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Abstract
We develop a mean �eld theory for sigmoid belief networks based on ideas from statistical

mechanics. Our mean �eld theory provides a tractable approximation to the true probability dis-

tribution in these networks; it also yields a lower bound on the likelihood of evidence. We demon-

strate the utility of this framework on a benchmark problem in statistical pattern recognition|the

classi�cation of handwritten digits.

1. Introduction

Bayesian belief networks (Pearl, 1988; Lauritzen & Spiegelhalter, 1988) provide a rich graphical
representation of probabilistic models. The nodes in these networks represent random variables,
while the links represent causal inuences. These associations endow directed acyclic graphs (DAGs)
with a precise probabilistic semantics. The ease of interpretation a�orded by this semantics explains
the growing appeal of belief networks, now widely used as models of planning, reasoning, and
uncertainty.

Inference and learning in belief networks are possible insofar as one can e�ciently compute (or
approximate) the likelihood of observed patterns of evidence (Buntine, 1994; Russell, Binder, Koller,
& Kanazawa, 1995). There exist provably e�cient algorithms for computing likelihoods in belief
networks with tree or chain-like architectures. In practice, these algorithms also tend to perform
well on more general sparse networks. However, for networks in which nodes have many parents,
the exact algorithms are too slow (Jensen, Kong, & Kjaeful�, 1995). Indeed, in large networks
with dense or layered connectivity, exact methods are intractable as they require summing over an
exponentially large number of hidden states.

One approach to dealing with such networks has been to use Gibbs sampling (Pearl, 1988), a
stochastic simulation methodology with roots in statistical mechanics (Geman & Geman, 1984).
Our approach in this paper relies on a di�erent tool from statistical mechanics|namely, mean �eld
theory (Parisi, 1988). The mean �eld approximation is well known for probabilistic models that
can be represented as undirected graphs|so-called Markov networks. For example, in Boltzmann
machines (Ackley, Hinton, & Sejnowski, 1985), mean �eld learning rules have been shown to yield
tremendous savings in time and computation over sampling-based methods (Peterson & Anderson,
1987).

The main motivation for this work was to extend the mean �eld approximation for undirected
graphical models to their directed counterparts. Since belief networks can be transformed to Markov
networks, and mean �eld theories for Markov networks are well known, it is natural to ask why a
new framework is required at all. The reason is that probabilistic models which have compact
representations as DAGs may have unwieldy representations as undirected graphs. As we shall see,
avoiding this complexity and working directly on DAGs requires an extension of existing methods.

In this paper we focus on sigmoid belief networks (Neal, 1992), for which the resulting mean
�eld theory is most straightforward. These are networks of binary random variables whose local
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conditional distributions are based on log-linear models. We develop a mean �eld approximation for
these networks and use it to compute a lower bound on the likelihood of evidence. Our method applies
to arbitrary partial instantiations of the variables in these networks and makes no restrictions on the
network topology. Note that once a lower bound is available, a learning procedure can maximize the
lower bound; this is useful when the true likelihood itself cannot be computed e�ciently. A similar
approximation for models of continous random variables is discussed by Jaakkola et al (1995).

The idea of bounding the likelihood in sigmoid belief networks was introduced in a related
architecture known as the Helmholtz machine (Hinton, Dayan, Frey, & Neal 1995). A fundamental
advance of this work was to establish a framework for approximation that is especially conducive to
learning the parameters of layered belief networks. The close connection between this idea and the
mean �eld approximation from statistical mechanics, however, was not developed.

In this paper we hope not only to elucidate this connection, but also to convey a sense of
which approximations are likely to generate useful lower bounds while, at the same time, remaining
analytically tractable. We develop here what is perhaps the simplest such approximation for belief
networks, noting that more sophisticated methods (Jaakkola & Jordan, 1996a; Saul & Jordan, 1995)
are also available. It should be emphasized that approximations of some form are required to handle
the multilayer neural networks used in statistical pattern recognition. For these networks, exact
algorithms are hopelessly intractable; moreover, Gibbs sampling methods are impractically slow.

The organization of this paper is as follows. Section 2 introduces the problems of inference
and learning in sigmoid belief networks. Section 3 contains the main contribution of the paper:
a tractable mean �eld theory. Here we present the mean �eld approximation for sigmoid belief
networks and derive a lower bound on the likelihood of instantiated patterns of evidence. Section 4
looks at a mean �eld algorithm for learning the parameters of sigmoid belief networks. For this
algorithm, we give results on a benchmark problem in pattern recognition|the classi�cation of
handwritten digits. Finally, section 5 presents our conclusions, as well as future issues for research.

2. Sigmoid Belief Networks

The great virtue of belief networks is that they clearly exhibit the conditional dependencies of
the underlying probability model. Consider a belief network de�ned over binary random variables
S = (S1; S2; : : : ; SN ). We denote the parents of Si by pa(Si) � fS1; S2; : : :Si�1g; this is the smallest
set of nodes for which

P (SijS1; S2; : : : ; Si�1) = P (Sijpa(Si)): (1)

In sigmoid belief networks (Neal, 1992), the conditional distributions attached to each node are
based on log-linear models. In particular, the probability that the ith node is activated is given by

P (Si = 1jpa(Si)) = �

0
@X

j

JijSj + hi

1
A ; (2)

where Jij and hi are the weights and biases in the network, and

�(z) =
1

1 + e�z
(3)

is the sigmoid function shown in Figure 1. In sigmoidbelief networks, we have Jij = 0 for Sj 62 pa(Si);
moreover, Jij = 0 for j � i since the network's structure is that of a directed acyclic graph.

The sigmoid function in eq. (2) provides a compact parametrization of the conditional probability
distributions1 in eq. (2) used to propagate beliefs. In particular, P (Sijpa(Si)) depends on pa(Si)
only through a sum of weighted inputs, where the weights may be viewed as the parameters in a

1. The relation to noisy-OR models is discussed in appendix A.
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Figure 1: Sigmoid function �(z) = [1 + e�z ]�1. If z is the sum of weighted inputs to node S, then
P (S = 1jz) = �(z) is the conditional probability that node S is activated.

logistic regression (McCullagh & Nelder, 1983). The conditional probability distribution for Si may
be summarized as:

P (Sijpa(Si)) =
exp

h�P
j JijSj + hi

�
Si

i
1 + exp

hP
j JijSj + hi

i : (4)

Note that substituting Si = 1 in eq. (4) recovers the result in eq. (2). Combining eqs. (1) and (4),
we may write the joint probability distribution over the variables in the network as:

P (S) =
Y
i

P (Sijpa(Si)) (5)

=
Y
i

8<
:
exp

h�P
j JijSj + hi

�
Si

i
1 + exp

hP
j JijSj + hi

i
9=
; : (6)

The denominator in eq. (6) ensures that the probability distribution is normalized to unity.
We now turn to the problem of inference in sigmoid belief networks. Absorbing evidence divides

the units in the belief network into two types, visible and hidden. The visible units (or \evidence
nodes") are those for which we have instantiated values; the hidden units are those for which we do
not. When there is no possible ambiguity, we will use H and V to denote the subsets of hidden and
visible units. Using Bayes' rule, inference is done under the conditional distribution

P (HjV ) =
P (H;V )

P (V )
; (7)

where
P (V ) =

X
H

P (H;V ) (8)

is the likelihood of the evidence V . In principle, the likelihood may be computed by summing over
all 2jHj con�gurations of the hidden units. Unfortunately, this calculation is intractable in large,
densely connected networks. This intractability presents a major obstacle to learning parameters
for these networks, as nearly all procedures for statistical estimation require frequent estimates of
the likelihood. The calculations for exact probabilistic inference are beset by the same di�culties.
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Unable to compute P (V ) or work directly with P (HjV ), we will resort to an approximation from
statistical physics known as mean �eld theory.

3. Mean Field Theory

The mean �eld approximation appears under a multitude of guises in the physics literature; indeed,
it is \almost as old as statistical mechanics" (Itzykson & Drou�e, 1991). Let us briey explain how it
acquired its name and why it is so ubiquitous. In the physical models described by Markov networks,
the variables Si represent localized magnetic moments (e.g., at the sites of a crystal lattice), and
the sums

P
j JijSj + hi represent local magnetic �elds. Roughly speaking, in certain cases a central

limit theorem may be applied to these sums, and a useful approximation is to ignore the uctuations
in these �elds and replace them by their mean value|hence the name, \mean �eld" theory. In some
models, this is an excellent approximation; in others, a poor one. Because of its simplicity, however,
it is widely used as a �rst step in understanding many types of physical phenomena.

Though this explains the philological origins of mean �eld theory, there are in fact many ways
to derive what amounts to the same approximation (Parisi, 1988). In this paper we present the
formulation most appropriate for inference and learning in graphical models. In particular, we view
mean �eld theory as a principled method for approximating an intractable graphical model by a
tractable one. This is done via a variational principle that chooses the parameters of the tractable
model to minimize an entropic measure of error.

The basic framework of mean �eld theory remains the same for directed graphs, though we have
found it necessary to introduce extra mean �eld parameters in addition to the usual ones. As in
Markov networks, one �nds a set of nonlinear equations for the mean �eld parameters that can be
solved by iteration. In practice, we have found this iteration to converge fairly quickly and to scale
well to large networks.

Let us now return to the problem posed at the end of the last section. There we found that for
many belief networks, it was intractable to decompose the joint distribution as P (S) = P (HjV )P (V ),
where P (V ) was the likelihood of the evidence V . For the purposes of probabilistic modeling, mean
�eld theory has two main virtues. First, it provides a tractable approximation, Q(HjV ) � P (HjV ),
to the conditional distributions required for inference. Second, it provides a lower bound on the
likelihoods required for learning.

Let us �rst consider the origin of the lower bound. Clearly, for any approximating distribution
Q(HjV ), we have the equality:

lnP (V ) = ln
X
H

P (H;V ) (9)

= ln
X
H

Q(HjV ) �

�
P (H;V )

Q(HjV )

�
: (10)

To obtain a lower bound, we now apply Jensen's inequality (Cover & Thomas, 1991), pushing the
logarithm through the sum over hidden states and into the expectation:

lnP (V ) �
X
H

Q(HjV ) ln

�
P (H;V )

Q(HjV )

�
: (11)

It is straightforward to verify that the di�erence between the left and right hand side of eq. (11) is
the Kullback-Leibler divergence (Cover & Thomas, 1991):

KL(QjjP ) =
X
H

Q(HjV ) ln

�
Q(HjV )

P (HjV )

�
: (12)

Thus, the better the approximation to P (HjV ), the tighter the bound on lnP (V ).
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Anticipating the connection to statistical mechanics, we will refer to Q(HjV ) as the mean �eld
distribution. It is natural to divide the calculation of the bound into two components, both of which
are particular averages over this approximating distribution. These components are the mean �eld
entropy and energy; the overall bound is given by their di�erence:

lnP (V ) �

 
�
X
H

Q(HjV ) lnQ(HjV )

!
�

 
�
X
H

Q(HjV ) lnP (H;V )

!
: (13)

Both terms have physical interpretations. The �rst measures the amount of uncertainty in the mean-
�eld distribution and follows the standard de�nition of entropy. The second measures the average
value2 of � lnP (H;V ); the name \energy" arises from interpreting the probability distributions in
belief networks as Boltzmann distributions3 at unit temperature. In this case, the energy of each
network con�guration is given (up to a constant) by minus the logarithm of its probability under
the Boltzmann distribution. In sigmoid belief networks, the energy has the form

� lnP (H;V ) = �
X
ij

JijSiSj �
X
i

hiSi +
X
i

ln

2
41 + exp

0
@X

j

JijSj + hi

1
A
3
5 ; (14)

as follows from eq. (6). The �rst two terms in this equation are familiar from Markov networks with
pairwise interactions (Hertz, Krogh, & Palmer, 1991); the last term is peculiar to sigmoid belief
networks. Note that the overall energy is neither a linear function of the weights nor a polynomial
function of the units. This is the price we pay in sigmoid belief networks for identifying P (HjV )
as a Boltzmann distribution and the log-likelihood P (V ) as its partition function. Note that this
identi�cation was made implicitly in the form of eqs. (7) and (8).

The bound in eq. (11) is valid for any probability distribution Q(HjV ). To make use of it,
however, we must choose a distribution that enables us to evaluate the right hand side of eq. (11).
Consider the factorized distribution

Q(HjV ) =
Y
i2H

�Si

i (1� �i)
1�Si ; (15)

in which the binary hidden units fSigi2H appear as independent Bernoulli variables with adjustable
means �i. A mean �eld approximation is obtained by substituting the factorized distribution,
eq. (15), for the true Boltzmann distribution, eq. (7). It may seem that this approximation replaces
the rich probabilistic dependencies in P (HjV ) by an impoverished assumption of complete factor-
izability. Though this is true to some degree, the reader should keep in mind that the values we
choose for f�igi2H (and hence the statistics of the hidden units) will depend on the evidence V .

The best approximation of the form, eq. (15), is found by choosing the mean values, f�igi2H ,
that minimize the Kullback-Leibler divergence, KL(QjjP ). This is equivalent to minimizing the gap
between the true log-likelihood, lnP (V ), and the lower bound obtained from mean �eld theory. The

2. A similar average is performed in the E-step of an EM algorithm (Dempster, Laird, & Rubin, 1977); the di�erence
here is that the average is performed over the mean �eld distribution, Q(H jV ), rather than the true posterior,
P (H jV ). For a related discussion, see Neal & Hinton (1993).

3. Our terminology is as follows. Let S denote the degrees of freedom in a statistical mechanical system. The energy

of the system, E(S), is a real-valued function of these degrees of freedom, and the Boltzmann distribution

P (S) =
e��E(S)P
S
e��E(S)

de�nes a probabilitydistributionover the possible con�gurationsof S. The parameter� is the inverse temperature;
it serves to calibrate the energy scale and will be �xed to unity in our discussion of belief networks. Finally, the
sum in the denominator|known as the partition function|ensures that the Boltzmanndistribution is normalized
to unity.
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mean �eld bound on the log-likelihood may be calculated by substituting eq. (15) into the right
hand side of eq. (11). The result of this calculation is

lnP (V ) �
X
ij

Jij�i�j +
X
i

hi�i �
X
i

�
ln

�
1 + e

P
j
JijSj+hi

��
(16)

�
X
i

[�i ln�i + (1� �i) ln(1� �i)] ;

where h�i indicates an expectation value over the mean �eld distribution, eq. (15). The terms in
the �rst line of eq. (16) represent the mean �eld energy, derived from eq. (14); those in the second
represent the mean �eld entropy. In a slight abuse of notation, we have de�ned mean values �i for
the visible units; these of course are set to the instantiated values �i 2 f0; 1g.

Note that to compute the average energy in the mean �eld approximation, we must �nd the
expected value of hln [1 + ezi ]i, where zi =

P
j JijSj + hi is the sum of weighted inputs to the ith

unit in the belief network. Unfortunately, even under the mean �eld assumption that the hidden
units are uncorrelated, this average does not have a simple closed form. This term does not arise in
the mean �eld theory for Markov networks with pairwise interactions; again, it is peculiar to sigmoid
belief networks.

In principal, the average may be performed by enumerating the possible states of pa(Si). The
result of this calculation, however, would be an extremely unwieldy function of the parameters in
the belief network. This reects the fact that in general, the sigmoid belief network de�ned by the
weights Jij has an equivalent Markov network with N th order interactions and not pairwise ones.
To avoid this complexity, we must develop a mean �eld theory that works directly on DAGs.

How we handle the expected value of hln [1 + ezi ]i is what distinguishes our mean �eld theory
from previous ones. Unable to compute this term exactly, we resort to another bound. Note that
for any random variable z and any real number �, we have the equality:

hln[1 + ez]i =


ln
�
e�ze��z(1 + ez)

��
(17)

= �hzi +
D
ln[e��z + e(1��)z]

E
: (18)

We can upper bound the right hand side by applying Jensen's inequality in the opposite direction
as before, pulling the logarithm outside the expectation:

hln[1 + ez]i � �hzi+ ln
D
e��z + e(1��)z

E
: (19)

Setting � = 0 in eq. (19) gives the standard bound: hln(1 + ez)i � lnh1 + ezi. A tighter bound
(Seung, 1995) can be obtained, however, by allowing non-zero values of �. This is illustrated in
Figure 2 for the special case where z is a Gaussian distributed random variable with zero mean and
unit variance. The bound in eq. (19) has two useful properties which we state here without proof:
(i) the right hand side is a convex function of �; (ii) the value of � which minimizes this function
occurs in the interval � 2 [0; 1]. Thus, provided it is possible to evaluate eq. (19) for di�erent values
of �, the tightest bound of this form can be found by a simple one-dimensional minimization.

The above bound can be put to immediate use by attaching an extra mean �eld parameter �i to
each unit in the belief network. We can then upper bound the intractable terms in the mean �eld
energy by

�
ln

�
1 + e

P
j
JijSj+hi

��
� �i

0
@X

j

Jij�j + hi

1
A+ ln

D
e��izi + e(1��i)zi

E
; (20)
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Figure 2: Bound in eq. (19) for the case where z is normally distributed with zero mean and
unit variance. In this case, the exact result is hln(1 + ez)i = 0:806; the bound gives

min�
n
ln[e

1

2
�2 + e

1

2
(1��)2 ]

o
= 0:818. The standard bound from Jensen's inequality occurs

at � = 0 and gives 0:974.

where zi =
P

j JijSj + hi. The expectations inside the logarithm can be evaluated exactly for the
factorial distribution, eq. (15); for example,

he��izii = e��ihi
Y
j

�
1� �j + �je

��iJij
�
: (21)

A similar result holds for he(1��i)zi i. Though these averages are tractable, we will tend not to write
them out in what follows. The reader, however, should keep in mind that these averages do not
present any di�culty; they are simply averages over products of independent random variables, as
opposed to sums.

Assembling the terms in eqs. (16) and (20) gives a lower bound lnP (V ) � LV ,

LV =
X
ij

Jij�i�j +
X
i

hi�i �
X
i

�i

0
@X

j

Jij�j + hi

1
A (22)

�
X
i

ln
D
e��izi + e(1��i)zi

E
+
X
i

[�i ln�i + (1� �i) ln(1 � �i)] ;

on the log-likelihood of the evidence V . So far we have not speci�ed the parameters f�igi2H and
f�ig; in particular, the bound in eq. (22) is valid for any choice of parameters. We naturally seek
the values that maximize the right hand side of eq. (22). Suppose we �x the mean values f�igi2H
and ask for the parameters f�ig that yield the tightest possible bound. Note that the right hand
side of eq. (22) does not couple terms with �i that belong to di�erent units in the network. The
minimization over f�ig therefore reduces to N independent minimizations over the interval [0; 1].
These can be done by any number of standard methods (Press, Flannery, Teukolsky, & Vetterling,
1986).

To choose the means, we set the gradients of the bound with respect to f�igi2H equal to zero.
To this end, let us de�ne the intermediate matrix:

Kij = �
@

@�j
ln
D
e��izi + e(1��i)zi

E
; (23)
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Si

Figure 3: The Markov blanket of unit Si includes its parents and children, as well as the other
parents of its children.

where zi is the weighted sum of inputs to ith unit. Note that Kij is zero unless Sj is a parent
of Si; in other words, it has the same connectivity as the weight matrix Jij . Within the mean �eld
approximation, Kij measures the parental inuence of Sj on Si given the instantiated evidence V .
The degree of correlation (positive or negative) is measured relative to the other parents of Si.

The matrix elements of K may be evaluated by expanding the expectations as in eq. (21); a full
derivation is given in appendix B. Setting the gradient @LV =@�i equal to zero gives the �nal mean
�eld equation:

�i = �

0
@hi +

X
j

[Jij�j + Jji(�j � �j) +Kji]

1
A ; (24)

where �(�) is the sigmoid function. The argument of the sigmoid function may be viewed as an
e�ective input to the ith unit in the belief network. This e�ective input is composed of terms from
the unit's Markov blanket (Pearl, 1988), shown in Figure 3; in particular, these terms take into
account the unit's internal bias, the values of its parents and children, and, through the matrix
Kji, the values of its children's other parents. In solving these equations by iteration, the values of
the instantiated units are propagated throughout the entire network. An analogous propagation of
information occurs in exact algorithms (Lauritzen & Spiegelhalter, 1988) to compute likelihoods in
belief networks.

While the factorized approximation to the true posterior is not exact, the mean �eld equations
set the parameters f�igi2H to values which make the approximation as accurate as possible. This
in turn translates into the tightest mean �eld bound on the log-likelihood. The overall procedure
for bounding the log-likelihood thus consists of two alternating steps: (i) update f�ig for �xed f�ig;
(ii) update f�igi2H for �xed f�ig. The �rst step involves N independent minimizations over the
interval [0; 1]; the second is done by iterating the mean �eld equations. In practice, the steps are
repeated until the mean �eld bound on the log-likelihood converges4 to a desired degree of accuracy.

The quality of the bound depends on two approximations: the complete factorizability of the
mean �eld distribution, eq. (15), and the logarithm bound, eq. (19). How reliable are these ap-
proximations in belief networks? To study this question, we performed numerical experiments on
the three layer belief network shown in Figure 4. The advantage of working with such a small
network (2x4x6) is that true likelihoods can be computed by exact enumeration. We considered the
particular event that all the units in the bottom layer were instantiated to zero. For this event, we
compared the mean �eld bound on the likelihood to its true value, obtained by enumerating the

4. It can be shown that asychronous updates of the mean �eld parameters lead to monotonic increases in the lower
bound (just as in the case of Markov networks).
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Figure 4: Three layer belief network (2x4x6) with top-down propagation of beliefs. To model the
images of handwritten digits in section 4, we used 8x24x64 networks where units in the
bottom layer encoded pixel values in 8x8 bitmaps.
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Figure 5: Histograms of relative error in log-likelihood over 10000 randomly generated three layer
networks. At left: the relative error from the mean �eld approximation; at right: the
relative error if all states in the bottom layer are assumed to occur with equal probability.
The log-likelihood was computed for the event that the all the nodes in the bottom layer
were instantiated to zero.

states in the top two layers. This was done for 10000 random networks whose weights and biases
were uniformly distributed between -1 and 1. Figure 5 (left) shows the histogram of the relative error
in log likelihood, computed as LV = lnP (V )� 1; for these networks, the mean relative error is 1.6%.
Figure 5 (right) shows the histogram that results from assuming that all states in the bottom layer
occur with equal probability; in this case the relative error was computed as (ln 2�6)= lnP (V ) � 1.
For this \uniform" approximation, the root mean square relative error is 22.6%. The large discrep-
ancy between these results suggests that mean �eld theory can provide a useful lower bound on the
likelihood in certain belief networks. Of course, what ultimately matters is the behavior of mean
�eld theory in networks that solve meaningful problems. This is the subject of the next section.

4. Learning

One attractive use of sigmoid belief networks is to perform density estimation in high dimensional
input spaces. This is a problem in parameter estimation: given a set of patterns over particular
units in the belief network, �nd the set of weights Jij and biases hi that assign high probability
to these patterns. Clearly, the ability to compute likelihoods lies at the crux of any algorithm for
learning the parameters in belief networks.
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Figure 6: Relationship between the true log-likelihood and its lower bound during learning. One
possibility (at left) is that both increase together. The other is that the true log-likelihood
decreases, closing the gap between itself and the bound. The latter can be viewed as a
form of regularization.

Mean �eld algorithms provide a strategy for discovering appropriate values of Jij and hi without
resort to Gibbs sampling. Consider, for instance, the following procedure. For each pattern in the
training set, solve the mean �eld equations for f�i; �ig and compute the associated bound on the
log-likelihood, LV . Next, adapt the weights in the belief network by gradient ascent5 in the mean
�eld bound,

�Jij = �
@LV
@Jij

(25)

�hi = �
@LV
@hi

; (26)

where � is a suitably chosen learning rate. Finally, cycle through the patterns in the training set,
maximizing their likelihoods6 for a �xed number of iterations or until one detects the onset of
over�tting (e.g., by cross-validation).

The above procedure uses a lower bound on the log-likelihood as a cost function for training belief
networks (Hinton, Dayan, Frey, & Neal, 1995). The fact that we have a lower bound on the log-
likelihood, rather than an upper bound, is of course crucial to the success of this learning algorithm.
Adjusting the weights to maximize this lower bound can a�ect the true log-likelihood in two ways
(see Figure 6). Either the true log-likelihood increases, moving in the same direction as the bound,
or the true log-likelihood decreases, closing the gap between these two quantities. For the purposes
of maximum likelihood estimation, the �rst outcome is clearly desirable; the second, though less
desirable, can also be viewed in a positive light. In this case, the mean �eld approximation is acting
as a regularizer, steering the network toward simple, factorial solutions even at the expense of lower
likelihood estimates.

We tested this algorithm by building a maximum-likelihood classi�er for images of handwritten
digits. The data consisted of 11000 examples of handwritten digits [0-9] compiled by the U.S. Postal
Service O�ce of Advanced Technology. The examples were preprocessed to produce 8x8 binary
images, as shown in Figure 7. For each digit, we divided the available data into a training set
with 700 examples and a test set with 400 examples. We then trained a three layer network7 (see

5. Expressions for the gradients of LV are given in the appendix B.
6. Of course, one can also incorporate prior distributions over the weights and biases and maximize an approximation

to the log posterior probability of the training set.
7. There are many possible architectures that could be chosen for the purpose of density estimation; we used layered

networks to permit a comparison with previous benchmarks on this data set.
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Figure 7: Binary images of handwritten digits: two and �ve.

0 1 2 3 4 5 6 7 8 9
0 388 2 2 0 1 3 0 0 4 0
1 0 393 0 0 0 1 0 0 6 0
2 1 2 376 1 3 0 4 0 13 0
3 0 2 4 373 0 12 0 0 6 3
4 0 0 2 0 383 0 1 2 2 10
5 0 2 1 13 0 377 2 0 4 1
6 1 4 2 0 1 6 386 0 0 0
7 0 1 0 0 0 0 0 388 3 8
8 1 9 1 7 0 7 1 1 369 4
9 0 4 0 0 0 0 0 8 5 383

Table 1: Confusion matrix for digit classi�cation. The entry in the ith row and jth column counts
the number of times that digit i was classi�ed as digit j.

Figure 4) on each digit, sweeping through each training set �ve times with learning rate � = 0:05.
The networks had 8 units in the top layers, 24 units in the middle layer, and 64 units in the bottom
layer, making them far too large to be treated with exact methods.

After training, we classi�ed the digits in each test set by the network that assigned them the
highest likelihood. Table 1 shows the confusion matrix in which the ijth entry counts the number of
times digit i was classi�ed as digit j. There were 184 errors in classi�cation (out of a possible 4000),
yielding an overall error rate of 4.6%. Table 2 gives the performance of various other algorithms on
the same partition of this data set. Table 3 shows the average log-likelihood score of each network
on the digits in its test set. (Note that these scores are actually lower bounds.) These scores are
normalized so that a network with zero weights and biases (i.e., one in which all 8x8 patterns are
equally likely) would receive a score of -1. As expected, digits with relatively simple constructions
(e.g., zeros, ones, and sevens) are more easily modeled than the rest.

Both measures of performance|error rate and log-likelihood score|are competitive with previ-
ously published results (Hinton, Dayan, Frey, & Neal, 1995) on this data set. The success of the
algorithm a�rms both the strategy of maximizing a lower bound and the utility of the mean �eld
approximation. Though similar results can be obtained via Gibbs sampling, this seems to require
considerably more computation than methods based on maximizing a lower bound (Frey, Dayan, &
Hinton, 1995).
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algorithm classi�cation error
nearest neighbor 6.7%
back-propagation 5.6%

wake-sleep 4.8%
mean �eld 4.6%

Table 2: Classi�cation error rates for the data set of handwritten digits. The �rst three were reported
by Hinton et al (1995).

digit log-likelihood score
0 -0.447
1 -0.296
2 -0.636
3 -0.583
4 -0.574
5 -0.565
6 -0.515
7 -0.434
8 -0.569
9 -0.495
all -0.511

Table 3: Normalized log-likelihood score for each network on the digits in its test set. To obtain the
raw score, multiply by 400� 64 � ln 2. The last row shows the score averaged across all
digits.

5. Discussion

Endowing networks with probabilistic semantics provides a uni�ed framework for incorporating
prior knowledge, handling missing data, and performing inference under uncertainty. Probabilistic
calculations, however, can quickly become intractable, so it is important to develop techniques that
approximate probability distributions in a exible manner. This is especially true for networks with
multilayer architectures and large numbers of hidden units. Exact algorithms and Gibbs sampling
methods are not generally practical for such networks; approximations are required.

In this paper we have developed a mean �eld approximation for sigmoid belief networks. As
a computational tool, our mean �eld theory has two main virtues: �rst, it provides a tractable
approximation to the conditional distributions required for inference; second, it provides a lower
bound on the likelihoods required for learning.

The problem of computing exact likelihoods in belief networks is NP-hard (Cooper, 1990); the
same is true for approximating likelihoods to within a guaranteed degree of accuracy (Dagum &
Luby, 1993). It follows that one cannot establish universal guarantees for the accuracy of the mean
�eld approximation. For certain networks, clearly, the mean �eld approximation is bound to fail|it
cannot capture logical constraints or strong correlations between uctuating units. Our preliminary
results, however, suggest that these worst-case results do not apply to all belief networks. It is
worth noting, moreover, that all the above quali�cations apply to Markov networks, and that in this
domain, mean �eld methods are already well-established.
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The idea of bounding the likelihood in sigmoid belief networks was introduced in a related
architecture known as the Helmholtz machine (Hinton, Dayan, Neal, & Zemel, 1995). The formalism
in this paper di�ers in a number of respects from the Helmholtz machine. Most importantly, it
enables one to compute a rigorous lower bound on the likelihood. This cannot be said for the
wake-sleep algorithm (Frey, Hinton, & Dayan, 1995), which relies on sampling-based methods, or
the heuristic approximation of Dayan et al (1995), which does not guarantee a rigorous lower bound.
Also, our mean �eld theory|which takes the place of the \recognition model" of the Helmholtz
machine|applies generally to sigmoid belief networks with or without layered structure. Moreover,
it places no restrictions on the locations of visible units; they may occur anywhere within the
network|an important feature for handling problems with missing data. Of course, these advantages
are not accrued without extra computational demands and more complicated learning rules.

In recent work that builds on the theory presented here, we have begun to relax the assumption of
complete factorizability in eq. (15). In general, one would expect more sophisticated approximations
to the Boltzmann distribution to yield tighter bounds on the log-likelihood. The challenge here is to
�nd distributions that allow for correlations between hidden units while remaining computationally
tractable. By tractable, we mean that the choice of Q(HjV ) must enable one to evaluate (or at
least upper bound) the right hand side of eq. (13). Extensions of this kind include mixture models
(Jaakkola & Jordan, 1996) and/or partially factorized distributions (Saul & Jordan, 1995) that
exploit the presence of tractable substructures in the original network. Our approach in this paper
has been to work out the simplest mean �eld theory that is computationally tractable, but clearly
better results will be obtained by tailoring the approximation to the problem at hand.

Appendix A. Sigmoid versus Noisy-OR

The semantics of the sigmoid function are similar, but not identical, to the noisy-OR gates (Pearl,
1988) more commonly found in the belief network literature. Noisy-OR gates use the weights in
the network to represent independent causal events. In this case, the probability that unit Si is
activated is given by

P (Si = 1jpa(Si)) = 1�
Y
j

(1� pij)
Sj (27)

where pij is the probability that Sj = 1 causes Si = 1 in the absence of all other causal events. If
we de�ne the weights of a noisy-OR belief network by �ij = � ln(1� pij), it follows that

p(Sijpa(Si)) = �

0
@X

j

�ijSj

1
A ; (28)

where
�(z) = 1� e�z (29)

is the noisy-OR gating function. Comparing this to the sigmoid function, eq. (3), we see that
both model P (Sijpa(Si)) as a monotonically increasing function of a sum of weighted inputs. The
main di�erence is that in noisy-OR networks, the weights �ij are constrained to be positive by an
underlying set of probabilities, pij. Recently, Jaakkola and Jordan (1996b) have developed a mean
�eld approximation for noisy-OR belief networks.

Appendix B. Gradients

Here we provide expressions for the gradients that appear in eqs. (23), (25) and (26). As usual, let
zi =

P
j JijSj + hi denote the sum of inputs into unit Si. Under the factorial distribution, eq. (15),
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we can compute the averages:

he��izii = e��ihi
Y
j

�
1� �j + �je

��iJij
�
; (30)

he(1��i)zii = e(1��i)hi
Y
j

h
1� �j + �je

(1��i)Jij
i
: (31)

For each unit in the network, let us de�ne the quantity

�i =
he(1��i)zii

he��izi + e(1��i)zii
: (32)

Note that �i lies between zero and one. With this de�nition, we can write the matrix elements in
eq. (23) as:

Kij =
(1� �i)(1� e��iJij )

1� �j + �je��iJij
+

�i(1� e(1��i)Jij )

1� �j + �je(1��i)Jij
: (33)

The gradients in eqs. (25) and (26) are found by similar means. For the weights, we have

@LV
@Jij

= �(�i � �i)�j +
(1� �i)�i�je��iJij

1� �j + �je��iJij
�

�i(1� �i)�je(1��i)Jij

1� �j + �je(1��i)Jij
: (34)

Likewise, for the biases, we have
@LV
@hi

= �i � �i: (35)

Finally, we note that one may obtain simpler gradients at the expense of introducing a weaker bound
than eq. (19). This can be advantageous when speed of computation is more important than the
quality of the bound. All the experiments in this paper used the bound in eq. (19).
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