ..., x50. In terms of Figure 10, the

posterior distribution of fy given ¢y = 5 and @ can be thought of as a mixture that
is 91.2% of the solid black posterior curve and 8.8% of the red dashed likelihood;
the posterior probability that 6y exceeds 5 rises from 18% to 21%.

8. REMARKS
This section expands on some of the points raised elsewhere in this article.
A. Tweedie’s formula (24) Differentiating py(x) (23) with respect to z,

(96) e 0)= 221D (9 Lrogpia) ) po(o)

gives the derivative of the marginal density f(x) = [ p(z | 8)g(8) do,
: 0
(o7) f@) = [ (8- 5 togm(@)) pia | 0)g(0) b,
T x
Therefore [(x) = log f(x) has

H@_h(—§meﬁmwmmw
(98) - Jrp(a | 0)g(6) db

0
= B0 | 2} — 5 logpo(a),

(99) E{0 |z} =i(z) — lo(x),

Tweedie’s formula (24). This demonstrates the necessary fact that Tweedie’s
formula gives the same value of E{f | z} as direct application of Bayes rule.
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B. Tweedie’s formula for x ~ N(0,0?) With o2 known, (26) becomes

(100) eg(x) =z +0%(z) and w,(z)= o> (1 + O'Ql.(.%‘)) :

C. Lemma 4.1 Formula (47) will be justified here using plug-in substitu-
tions (f for f, etc)Aand discrete notation as in (34). Letting I = logf =
(log f1,10g fa,...,log fi), the N x N derivative matrix of [ with respect to Yy
n (37) can be shown to be

dl 1 ! ~ _ ! q1: P
(101) iy =MG'M'  (G=Mdiag(N f)M),
diag(V - f) the diagonal matrix with entries N fi. The vector of derivatives [' =
DI then has derivative matrix

(102) — = MG 'M,

as in (45). Since y has covariance matrix diag(V - f), estimated as cov(y) =
diag(N - f) (102) yields the delta method estimate of cov(i’),

(103) cov (l) = MG M diag (N : f) MG M = MG*M'.

Letd=é— ey, the difference between the empirical Bayes and true conditional
expectations F{0 | z}. The empirical Bayes regret is

K K
(104) > fulée —eg)? =Y frdy,
k=1 k=1
as in (40). Under the assumption that é is unbiased for e,4, the expected EBregret
is
K ~
(105) 3 fi Var (dk) :
k=1

Tweedie’s formula (24) says that
(106) d=1 -1,

so cov(d) = cov(l'). Substituting f, for f and cov(l} ) for Var(dy) in (105)
gives

(107) E{EBregret} = Z fuMLG™ M,
k=1

MIQ the kth row of M, and so

K K
E{EBregret} = Z i trace (M,’CCA;_IM;O = trace (Z MG le>
k—1

108 K
(108) = trace <G_1 Z Mkko,’€>

k=1
= trace (C:'*lM’ diag (f) M) )
which is (47).
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D. Truncation Suppose z is observed (and known to have occurred) only if
x € A, some predetermined subset of the original sample space X, this being
the definition of data truncation. This changes the marginal density from f(x) to
fa(z) = f(z)/m for x € A, with 7 = [, f(y) dy, making a corresponding change
in Robbins’ estimate (50),

(109) eg(z) = (x4 1)falz+1)/fa(z).

Truncation also changes the prior density ¢g(f) — see Remark G — accounting for
the change in Robbins’ rule. Since now x = (x1,x2,...,2y) is a random sample
from fa(x), maximum likelihood methods such as (57) will correctly estimate
(109).

Truncation affects the distribution p(z | 0) (1),

(110) pa(z|0) =p(z|0)/P@O)  (P(0) =Pr{zecA[0}).
The truncated version of an exponential family density (22) is
(111) pa(a | g) = ¥ WOTEPO) g (),

a different exponential family but one having the same base density po(z), and
therefore the same function ly(z) = log po(x). The truncated version of Tweedie’s
formulas (24) are

(112) eg(x) =la(z) +lo(x) and w,(z) = la(z) + lo(z).

In the estimated version é4(z) = fA(ac) + lop(x), the second term is the same as
that for the untruncated é4(x), while the first term is estimated directly from =,
without specific attention to A. The same goes for 04 (x). In particular, expression
(66) can be used just as stated.

E. g-modeling  The details of g-modeling are spelled out in Efron (2016). Here
is a brief description pertaining to the simplified situation where both the 8 space
T and the = space X are finite and discrete,

(113) T == {0(1),9(2), .. ,G(m)} and X = {l’(l),ZL‘(g), .. ,JJ(K)}

(Continuous z;’s such as those in the gamnormal example of Section 6 are dis-
cretized by binning (33).) The g-model consists of a p-parameter exponential
family,

(114) g = QB—0(9),

Q a given m X p structure matrix having rows qé, B8 an unknown p-dimensional
parameter vector, and ¢(3) = log(>_ e% 3).
For the butterfly analysis, X' = {1,2,...,24} and 0;) = exp()(;)), with

(115) Ay =1{-3,-28,-26,...,4}.
The gamnormal examples used
(116) X ={-16,-14,...,80} and T =1{0,0.2,04,...,7.0}.
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Both examples used natural spline models with five degrees of freedom, Q =
ns(7,ds = 5) (and including a column of ones in Q).
Let P be the K x m matrix (py;) where

(117) prj = Pr{z =20y | 0 =0}
The marginal density f(53) induced by g(f) is
(118) f(B)=Pg(pB).

The count vector y = (y1,92,-- -, YK ), Y& = #{z:i = 7()}, is a sufficient statistic
having a K-category multinomial distribution

(119) y ~ Multg (N, £(5)).

Estimation of 3 from (119) is obtained by penalized maximum likelihood,

K P 1/2
(120) B = arg max { (Z log fk(ﬁ)> — ¢ (Z Bf) } ,
k=1 1

co = 0.1 for the butterfly data and 1.0 for the gamnormal examples.

F. g-modeling estimated regret  Suppose 7 is a function of 6, v = h(f), and
we are interested in estimating its posterior expectation,

(121) E(z) = E{n(0) | z}.

Continuing in the discrete setup (113), define h; = h(0;)), By = EM(z = T (k)
etc.,

ug; = hjpy;j, Vkj = Pkj,
(122) B m B m
and = Zukjgk7 U= kajgj
j=1 =1

(Uk = fx). Then Bayes rule gives
(123) Ey = uy/vg.
If g is an estimate of g, the estimate Ek equals

S uig 5 1+ 3; 7435 — 95)

Ek = ~ — Lk VN
>l vig 14325 395 — 95)

(124)

m

=Ep+ Y Tii(35 — 95);

j=1
where
(125) Ty = Ey, <u_’” - vf”) .

up Ok

Corollary 1 of Efron (2016) gives delta method approximations for the bias
vector and covariance matrix of g,

(126) g -9~ (By,Cy),
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based on model (114) and (119). Letting T" be the K x m matrix (7};) (124) then
gives approximate bias and covariance for E as an estimate of F,

(127) E - EX(TBy, TC’gT’).
The frequentist expected root mean square error at x = Tk Is

1/2
(128) mmse, = [(TBy)} + (TC,T )|
The last column in Table 5 came from (128), with h(6) = log6.

If we take h(0) = 6 in (121), i.e., v = 0, then Ej, equals ey, = E{0 | v =z},
and likewise Ey = éj,. From (42) (with g = g), we get an approximation for the
expected empirical Bayes regret from g-modeling,

K
(129) EBregret = Z fr rmse;.
k=1

The last columns of Table 1 and Table 2 came from (129).

G. Formula (70) Suppose that there were actually S butterfly species in
Malaysia, each with its own Poisson parameter 6;, but that Corbet only observed
those with x; ~ Poi(f;) greater than zero (ignoring truncation for x; > 24). If
g7 (0) is the density function applying to all S species, then truncation gives the
density

(130) 9(0) = cg™(9) - (1 —e?),

since Pr{z; >0]6;} =1 —e~%.
The expected total number of species Corbet observed is

(131) E{N} =S /T gt (O)(1 - ™),

leading to the estimate ¢ = S/N in (130). Assuming that the capture occurences
of each species follow a Poisson process over time with intensity parameter 6;/2
—so0 expected number 6; in two years — gives

(132) E{new(t)} = S - /T gt (0)e (1 — e®2) dp,

e (1 — e=/2) being the probability of not being seen in the first two years and
then being seen in the next ¢ years. Together, (130)—(132) give formula (70). The
frequentist standard error (71) was obtained using a variant of (128).

H. Figure 11  The 3200 gamnormal z;’s were randomly permuted six times. A
version of Figure 11 was calculated for each permutation, and these were averaged
to give the final Figure 11. This smoothed out irregularities, though all six graphs
looked quite similar.

I. The DTI data  The observations x; (86) are definitely not independent, as
nearby brain voxels produce correlated observations. Correlation doesn’t affect
the values of g-modeling or f-modeling estimates, but it does affect their accuracy.
In Table 8, the values in rows 1, 2, and 4 remain plausible, but the frequentist
standard errors in row 3 are too small.
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J. The opt-out analysis It could be argued that taking fa(-) = f(-) in (95)
errs since f (+) assesses the density of all the z;’s including those from fg(-). Using
hafa(x) = f(x) — hpfp(x), a second iteration of (95) was carried out, this time
with
f(x) —0.088/¢

0.912 ’

It gave hg = 0.090. Subsequent interations made little difference.

(133) faz) =

REFERENCES

CARLIN, B. P. and GELFAND, A. E. (1991). A sample reuse method for accurate parametric
empirical Bayes confidence intervals. J. Roy. Statist. Soc. B 53 189-200.

DEELY, J. J. and LINDLEY, D. V. (1981). Bayes empirical Bayes. J. Amer. Statist. Assoc. 76
833-841. MR650894

EFRON, B. (1996). Empirical Bayes methods for combining likelihoods. J. Amer. Statist. Assoc.
91 538-565. MR1395725

EFRON, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and
Prediction. Institute of Mathematical Statistics Monographs 1. Cambridge University Press,
Cambridge. MR2724758

EFRON, B. (2011). Tweedie’s formula and selection bias. J. Amer. Statist. Assoc. 106 1602—
1614.

EFRON, B. (2014). Two modeling strategies for empirical Bayes estimation. Statist. Sci. 29
285-301.

EFRON, B. (2016). Empirical Bayes deconvolution estimates. Biometrika 103 1-20.

EFRrRON, B. and HaSTIE, T. (2016). Computer Age Statistical Inference: Algorithms, Evidence,
and Data Science. Cambridge University Press, Cambridge. Institute of Mathematical Sta-
tistics Monographs (Book 5).

EFRrRON, B. and MoORRIs, C. (1972). Limiting the risk of Bayes and empirical Bayes estimators.
II. The empirical Bayes case. J. Amer. Statist. Assoc. 67 130-139. MR0323015

FISHER, R. A., CORBET, A. S. and WILLIAMS, C. B. (1943). The relation between the number
of species and the number of individuals in a random sample of an animal population. J.
Anim. Ecol. 12 42-58.

Goob, I. J. and TouLMIN, G. H. (1956). The number of new species, and the increase in
population coverage, when a sample is increased. Biometrika 43 45-63. MR0077039

Gu, J. and KOENKER, R. (2016). On a problem of Robbins. Int. Statist. Rev. 84 224-244.
MR3537154

HasTiE, T., TiBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning.
Data mining, Inference, and Prediction, second ed. Springer Series in Statistics. Springer,
New York. MR2722294

JIANG, W. and ZHANG, C.-H. (2009). General maximum likelihood empirical Bayes estimation
of normal means. Ann. Statist. 37 1647-1684. MR2533467

KIEFER, J. and WoLFowITZ, J. (1956). Consistency of the maximum likelihood estimator
in the presence of infinitely many incidental parameters. Ann. Math. Statist. 27 887-906.
MR0086464

LArD, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. J.
Amer. Statist. Assoc. 73 805-811. MR521328

LAIRD, N. M. and Louis, T. A. (1987). Empirical Bayes confidence intervals based on bootstrap
samples. J. Amer. Statist. Assoc. 82 739-757. MR909979

MoRrRris, C. N. (1983). Parametric empirical Bayes inference: Theory and applications. J. Amer.
Statist. Assoc. T8 47-65. MR696849

RoBBINS, H. (1951). Asymptotically subminimax solutions of compound statistical decision
problems. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, 1950 131-148. UC Press. MR0044803

RoBBiNs, H. (1956). An empirical Bayes approach to statistics. In Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability, 1954—-1955, Vol. I 157-163.
UC Press. MR0084919

ZHANG, C.-H. (2003). Compound decision theory and empirical Bayes methods. Ann. Statist.
31 379-390. MR1983534

imsart-sts ver. 2014/10/16 file: B-0B-EB.tex date: October 31, 2017



