
Model-Based Machine Learning
Christopher M. Bishop

Microsoft Research, Cambridge, CB3 0FB, U.K.
Christopher.Bishop@microsoft.com

Several decades of research in the field of machine learning have resulted in a multitude
of different algorithms for solving a broad range of problems. To tackle a new application
a researcher typically tries to map their problem onto one of these existing methods,
often influenced by their familiarity with specific algorithms and by the availability
of corresponding software implementations. In this paper we describe an alternative
methodology for applying machine learning, in which a bespoke solution is formulated for
each new application. The solution is expressed through a compact modelling language,
and the corresponding custom machine learning code is then generated automatically.
This model-based approach offers several major advantages, including the opportunity
to create highly tailored models for specific scenarios, as well as rapid prototyping and
comparison of a range of alternative models. Furthermore, newcomers to the field of
machine learning don’t have to learn about the huge range of traditional methods, but
instead can focus their attention on understanding a single modelling environment.

In this paper we show how probabilistic graphical models, coupled with efficient
inference algorithms, provide a very flexible foundation for model-based machine learning,
and we outline a large-scale commercial application of this framework involving tens
of millions of users. We also describe the concept of probabilistic programming as a
powerful software environment for model-based machine learning, and we discuss a
specific probabilistic programming language called Infer.NET, which has been widely
used in practical applications.

Key words: Probabilistic inference; machine learning; graphical models; factor graphs; Bayes’ theorem;
Infer.NET; probabilistic programming.

1. Introduction

The origins of the field of machine learning go back at least to the middle of
the last century. However, it is only in the early 1990s that the field began to
have widespread practical impact. Over the last decade in particular, there has
been a rapid increase in the number of successful applications, ranging from web
search to autonomous vehicles, and from medical imaging to speech recognition.
This has been driven by the increased availability of inexpensive computers, the
development of improved machine learning algorithms, greater interest in the area
from both the research community and the commercial sector, and most notably
by the ‘data deluge’ characterized by an exponentially increasing quantity of data
being gathered and stored on the world’s computers.

To appear in Philosophical Transactions of the Royal Society (2012).

2 C. M. Bishop

During this time, large numbers of machine learning techniques have been
developed, with names such as logistic regression, neural networks, decision trees,
support vector machines, Kalman filters, and many others. Contributions to
this multi-disciplinary effort have come from the fields of statistics, artificial
intelligence, optimization, signal processing, speech, vision, and control theory as
well as from the machine learning community itself. In the traditional approach
to solving a new machine learning problem, the practitioner must select a suitable
algorithm or technique from the set with which they are familiar, and then
either make use of existing software, or write their own implementation. If the
technique requires modification to meet the particular requirements of their
specific application, then they must be sufficiently familiar with the details of
the software to make the required changes.

An example of a traditional machine learning technique is the two-layer
neural network [Bishop 2005], illustrated diagrammatically in Figure 1. The neural

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Figure 1. A neural network with two layers of adjustable parameters, in which each parameter
corresponds to one of the links in the network.

network can be viewed as a flexible non-linear parametric function from a set of
inputs {xi} to a set of outputs {yk}. First, linear combinations of the inputs are
formed and these are transformed using a nonlinear function h(·) so that

zj = h

(∑
i

w
(1)
ji xi

)
(1.1)

Model-Based Machine Learning 3

where h(·) is often chosen to be the ‘tanh’ function. These intermediate variables
are then linearly combined to produce the outputs

yk =
∑
j

w
(2)
kj zj . (1.2)

The variables {w(1)
ji } and {w(2)

kj } are the adjustable parameters of the network,
and their values are set by minimizing an error function defined with respect to
a set of training examples, each of which consists of a set of values for the input
variables together with the corresponding desired values for the output variables.
In a typical application of a neural network, the parameters are tuned using
a training data set, with the number of hidden units optimized using separate
validation data. The network parameters are then fixed, and the neural network
is then applied to new data in which the network makes predictions for the outputs
given new values for the input variables.

A recent example of a very successful application of traditional machine
learning is the skeletal tracking system in Kinect [Shotton et al. 2011], which uses
the signals from a depth video camera to perform real-time tracking of the full
human skeleton on low-cost hardware. It is based on a technique known as random
forests of decision trees, and the training data consists of one million depth images
of human body poses, each of which is labelled with body parts (right hand, left
knee, etc). Again, this example follows a typical work flow for traditional machine
learning applications. The parameters of the system, in this case the selected
features and thresholds at the nodes of the decision trees, as well as the depths of
the trees themselves, are determined in the laboratory during the training phase.
Once the performance of the system is satisfactory, the parameters are then fixed,
and identical copies of the trained system are provided to its millions of users.

While the traditional approach to machine learning has resulted in numerous
successful applications, and will undoubtedly continue to be an important
paradigm for many years to come, it suffers from some notable limitations.
Foremost of these is the difficulty of adapting a standard algorithm to match
the particular requirements of a specific application. While some problems can
be tackled using off-the-shelf machine learning methods, others will require
appropriate modifications, which in turn requires an understanding both of the
underlying algorithms and of the software implementation. Moreover, there are
many applications for which it is difficult to cast a solution in the form of a
standard machine learning algorithm. The Bayesian ranking problem, discussed
in Section 6, in which the set of variables and their connectivity grows through
time in a way that cannot be predicted in advance, is a good example.

Furthermore, the popularity and importance of machine learning means that
it has moved beyond the domain of the machine learning community to the
point where many researchers whose expertise lies in other fields, such as the
physical and biological sciences, statistics, medicine, finance, and many others, are
interested in solving practical problems using machine learning techniques. The
variety of algorithms, as well as the complex nomenclature, can make the field
challenging for newcomers. More broadly, the ‘data revolution’ is creating many
new opportunities for application developers to exploit the power of learning from
data, few of whom will have a background in machine learning.

4 C. M. Bishop

With the explosion in the quantity of data in the world, and the opportunities
afforded by cloud computing whereby many data sets reside in data centres
where they can be combined and where there is access to substantial computing
resources, there is a significant opportunity to broaden the impact of machine
learning. We therefore turn to an alternative paradigm for the creation of
machine learning solutions, in order to address these issues. After summarizing
the goals of model-based machine learning in Section 2 we show how these may
be realised through the adoption of a Bayesian viewpoint (Section 3) coupled
with probabilistic graphical models (Section 4) and deterministic approximate
inference algorithms (Section 5). In Section 6 we consider a large-scale case-
study based on this framework, and in Section 7 we explain how probabilistic
programming languages provide a powerful software environment for model-based
machine learning, before drawing conclusions in Section 8.

2. Model-Based Machine Learning

The central idea of the model-based approach to machine learning is to create a
custom bespoke model tailored specifically to each new application. In some cases
the model (together with an associated inference algorithm) might correspond to a
traditional machine learning technique, while in many cases it will not. Typically
model-based machine learning will be implemented using a model specification
language in which the model can be defined using compact code, from which the
software implementing that model can be generated automatically.

The key goals of a model-based approach include:

1. The ability to create a very broad range of models, along with suitable
inference or learning algorithms, in which many traditional machine learning
techniques appear as special cases.

2. Each specific model can be tuned to the individual requirements of the
particular application: for example, if the application requires a combination
of clustering and classification in the context of time series data, it is
not necessary to mash together traditional algorithms for each of these
elements (Gaussian mixtures, neural networks, and hidden Markov models,
for instance), but instead a single, integrated model capturing the desired
behaviour can be constructed.

3. Segregation between the model and the inference algorithm: if changes are
made to the model, the corresponding modified inference software is created
automatically. Equally, advances in techniques for efficient inference are then
available to a broad range of models.

4. Transparency of functionality: the model is described by compact code
within a generic modelling language, and so the structure of the model is
readily apparent. Such modelling code can readily be shared and extended
within a community of model builders.

5. Pedagogy: newcomers to the field of machine learning have only to learn a
single modelling environment in order to be able to access a wide range of

Model-Based Machine Learning 5

modelling solutions. Since many traditional methods will be subsumed as
special cases of the model-based environment, there is no need for newcomers
to study these individually, or indeed to learn the specific terminology
associated with them.

A variety of different approaches could be envisaged for achieving the aims of
model-based machine learning. In this paper we focus on a powerful framework
based on Bayesian inference in probabilistic graphical models, and so we begin
with a brief introduction to the Bayesian view of machine learning.

3. Bayesian Inference

In many traditional machine learning methods, the adaptive parameters of the
model are assigned point values which are determined by using an optimization
algorithm to minimize a suitable cost function. By contrast, in a Bayesian
setting unknown variables are described using probability distributions, and
the observation of data allows these distributions to be updated through
Bayes’ theorem. More generally, the Bayesian viewpoint involves the consistent
quantification of uncertainty using probabilities. For each new observation or data
point the current distribution can be viewed as a prior distribution, from which
Bayes’ theorem allows the corresponding posterior distribution to be evaluated
by incorporating the effect of the new data point. This posterior distribution in
turn becomes the prior for use with the next observation. Note that this process is
intrinsically sequential and is therefore well suited to online learning. Parameter
optimization, which is widely used in traditional machine learning, is replaced
in the Bayesian setting by inference in which the distributions over quantities of
interest are evaluated, conditioned on the observed data.

A powerful feature of the Bayesian framework is the ease with which
hierarchical models can be constructed. For example, we may wish to learn from
data derived from a community of people while also personalizing the results for
each individual by adapting to their specific data. This is readily achieved by
using a model in which the individuals have their own parameter values whose
prior distributions are governed by hyper-parameters which themselves are drawn
from a hyper-prior that is shared across the population.

Bayesian methods are at their most powerful when the supply of data is
limited, and the resulting uncertainty in model parameters is significant. In such
settings, traditional methods based on parameter optimization are prone to suffer
from ‘over-fitting’, in which parameters are tuned to noise on the data, leading to
poor predictions.

For large data sets, the probability distributions in a Bayesian model can
in some cases become relatively narrow and the model can give results which
are similar to those obtained using traditional point-based methods. Care must
be taken, however, to understand the meaning of ‘large’ in this context. Here
the size of the data set does not refer to its computational size, measured in
bytes, but instead its statistical size in relation to the model being considered.
For example, in a problem where it is necessary to predict the value of a single
output variable y given the value of a single input value x, and where it is
known that these two variables have a linear relationship with the addition of

6 C. M. Bishop

a low level of Gaussian noise, then a relatively modest number of data points
(say 10 to 20) may be sufficient to give accurate predictions with little residual
uncertainty, since in the absence of noise just two points would be sufficient to
determine the linear relationship. Such a data set is computationally small but
statistically large. By contrast, a data set consisting of a million images, each of
several mega-pixels, containing labelled objects (cars, bicycles, animals, etc.) will
be computationally large. However, when used for object recognition, such a data
set may be statistically small in that it may contain only a tiny fraction of the
possible combinations of object class, object size and orientation, object colour,
lighting, occlusion, and so on.

Many of the new applications for machine learning arising from the data
explosion are characterized by data sets which are computationally large
but statistically small. There is therefore a need to develop methods for
Bayesian inference which are computationally efficient and which scale well
to computationally large data sets. Before discussing such methods, we first
introduce a graphical framework which can be used to construct models.

4. Probabilistic Graphical Models

In a Bayesian setting, a ‘model’ consists of a specification of the joint distribution
over all of the random variables in the problem

p(x1, . . . , xK) (4.1)

where {x1, . . . , xK} includes any ‘parameters’ in the model as well as any
latent (i.e. hidden) variables, along with the variables whose values are to be
observed or predicted. Working with fully flexible joint distributions is, in general,
intractable, and inevitably we must deal with structured models. One very flexible
framework for specifying such structure is given by probabilistic graphical models
[Pearl 1988, Koller and Friedman 2009]. In this article we focus on a particular
form of graphical model based on directed acyclic graphs (DAGs). These represent
a pictorial way of expressing how the joint distribution is factored into the product
of distributions over smaller subsets of variables.

Consider a general distribution over three variables a, b, and c. Using the
product rule of probability [Bishop 2005] this can be factorized, without loss of
generality, in the form

p(a, b, c) = p(c|a, b)p(b|a)p(a). (4.2)

Here the notation p(x|y) denotes a conditional probability in which the
distribution of x depends on the value of y. Note that we have not yet specified
whether these variables are continuous or discrete, nor have we specified the
specific form of the various factors on the right hand side of (4.2), such as
Gaussian, Bernoulli or gamma distributions. The decomposition is therefore very
general and applies to a whole family of models. We now represent the right-
hand side of (4.2) in terms of a simple graphical model as shown in Figure 2. To
construct this graph we first introduce a node for each of the random variables a,
b, and c and associate each node with the corresponding conditional distribution
on the right-hand side of (4.2). Then, for each conditional distribution we add
directed links (arrows) from whichever other nodes correspond to the variables on

Model-Based Machine Learning 7

a

b

c

Figure 2. A directed graphical model representing the joint probability distribution over three
variables a, b, and c, corresponding to the decomposition on the right-hand side of (4.2).

which that distribution is conditioned. Thus for the factor p(c|a, b), there will be
links from nodes a and b to node c, for the factor p(b|a) there is a single link from
node a to node b, and for the factor p(a) there will be no incoming links. If there
is a link going from a node a to a node b, then we say that node a is the parent
of node b, and we say that node b is the child of node a.

So far, we have worked with completely general joint distributions, so that
the decompositions, and their representations as fully connected graphs, will be
applicable to any choice of distribution. However, it is the absence of links in the
graph that conveys interesting information about the properties of the class of
distributions that the graph represents. Consider the graph shown in Figure 3.
This graph represents a factorization of the joint probability distribution in terms

x1

x2 x3

x4 x5

x6 x7

Figure 3. A directed acyclic graph over 7 variables. This graph expresses a decomposition of the
joint distribution given by (4.3).

of the product of a set of conditional distributions, one for each node in the graph.
Each such conditional distribution will be conditioned only on the parents of the

8 C. M. Bishop

corresponding node in the graph. For instance, x5 will be conditioned on x1 and
x3. The joint distribution of all seven variables is therefore given by

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5). (4.3)

This is not a fully connected graph because, for instance, there is no link from x1
to x2 or from x3 to x7.

This factorization is readily extended to K variables, in which the joint
distribution is given by

p(x) =
K∏
k=1

p(xk|pak) (4.4)

where pak denotes the set of parents of xk, and x= {x1, . . . , xK}.
The key point of this representation is that it allows the joint distribution over

the potentially very large set of variables in the problem (millions of variables
in some applications) to be expressed in terms of the product of factors each
of which typically depends only on a small subset of variables. This produces
a substantial computational simplification and renders the models tractable.
Analogous simplifications are a key aspect of traditional machine learning methods
as well.

In the approach to model-based machine learning discussed in this paper,
we construct a probabilistic model expressed as a directed graph. The structure
of the graph captures our assumptions about the plausible class of distributions
which could be relevant to our application. The easiest way to understand the
interpretation of the graph is to imagine generating synthetic data by ancestral
sampling from the graph. This is called the generative viewpoint, and can be
illustrated by considering Figure 3. We draw a sample at each of the nodes in
order, using the probability distribution at that node. This starts by drawing a
value from the distribution p(x1), so that the random variable x1 takes a specific
value x̂1. Likewise for x̂2 and x̂3. Next x4 is sampled from p(x4|x̂1, x̂2, x̂3) in which
the parent variables are set to their sampled values. This process is continued until
we have a sampled value for each of the variables.

As a specific example of a graphical model, consider the hidden Markov
model or HMM [Rabiner 1989] which can be represented using the probabilistic
graphical model shown in Figure 4. This model is widely used in speech recognition

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Figure 4. Graphical model representation of a hidden Markov model. This same graph also
represents a linear dynamical system. Here the shaded nodes represent observed variables, i.e.
ones whose values are fixed by the data set.

Model-Based Machine Learning 9

[Jelinek 1997], natural language modelling [Manning and Schütz 1999], analysis
of biological sequences [Durbin et al. 1998], and many other fields. The hidden
Markov model can be applied to data sets which consist of a sequence of
observed vectors x1,x2, The model assumes that there is a latent (hidden)
process involving a Markov chain of unobserved discrete variables z1, z2,
Each observed value xk depends only on the latent variable zk at the same
time step. Inference in this model can be done efficiently using the forward-
backward algorithm [Rabiner 1989]. It is also possible to consider the same
graphical structure but with continuous latent variables based on Gaussian
distributions. In the case of Figure 4 this leads to linear dynamical systems
[Roweis and Ghahramani 1999]. Inference for this model corresponds to the
Kalman filter and the Kalman smoother algorithms [Kalman 1960, Minka 1998,
Bishop 2005].

One of the most powerful aspects of probabilistic graphical models is the
relative ease with which a model can be customized to a specific application, or
modified if the requirements of the application change. This can be illustrated by
looking at some variants of the hidden Markov model.

One possible extension to the basic hidden Markov model involves the
inclusion of additional links to give an autoregressive hidden Markov model as
shown in Figure 5. In this model, the observed value xn at step n depends not

zn−1 zn zn+1

xn−1 xn xn+1

Figure 5. An extension of the model in Figure 4 to include auto-regressive dependencies.

only on the hidden variable zn but also on previous observed values. Another
development of the hidden Markov model is to include ‘inputs’ as well as ‘outputs’,
for example using the graphical structure shown in Figure 6. Yet another variant
is the factorial hidden Markov model [Ghahramani and Jordan 1997], shown in
Figure 7. Here there are multiple hidden processes (only two are shown in the
case of Figure 7) and the output at a particular time step depends on all of the
hidden states at that time. This can be viewed as a special case of an HMM with
restricted structure in the hidden process, and this structure can be exploited
to give more efficient inference. An interesting development of this idea is the
switching state-space model [Ghahramani and Hinton 1998], in which there are
multiple independent Markov chains of latent variables, and the distribution of
the observed variable at a given time step is conditional on the state of only one
of those chains. The particular chain responsible at each step is itself determined

10 C. M. Bishop

zn−1 zn zn+1

xn−1 xn xn+1

un−1 un un+1

Figure 6. An extension of the model in Figure 4 to include input variables as well as outputs.

z
(1)
n−1 z

(1)
n z

(1)
n+1

z
(2)
n−1 z

(2)
n

z
(2)
n+1

xn−1 xn xn+1

Figure 7. An extension of the model in Figure 4 for multiple hidden Markov processes.

by the state of another discrete hidden Markov process. The key point here is
that many variants are possible, and in particular a new model can readily be
developed which is tailored to each particular application.

A high proportion of the standard techniques used in traditional machine
learning can be expressed as special cases of the graphical model framework,
coupled with appropriate inference algorithms. For example, principal component
analysis (PCA), factor analysis, logistic regression, Gaussian mixtures, and similar
models can all be represented using simple graphical structures. These can
then readily be combined, for example to form a mixture of probabilistic PCA
models. To construct and use these models within a model-based machine learning
framework it is not necessary to know their names or be familiar with the specific
literature on their properties.

Note that for the detailed design of models, it is often more convenient to
use a richer graphical framework called factor graphs [Kschischang et al. 2001,

Model-Based Machine Learning 11

Bishop 2005] which can represent a superset of directed graphs. Due to lack of
space we will not discuss factor graphs further in this paper.

So far we have assumed that the structure of the graph is determined by
the user. In practice, there may be some uncertainty over the graph structure,
for example whether particular links should be present or not, and so there
is interest in being able to determine such structure from data. A powerful
graphical technique to help with this is called gates [Minka and Winn 2008] which
allows random variables to switch between alternative graph structures, thereby
introducing a higher-level graph which implicitly includes multiple underlying
graph structures. Running inference on the gated graph then gives posterior
distributions over different structures, conditioned on the observed data.

5. Approximate Inference Algorithms

As we have seen, a probabilistic model defines a joint distribution over all of the
variables in our application. We can partition these variables into those which are
observed x (the data), those whose value we wish to know z, and the remaining
latent variables w. The joint distribution can therefore be written as p(x, z,w).
If we had not observed x, then the marginal distribution over z would be given
by

p(z) =
∑
x

∑
w

p(x, z,w). (5.1)

Here we assume that the variables are discrete, but the discussion in this
paper applies equally to continuous variables, or to a combination of discrete
and continuous variables, in which case the summations are replaced, where
appropriate, by integrations.

Observing that x takes a specific value x̂ allows us to compute the conditional
distribution

p(z|x= x̂)∝
∑
w

p(x= x̂, z,w). (5.2)

Here the notation x= x̂ denotes that the random variable x takes the specific
value x̂. If desired, the resulting distribution can be normalized. We can view
(5.1) as a prior distribution defined before the data is observed, with (5.2) as the
corresponding posterior distribution. The change in distribution in going from the
prior to the posterior reflects the information gained as a result of observing the
data, and represents the modern Bayesian perspective on what it means for a
machine to “learn from data”.

In most applications we limit our attention to the determination of the
posterior marginals of individual variables of the form

p(zi|x= x̂)∝
∑

{zj ̸=i}

∑
w

p(x= x̂, z,w) (5.3)

for each of the variables zi which comprise z.
For essentially all problems of practical interest, the exact evaluation of (5.2) or

(5.3) is infeasible. We must therefore resort to approximations, which themselves

12 C. M. Bishop

need to be computationally efficient while achieving sufficient accuracy for the
particular application.

Let us begin by looking at the question of computational efficiency. Consider
the case of a model with M discrete latent variables comprising the vector w, each
having cardinality K. The summation over w in (5.2) then involves KM terms,
and so the storage and computational requirements grow exponentially with the
number of variables. Even for binary variables, this become intractable for many
real-world applications which may involve thousands or millions of variables.

We can often improve the situation dramatically by making use of structure
within the model. Consider a model specified by a directed graph, in which the
joint distribution has a factorization specified by (4.4). If the individual factors
depend only on small subsets of the variables then we can exploit the factorization
to obtain a more efficient inference procedure. To illustrate this consider a toy
example involving two binary variables a and b, and a function given simply by
the product ab. If we sum this function over all values of a and b we obtain∑

a

∑
b

ab= a1b1 + a1b2 + a2b1 + a2b2. (5.4)

We see that evaluation of the right hand side requires seven operations (four
multiplications and three additions). However, we can exploit the fact that the
function ab factorizes into the product of a function of a and a function of b to
enable us to rewrite (5.4) in the analytically equivalent form∑

a

∑
b

ab= (a1 + a2)(b1 + b2) (5.5)

which now only requires three computational steps (two additions and one
multiplication). We have exploited the factorization structure to exchange
summation and multiplication and thereby achieve a form which is analytically
equivalent but computationally more efficient.

Now consider a more complex example consisting of a chain of nodes, as
shown in Figure 8. Again, suppose the chain has M discrete variables each of

Figure 8. A simple Markov chain of variables.

cardinality K, and that we wish to calculate the marginal distribution of xM .
A naive calculation would involve evaluation of the joint distribution and then
marginalization over the unwanted variables

p(xM) =
∑
x1

· · ·
∑
xM−1

p(x1, . . . ,xM) (5.6)

which, if evaluated directly, incurs storage and computational cost which are both
exponential in the length of the chain.

Model-Based Machine Learning 13

To obtain a more efficient inference procedure we make use of the factorization
of the joint distribution, given by

p(x1, . . . ,xM) = p(x1)
M∏

m=2

p(xm|xm−1) (5.7)

which is obtained by applying (4.4) to the graph in Figure 8. Substituting (5.7)
into (5.6), and exchanging the order of summations and products, we obtain

p(xM) =
∑
xM−1

p(xM |xM−1) · · ·
∑
x2

p(x3|x2)
∑
x1

p(x2|x1)p(x1). (5.8)

Here the sum over x1 is evaluated first, and involves only the distributions p(x2|x1)
and p(x1). This step therefore requires storage and computation which is only
O(K2). The resulting quantity is a function only of x2 and is then multiplied by
p(x3|x2) and then summed over x2, which again is O(K2) in computation and
storage. The process is repeated down the chain, giving an overall computational
cost which is O(MK2). Thus, by using the factorization of the joint distribution
we have reduced the computation from one which is exponential in the length of
the chain to one which is linear in the length of the chain. Note that this is still
an exact calculation.

This procedure can be interpreted as a message-passing scheme in which the
quantity

µx1→x2(x2)≡
∑
x1

p(x2|x1)p(x1) (5.9)

can be viewed as a message being sent from node x1 in the graph to node x2.
Similarly, a general step in the calculation can be expressed as the evaluation of
an outgoing message which is constructed from an incoming message combined
with a local conditional distribution

µxm→xm+1(xm+1) =
∑
xm

p(xm+1|xm)µxm−1→xm(xm). (5.10)

Thus the global calculation can be broken down into local calculations involving
messages passed between adjacent nodes in the chain. In this particular example,
a sequence of messages is passed from one end of chain to the other.

This approach can readily be generalized to an arbitrary graph that has no
loops [Pearl 1988, Bishop 2005]. In this case the marginal distributions of all of the
unobserved nodes can be evaluated using a two-stage message-passing schedule
as follows. Any one of the nodes is first designated as the ‘root’. Messages are
then passed sequentially out from the root via all other nodes to the ‘leaves’.
A second set of messages is then passed from the leaf nodes back to the root
node. At the end of this second pass each link will have seen one message
pass in each direction, and each node will have received sufficient information
to be able to compute its marginal distribution, conditioned on any observed
variables. Again, the computational cost scales linearly in the size of the graph.
A particular instance of this algorithm is the forward-backward algorithm for
finding the posterior marginals in a hidden Markov model, used to learn the
parameters of the model [Rabiner 1989]. Another special case is given by the

14 C. M. Bishop

Kalman filter (forward pass) and Kalman smoother (backward pass) algorithms
for linear dynamical systems [Minka 1998, Bishop 2005].

For graphs with loops, the situation is more complex. Exact inference
can still be performed using techniques such as the junction tree algorithm
[Lauritzen and Spiegelhalter 1988] but the computational cost can become
prohibitive, depending on the structure of the graph. An alternative approach,
known as loopy belief propagation [Frey and MacKay 1998] uses the same message-
passing technique as discussed above for tree-structured graphs, but simply
iterates the messages to allow for the fact that, with loops present, a standard
two-pass schedule does not lead to exact marginals. Although this process may
seem ad-hoc, it has been found to yield good results in many applications.

So far we have assumed that the local messages at each node can be
computed exactly. While this is typically true for discrete nodes, for other
distributions a closed-form evaluation of the messages is often not possible, and
it becomes necessary to resort to approximations. One class of approximation
scheme is based on sampling using techniques such as Markov chain Monte
Carlo (MCMC) [Metropolis et al. 1953]. A very simple, though widely applicable,
MCMC method is Gibbs sampling. Two advantages of Monte Carlo methods are
their broad applicability to a wide range of distributions, and that many of them
asymptotically give exact inference in the limit of infinite compute resources.
In practice, however, Monte Carlo methods are computationally expensive, and
typically do not scale to the large data sets encountered in many technological
applications, particularly those involving internet-scale data sets. We therefore
turn instead to an alternative class of inference algorithms based on deterministic
approximations.

Here we consider a specific approximation framework called Expectation
Propagation [Minka 2001]. The local messages are approximated through
minimization of the Kullback-Leibler divergence given by

KL(p∥q) =−
∫
p(z) ln

{
q(z)

p(z)

}
dz (5.11)

where q(z) represents a family of approximating distributions. The Kullback-
Leibler divergence measures the extent to which the distribution q(z) differs from
the given distribution p(z), and has the property KL(p∥q)> 0, with equality if, and
only if, q(·) = p(·). We shall see an example of the application of this procedure in
the next section. For graphs with loops, the message-passing procedure can again
be continued iteratively until some stopping criterion is satisfied.

There are many other deterministic approximation schemes such
as variational message passing [Winn and Bishop 2005], tree-reweighted
message passing [Wainwright et al. 2005], fractional belief propagation
[Wiegerinck and Heskes 2003], and power EP [Minka 2004]. Furthermore it
has been shown [Minka 2005] that a broad range of message passing algorithms
can be derived from a common framework involving the minimization of a
generalization of the Kullback-Leibler divergence known as the alpha family of
divergences.

Model-Based Machine Learning 15

6. Case Study: Bayesian Skill Rating

We now consider a real-world example of the application of the framework
of graphical models and approximate deterministic inference discussed in the
previous sections. The model is known as TrueSkill [Herbrich et al. 2007] and
it addresses the problem of determining the skill ratings of players in a series of
competitive games. It generalizes the widely-used Elo system [Elo 1978] that is
used, for example, in international chess gradings. TrueSkill was deployed on the
Xbox Live online gaming system in 2005, and has been operating continuously
since then, processing millions of game outcomes per day.

The goal is to assign a skill value to each of the players on the basis of game
outcomes. Since the skill si of player i is unknown, in the Bayesian setting it is
assigned a probability distribution which, for simplicity, is given by a Gaussian
with mean µi and variance σ2

i . Under the Elo system, it is usual to regard a player’s
rating as provisional until a sufficient number of games (say 20) have been played.
This issue does not arise in a Bayesian setting since the uncertainty in the player’s
skill is quantified from the start. As new data (i.e. new game results) arrive, the
skill distribution is updated, and a reduction in the variance of this distribution
represents increasing confidence in the value of the player’s skill.

Consider a specific game between player 1 and player 2. We define for each
player a performance πi which represents how well they played on that particular
game. Since the performance of a player with a given skill can vary from game
to game, the performance is a noisy version of the skill. This is represented by
giving πi a Gaussian distribution, whose mean is si and with a variance β. The
winner of the game is the player with the higher performance value. This can
be represented by introducing a variable y= π2 − π1, where y > 0 indicates that
player 2 is the winner. Draws can also be modelled as occurring when the difference
in performance values is below a threshold |y|6 ϵ. The overall graphical model
for this specific game is shown in Figure 9.

Figure 9. Directed graph showing the TrueSkill model for a single game between two players.
See the text for details.

16 C. M. Bishop

When the game outcome is known, the node y becomes observed, and the
inference problem involves updating the distributions over the skills s1 and s2.
For this model the graph is tree-structured. However, the exact messages from the
node y are non-Gaussian, and so the posterior distribution over skills becomes
non-Gaussian. The messages are therefore approximated using Expectation
Propagation, in which the exact distribution is replaced by the Gaussian
distribution which locally minimizes the Kullback-Leibler divergence (5.11). This
ensures that the distributions remain within the exponential family. The required
distribution can be calculated using moment-matching, i.e. by matching the mean
and variance of the approximating Gaussian to the corresponding values for
the true distribution. Note that this Bayesian model is intrinsically sequential,
with the posterior skill distributions acting as the priors for the next round of
inference once new data is observed. The current skill distributions are used
to select opponents in the online gaming environment, and the results of the
corresponding games are then used to make further refinement of the skill
distributions. Thus, inference and decision are interleaved, and the graphical
model is being continuously created. This is a far cry from the traditional machine
learning paradigm in which the parameters of a model are tuned in the laboratory
using a training data set (with cross-validation to avoid over-fitting) and the
parameters then frozen and the fixed system used to make predictions on future
test data.

Figure 10 shows some results obtained with TrueSkill, along with the
corresponding results using Elo. Here we see the estimated skill level from Elo
for two players in a online computer game plotted against the number of games
played. Also plotted are the posterior mean skills for the two players obtained from
TrueSkill using the same data, showing the much faster convergence as a function
of the number of games played. This improved behaviour is a consequence of the
Bayesian modelling of uncertainty in TrueSkill in which each player has a mean
and variance for their skill level, compared to the single estimated skill value in
Elo [Herbrich et al. 2007].

One of the powerful aspects of model-based machine learning is the ability
to extend the model to take account of more complex situations. To illustrate
this, consider two of the significant limitations of the conventional Elo system: (i)
game outcomes often refer to teams of players, and yet for matchmaking purposes
we need the skills of individual players, (ii) many games involve more than two
players (or more than two teams of players). These limitations are significant in
the context of online computer games, and can be overcome by a simple extension
of the model, as shown by the graph in Figure 11. Note that, with more than two
players, the message-passing algorithm must be run iteratively until a suitable
stopping criterion is met.

Further extensions to the model are easily made. For example, we can take
account of the evolution of a player’s skill through time (e.g., as a result of gaining
experience) by introducing some Gaussian diffusion in the spirit of the Kalman
filter. Again this is easily accommodated by modifying the underlying probabilistic
graph [Herbrich et al. 2007, Dangauthier et al. 2008].

Model-Based Machine Learning 17

Figure 10. Graph of skill levels for two players in an online game, showing the much faster
convergence obtained using TrueSkill compared to the traditional Elo algorithm.

7. Probabilistic Programming

In this paper we have outlined a framework for model-based machine learning
built on approximate Bayesian inference in graphical models using local message-
passing algorithms. In order to apply this framework in practice we need
appropriate software development tools. A very flexible environment for model-
based machine learning is known as probabilistic programming [Roy 2011].
This can be viewed an extension of classical programming to include random
variables as first-class citizens alongside conventional deterministic variables, in
which standard operators are overloaded, allowing them to manipulate both
deterministic and random variables. The random variables themselves might be
represented in terms of specific distributions, for example from the exponential
family, or using some non-parametric or sample-based representation.

We can illustrate the key ideas of probabilistic programming using Csoft1

which is an extension of the C# programming language to include support for
random variables. Three new features are required. First, random variables can
be defined using the keyword ‘random’, for example

int length = random(Uniform(0,4));

1 J. Winn and T. Minka (2012). Private communication.

18 C. M. Bishop

Figure 11. Modified skill rating graph showing the inclusion of three teams A, B, and C, in
which team B has two players.

which says that length is a random variable that is uniformly distributed over
the interval (0, 4). Second, constraints involving random variables can be including
using the ‘constrain’ keyword, as in

constrain(height == length);

which says that the random variable height must be equal to the random variable
length. Similarly we can constrain random variables to take on specific values,
as in

constrain(length == 3);

which would be used to set random variables to their observed values and hence
to incorporate data into a model. Finally, the distributions of random variables
can be obtained using the ‘infer’ keyword, for example

Bernoulli b = infer(height > 2);

which returns a Bernoulli distribution giving the probability that the random
variable height takes a value greater than 2. Figure 12 shows the Csoft code
corresponding to the TrueSkill model discussed in Section 6.

A language such as Csoft allows probabilistic and conventional deterministic
code to be combined, and provides a flexibility of modelling that goes beyond
conventional graphical model notation. For example, jagged arrays can capture a
complex sparse connectivity structure that is difficult to express succinctly in the
standard graphical formalism.

Conceptually, we can interpret a probabilistic programme from a sampling
perspective. For each occurrence of random we draw a sample from the
corresponding distribution; for each occurrence of constrain the programme
terminates if the constraint is violated; and for each occurrence of infer the
programme collects the values of the required variables into a persistent memory.
If the code is then run a large number of times the persistent memory accumulates
a sample-based representation of the required distributions. Obviously, this

Model-Based Machine Learning 19

double[] skill = new double[nPlayers];

double[] performance = new double[nPlayers];

for (int j = 0; j < nPlayers; j++) {

skill[j] = random(Gaussian(mu[j],sigma[j]));

double x = random(Gaussian(0, beta));

performance[j] = skill[j] + x;

if (j>0) constrain(performance[j-1] > performance[j]);

}

return infer(skill);

Figure 12. Csoft code for the TrueSkill model.

‘rejection sampling’ techniques is too slow for most practical applications, and
more efficient inference techniques are required, for example based on local
message-passing.

An example of a probabilistic programming language is Infer.NET
[Minka et al. 2010]. This supports a wide range of distributions involving both
discrete and continuous variables, and has a modular framework which is readily
extended to new distributions. Typically, we expect general-purpose software to
have a computational efficiency which is poor compared to model-specific software.
However, Infer.NET is able to achieve efficiency which is often close to hand-
tuned code, by adopting a compiler technology as illustrated in Figure 13. Note
that in this diagram the .NET program that specifies the "model" includes a
description of which variables are observed (but without the values of those
observations). This allows the compiler to generate inference code which is
optimized for the particular partition of observed and hidden variables. In some
applications it might not be known which variables will be observed until run
time, and in such cases, the model can be extended with additional variables
which allow for observing the partition at run time. For example, a model could
be extended to include binary variables specifying, for each potentially observable
variable, whether or not that variable is in fact observed. The Infer.NET compiler
encapsulates numerous optimizations regarding the choice of message-passing
schedule in order to generate efficient inference code. Currently Infer.NET
supports two deterministic inference algorithms (Expectation Propagation and
Variational Message Passing), as well as a Monte Carlo method (Gibbs sampling).

Another probabilistic programming language, with some similarities
to Infer.NET, is BUGS (‘Bayesian inference Using Gibbs Sampling’)
[Lunn et al. 2009]. BUGS uses Monte Carlo methods which give it great flexibility
in the range of models which it can accommodate, but due to the computational
cost of Monte Carlo inference it does not scale well to large data sets. There are
many other languages currently in development, and probabilistic programming
has become a very active field of research.

20 C. M. Bishop

Figure 13. Flow diagram showing the operation of Infer.NET.

8. Conclusions

In this paper we have given an overview of the model-based approach to machine
learning, and discussed its advantages compared to traditional approaches,
including the ability to develop custom models that are optimized for each
application. We have outlined a particular framework for model-based machine
learning based on deterministic inference in probabilistic graphical models
using local message-passing algorithms. We have also discussed a very general
software development environment for model-based machine learning called
probabilistic programming, and described a specific instantiation in the form of
Infer.NET. Model-based machine learning, particularly in the form of probabilistic
programming, is a highly active field of research, and offers great potential to
capitalize on the new era of data-driven computing.

Model-Based Machine Learning 21

Acknowledgment

I would like to thank John Bronskill, Thore Graepel, John Guiver, Tom Minka,
and John Winn for providing valuable feedback on an early draft of this paper.

References

C. M. Bishop, D. Spiegelhalter, and J. Winn, (2003). VIBES: A variational inference engine for
Bayesian networks. Advances in Neural Information Processing Systems, 15.

C. M. Bishop (2005). Pattern Recognition and Machine Learning. Springer.
P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel (2008). TrueSkill through time:

Revisiting the history of chess. Advances in Neural Information Processing Systems, 20.
R. Durbin, S. Eddy, A. Krogh, and G. Mitchison (1998). Biological Sequence Analysis, Cambridge

University Press.
A. E. Elo (1978). The Rating of Chess Players: Past and Present. Arco Publishing.
B. J. Frey and D. J. C. MacKay (1998). A revolution: Belief propagation in graphs with cycles.

Advances in Neural Information Processing Systems, 10.
Z. Ghahramani and G. E. Hinton (1998). Variational learning for switching state-space models.

Neural Computation, 12, 963–996.
Z. Ghahramani and M. I. Jordan (1997). Factorial hidden Markov models. Machine Learning,

29, 245–275.
R. Herbrich, T. Minka, and T. Graepel (2007). TrueSkill(TM): A Bayesian skill rating system.

Advances in Neural Information Processing Systems, 20.
F. Jelinek (1997). Statistical Methods for Speech Recognition. MIT Press.
R. E. Kalman (1060). A new approach to linear filtering and prediction problems. Transactions

of the American Society for Mechanical Engineering, Series D, Journal of Basic Engineering,
82, 35–45.

D. Koller and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

F. R. Kschischnang, B. J. Frey, and H. A. Loeliger (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47, 498–519.

S. L. Lauritzen and D. J. Spiegelhalter (1988). Local computations with probabailities on
graphical structures and their application to expert systems. Journal of the Royal Statistical
Society, 50, 157–224.

D Lunn, D Spiegelhalter, A Thomas, and N Best (2009). The BUGS project: Evolution, critique
and future directions. Statistics in Medicine, 28, 3049–3067.

C. D. Manning and H. Schütze (1999). Foundations of Statistical Natural Language Processing.
MIT Press.

N. Metropolis, A. W. Rosenblutt, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equation
of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

T. Minka (1998). From hidden Markov models to linear dynamical systems. MIT Technical
Report TR#531.

T. Minka (2001). Expectation propagation for approximate Bayesian inference. Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 362–
369.

T. Minka (2004). Power EP. M icrosoft Research Cambridge Technical Report, MSR-TR-2004-
149.

T. Minka (2005). Divergence measures and message passing. Microsoft Research Cambridge
Technical Report MSR-TR-2005-173.

22 C. M. Bishop

T. Minka and J. Winn (2008). Gates: a graphical notation for mixture models. Advances in
Neural Information Processing Systems, 21.

T. Minka, J. Winn, J. Guiver, and D. Knowles (2010). Infer.NET, Microsoft Research
Cambridge, http://research.microsoft.com/infernet

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.
L. R. Rabiner (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77, 257–285.
S. Roweis and Z. Ghahramani (1999). A unifying review of linear Gaussian models. Neural

Computation, 11, 305–345.
D. M. Roy (2011). Computability, inference and modeling in probabilistic programming. PhD

thesis, MIT.
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A.

Blake (2011). Real-time human pose recognition in parts from a single depth image. IEEE
International Conference on Computer Vision and Pattern Recognition.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky (2005). A new class of upper bounds on
the log partition function. IEEE Transactions on Information Theory, 51, 2313–2335.

W. Wiegerinck and T. Heskes (2003). Fractional belief propagation. Advances in Neural
Information Processing Systems, 15.

J. Winn and C. M. Bishop (2005). Variational message passing. Journal of Machine Learning
Research, 6, 661–694.

