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We have discussed graphical models. Graphical models are a formalism for represent-
ing families of probability distributions. They are connected to efficient algorithms
for computing marginals, conditionals, and other properties of the family. We now
turn to the central question: How can we use joint probability distributions to
make meaningful statements about observed data?

(A) In a statistical model, the data are represented as observed random variables
x. We set a joint distribution that also involves hidden random variables p.z; x/.
We calculate the conditional distribution of the hidden variables given the observed
variables p.z j x/. The conditional tells us about the data and helps form predic-
tions.

(B) In a statistical model, the data are represented as shaded nodes in a graphical
model that also involves unshaded nodes. We perform probabilistic inference of
the unshaded nodes. This inference tells us about the data and helps form predic-
tions.

Some examples:

� Observed: the audio signal;
Hidden: uttered words.

� Observed: nucleotides;
Hidden: whether they are associated with genes.

� Observed: words;
Hidden: parts of speech.

� Observed: Facebook;
Hidden: the overlapping communities within it.

� Observed: results of students in different classes;
Hidden: a measure of the quality of each teacher.
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� Others?

1 More Probability

We first go over a few more concepts from probability: continuous random variables,
parameters, expectation and conditional expectation.

1.1 Continuous random variables

We have only used discrete random variables so far (e.g., dice). Random variables
can be continuous. In a continuous random variable, we have a density p.x/, which
integrates to one. If x 2 R then Z 1

�1

p.x/dx D 1: (1)

For continuous random variables, probabilities are integrals over smaller intervals.
For example,

P.X 2 .�2:4; 6:5// D

Z 6:5

�2:4

p.x/dx:

Notice when we use P , p, X , and x.

Example: The Gaussian distribution. The Gaussian (or Normal) is a continuous
distribution. Its density is

p.x j�; �/ D
1

p
2��

exp
�
�
.x � �/2

2�2

�
(2)

The density of a point x is proportional to the negative exponentiated half distance
to � scaled by �2. When x is closer to �, its density is higher.

The Gaussian density is a bell-shaped bump,

[ picture of a gaussian bump ]

The variable � is the mean; it controls the location of the bump. The variable �2 is
the variance; it must be positive and it controls the spread around the bump.
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1.2 Parameters

Parameters are values that index a family of distributions. As a simple example, a
coin flip is a Bernoulli random variable. Its parameter is the probability of heads,

p.x j�/ D �1ŒxDH�.1 � �/1ŒxDT �: (3)

(The notation 1Œ�� is an indicator function: it is 1 when its argument is true and 0
otherwise.) Changing � leads to different instances of a Bernoulli distribution.

Gaussian. A Gaussian has two parameters, the mean and variance.

Beta. A beta random variable is over the .0; 1/ interval. Its density is

p.� j˛; ˇ/ D
� .˛ C ˇ/

� .˛/ � .ˇ/
�˛�1.1 � �/ˇ�1 (4)

Its parameters are ˛ and ˇ, both constrained to be positive. Note the function �.�/ can
be thought of as a real-valued generalization of the factorial function. For integers n,
�.n/ D .n � 1/Š.

The beta can have interesting shapes,

[ pictures of beta random variables ]

When .˛; ˇ/ < 1 it is like a bowl; when .˛; ˇ/ > 1 then it is a bump; when
˛ D ˇ D 1 it is uniform. (You can see the uniform case from the equation.)

While we are looking at the beta, notice the following:

� The second term is

�˛�1.1 � �/ˇ�1: (5)

It is a function of the random variable and parameters. The first term is

� .˛ C ˇ/

� .˛/ � .ˇ/
: (6)

It is only a function of the parameters. It ensures that the density integrates to one;
it is the normalizing constant. We saw the same quantity in undirected graphical
models.
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� In the Bernoulli the variable � 2 .0; 1/ is the parameter. In the beta, it is the
random variable. (We’ll come back to this.)

Multinomial. Finally, a multinomial distribution (and categorical distribution) has
a vector parameter on the k-simplex. (Technically, it is the .k � 1/-simplex but many
authors use k-simplex.) The k-simplex is the space of non-negative vectors of length
k that sum to one, i.e., �i > 0 and

P
i �i D 1.

Dirichlet. The categorical is the vector generalization of the Bernoulli, indexed
by a parameter in Œ0; 1�. The beta distribution is a distribution on Œ0; 1�. The vector
generalization of the beta is the Dirichlet distribution. It is a distribution on the
simplex.

A Dirichlet over the k � 1-simplex is parameterized by a k-vector j̨ > 0. The
density is

�
�Pk

jD1 j̨

�
Qk
jD1 �

�
j̨

� kY
jD1

�
. j̨�1/

j (7)

Note that the beta is a distribution on the 1-simplex.

Discrete graphical models. What are the parameters to the kinds of discrete
graphical models that we have been studying? They are the values of the conditional
probability tables at each node. Each possible setting of tables leads to a specific
distribution.

1.3 Expectation and conditional expectation

Consider a function of a random variable, f .X/. (Notice: f .X/ is also a random
variable.) The expectation is a weighted average of f , where the weighting is
determined by p.x/,

E Œf .X/� D
X
x

p.x/f .x/: (8)

In the continuous case, the expectation is an integral

E Œf .X/� D

Z
p.x/f .x/dx: (9)
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The conditional expectation is defined similarly

E Œf .X/ jY D y� D
X
x

p.x jy/f .x/: (10)

What is E Œf .X/ jY D y�? (A scalar.) What is E Œf .X/ jY �? (A random variable,
i.e., a scalar for each value of y.)

The expectation is a function of the parameters. The expectation of a Gaussian
random variable is

E ŒX� D �:

The expectation of a beta variable is

E Œ�� D ˛=.˛ C ˇ/:

Notice that it is in Œ0; 1�. (Not all expectations will have these simple forms.)

Expectations can provide useful summaries of distributions,

� Given someone’s height, what is their expected weight?
� Given someone’s demographic information, what is the expected number of
dollars they will spend on your website.

Other expectations include higher moments of the distribution. For example, the
variance is

Var ŒX� D E
�
X2
�
� E ŒX�2 : (11)

Thismeasures the spread of a distribution around its mean. In theGaussian, Var ŒX� D
�2. In the beta it is

Var Œ�� D
˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/
(12)

Note how this matches the different shapes—bump shapes have lower variance, horn
shapes have higher variance.

2 Statistical Models By Example

Now we can discuss statistical models. In a statistical model, the data are observed
random variables. They are dependent on one or more hidden random variables.
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For example, suppose n observations come from a Bernoulli with an unknown bias.
This corresponds to the following graphical model,

[ graphical model ]

(Plates denote replication.) This is a very simple model, but it illustrates some of the
ideas that frequently come into play:

� There is a hidden variable to represent what we don’t know about the distribution
of the data.

� Observations are “downstream” from the hidden variable. Information about the
distribution “flows” to the observations.

� The data are conditionally independent given the hidden variable.

The graphical model naturally asks us to consider an inference about the unknown
bias, the parameter (treated as a random variable) that governs the distribution of the
data.

Let us work through this simple example.

Three ways to specify a model. There are three ways of specifying a statistical
model. The first is by its graphical model.

But the graphical model does not tell us everything. The second way—and this
way is fully specified—is by the joint distribution. The graphical model tells us the
factorization of the joint. It is

p.�; x1Wn/ D p.�/

nY
iD1

p.xi j�/: (13)

But we must specify the functional form of each of these terms. We know that
p.xi j�/ is a Bernoulli (Equation 3). We must also specify p.�/, a distribution over
the parameter � . This variable is in .0; 1/, so let’s use a beta. For now we will hold
˛ D ˇ D 1 to give a uniform beta variable (but we will get back to these so-called
“hyperparameters” later.) We have fully specified the joint distribution.

A final way to think about a statistical model is through its probabilistic generative
process. With the model we just defined, we have essentially described a program
for generating data.
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� Choose � � Beta.˛; ˇ/.
� For each data point i :

– Choose xi j� � Bernoulli.�/.

We can easily write a program to execute this process. In essence, inference about
the unknown bias � amounts to “reversing” the process to find the (distribution of
the) the hidden variable that most likely generated the observations.

As an aside, writing models as programs is the core idea behind the field of probabilis-
tic programming. In probabilistic programming we write a program that generates
data from a model p.z; x/. We then “compile” that program into a program that takes
data as input x and returns samples (or a representation of) the posterior p.z j x/.
For example, this is the principle behind Stan (http://mcstan.org) and Edward
(http://edwardlib.org).

Directed graphical models are particularly amenable to a generative process per-
spective. Because they are acyclic graphs, one can simply follow the flow of the
nodes, iteratively generating each random variable conditional on its parents. As we
mentioned above, information about the distribution of observations flows through
the graph. Again, notice the theme of message passing. (Undirected graphical models
do not lend themselves as easily to a stage-wise generative process.)

The posterior. When doing data analysis with a probability model, the central
object of interest is the the posterior. The posterior is the conditional distribution of
the hidden variables given the observations.1 We have set up a model that describes
how our data is generated from unobserved quantities. The posterior distribution
describes the natural inference that one would want to make—what are the specific
values of the hidden quantities that generated my data?

We can work through the posterior in this simple example. Encode x D 0 to mean
1Some definitions might differentiate between hidden variables that are traditionally seen as

parameters and others that are traditionally seen as unobserved variables. But this is a fuzzy distinction.
Let’s not bother with it.
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“tails” and x D 1 to mean “heads”. The posterior is proportional to the joint,

p.� j x1Wn/ / p.�/

nY
iD1

p.xi j�/ (14)

D

�
� .˛ C ˇ/

� .˛/ � .ˇ/
�˛�1.1 � �/ˇ�1

�" nY
iD1

�xi .1 � �/1�xi

#
(15)

/

h
�˛�1.1 � �/ˇ�1

i h
�.

Pn
iD1 xi/.1 � �/.

Pn
iD1.1�xi //

i
(16)

D �.˛�1C
Pn

iD1 xi/.1 � �/.ˇ�1C
Pn

iD1.1�xi // (17)

This is an unscaled beta distribution. It has the same functional form as the second
term in Equation 4 with parameters Ǫ D ˛ C

Pn
iD1 xi and Ǒ D ˇ C

Pn
iD1.1 � xi/.

Thus the posterior is Beta. Ǫ ; Ǒ/.

Given a data set of n coin flips, this is the conditional distribution of the unknown
bias. This kind of computation is the core of using statistical models to understand
data.

Suppose our data truly come from a coin with a 70% chance of heads.

� Show the posterior with no observations
� Show the posterior with ten observations
� Show the posterior with twenty observations

2.1 Discussion

This is a good time to bring up a few interesting points.

Maximum likelihood estimation. First, let’s momentarily veer from the probability
model and consider a classical way of analyzing independent Bernoulli draws, the
maximum likelihood estimate. The maximum likelihood estimate is the value of �
that maximizes the probability of the data.

In this case, when we do maximum likelihood we assume the data are independent
and identically distributed from a Bernoulli with unknown bias � . (Aside: In our
graphical model are the xi ’s IID?) We then estimate � to be the value for which the
observed data was most probable. Typically, we work with the log probability, or log
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likelihood,

O�MLE
D argmax

�
logp.x1Wn j�/ (18)

D

nX
iD1

logp.xi j�/ (19)

D argmax
�

nX
iD1

.xi log�i C .1 � xi/ log.1 � �i// : (20)

Optimizing with respect to the bias, subject to the constraint that it is in .0; 1/, reveals
that the MLE is the proportion of heads:

O�MLE
D

Pn
iD1 xi

n
: (21)

When the parameter is part of a probability model, we are compelled to endow it
with a so-called “prior distribution” p.�/, a distribution over the parameter that does
not depend on data. (For example, above we chose a beta distribution.) This leads to
estimates of its value that depend on the posterior. First, we discuss an important
property of this example and its posterior.

Conjugacy. Notice that the posterior distribution is in the same family of distribu-
tions as the prior distribution, i.e., the distribution which we placed on the parameter.
This is a property of pairs of distributions called conjugacy. The beta/Bernoulli
are a conjugate pair. Conjugacy is an important concept throughout the rest of the
course.

Conjugate pairs are useful. As you will see, we usually cannot compute the posterior
exactly. However, local conjugacy—where individual pieces of a graphical model
form conjugate pairs—will be important in approximate posterior inference.

Posterior expectation. We can calculate the expectation of the posterior beta, also
known as the posterior expectation,

E Œ� j x1Wn� D
˛ C

Pn
iD1 xi

˛ C ˇ C n
: (22)

This is also called the Bayes estimate of the bias � . As n gets large, the Bayes
estimate approaches the maximum likelihood estimate: the number of heads in the
numerator and the number of trials in the denominator swallow the hyperparameters
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˛ and ˇ.

This is a property of Bayesian modeling. With fewer data, the prior plays more of a
role in our estimate of the hidden variable; with more data it plays less of a role.

Also consider the posterior variance in Equation 12. The numerator grows as O.n2/;
the denominator grows as O.n3/. Thus, as we see more data, the posterior becomes
centered more closely to the MLE and becomes more “confident” about its esti-
mate.

Warning: It is dangerous to overinterpret the posterior as providing an objective
measure of “confidence” about the estimate. This posterior variance is a property of
the model.

The posterior predictive distribution. Given our data, suppose we want to calculate
the probability of the next coin flip being heads. What is it? Here we marginalize
out the hidden variable,

p.xnC1 j x1Wn/ D

Z
p.xnC1; � j x1Wn/d� (23)

D

Z
p.� j x1Wn/p.xnC1 j�/d� (24)

D E Œp.xnC1 j�/ j x1Wn� : (25)

We see that this prediction depends on the posterior. It is a posterior expectation of a
probability. Posterior inference is important both for learning about the parameter
and for forming predictions about the future. (In this case, the posterior expected
probability of xnC1 is the posterior expectation of the parameter itself.)

Penalized likelihood. Let’s think more about the relationship between this kind of
inference and maximum likelihood estimation.

We discussed one possible estimate, the posterior expectation. Another is the maxi-
mum a posteriori estimate, or MAP estimate. The MAP estimate is the value with
maximum probability under the posterior. (Recall our discussion of inference on
trees.)

Exploiting the log function again (a monotone function that preserves the maximum),
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the MAP estimate is found by solving

O�MAP
D argmax

�
logp.� j x1Wn/ (26)

D argmax
�

logp.�; x1Wn/ (27)

D argmax
�

logp.�/C
nX
iD1

logp.xi j�/: (28)

The second line follows from the posterior being proportional to the joint. In the third
line we see that the MAP estimate is found by solving a penalized likelihood problem.
We will veer away from the MLE if it has low probability under the prior.

Note again what happens as we see more data. The prior term will be swallowed by
the likelihood term, and the estimate will look more and more like the MLE.

3 Bayesian Statistics and Frequentist Statistics

We have discussed some basic ideas in probability, the general idea of statistical
modeling, and a variety of ways to construe inference from data as a probabilistic
computation. We demonstrated some important concepts, like conjugacy, that can
simplify computation. More broadly, our goal is to use the tools of graphical models—
tools that help us reason about probability models—to use models to compute about
data. We now briefly discuss some more philosophical issues, namely what it means
to be Bayesian and what it means to be frequentist.

Question for the class: Who is Bayesian? Who is a frequentist?

3.1 Bayesian Statistics

In Bayesian statistics, all inferences about unknown quantities are formed as proba-
bilistic computations.

Suppose we have chosen the model structure, but not the parameters � . For every
setting of � there is a different value of the probability of the data x D x1Wn, p.x j �/.
As we have discussed, the goal of statistical inference is to “invert” this relationship,
to learn about � from x.
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In Bayesian statistics, this happens through Bayes rule,

p.� j x/ D
p.x j �/p.�/

p.x/
: (29)

Discussion:

� We are treating � as a random variable. The hallmark of Bayesian statistics is
that all unknown quantities (or, rather, quantities that are not fixed) are random
variables.

� As a consequence, we have to place a distribution on � , the prior p.�/. To a true-
blue Bayesian this should encode what we know about the parameters � before
seeing the data.2 (I usually feel this is too a strong requirement and difficult in
practical settings.)

� Our inference results in a distribution of the parameters given the data, p.� j x/,
i.e., the posterior distribution. Computing the posterior is the central problem for
Bayesian statistics.

3.2 Frequentist Statistics

Frequentists don’t like to put priors on parameters and don’t want to be restricted to
probabilistic computations to estimate unknown quantities.

Rather, frequentists consider estimators for parameters � and then try to understand
the quality of those estimators using various theoretical frameworks and criteria.
(Examples include bias and variance, which we discuss later when we talk about
regression.)

While Bayesians condition on the data, frequentists treat the data as random and
coming from an unknown distribution F . It is called “the population distribution.”
The estimator is a function of the data and thus it too is a random variable—its
distribution depends on the population distribution. Frequentist criteria about the
estimator are properties of its distribution.

For example, the most commonly used estimator is the maximum likelihood estimator.
We treat p.x j �/ as a function of � and then choose the value that maximizes this

2A friend of mine calls such statisticians “Crayesians”.
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function,
O�ML.x/ D argmax

�
logp.x j �/ (30)

(As usual, we take advantage of the monotonicity of log.) We can ask questions
about O�ML.x/ such as its relationship to a “true” parameter ��, if x really came from
the model, and its variance, which is a function of the number of data points n.

We can ask these questions because the estimator is a function of the data and thus a
random variable. Its distribution is governed by the distribution of the data F .

Note that Bayesian computations can be thought of as estimators,

O�Bayes.x/ D E Œ� j x� (31)
O�MAP.x/ D argmax

�
p.� j x/ (32)

While these contain Bayesian models at the core, they can be analyzed with frequentist
criteria. As we have discussed, in the latter case, the log posterior is called the
penalized likelihood; the prior is called the regularizer.

And the lines between frequentist and Bayesian thinking can be blurred. Consider
the problem of choosing the hyperparameters ˛. What if we were to choose them
using maximum likelihood?

ǪML.x/ D argmax
˛
p.x j˛/ (33)

D argmax
˛

Z
p.x j �/p.� j˛/d�: (34)

This style of computation is called empirical Bayes. It is a powerful idea.3

3.3 There is no debate

One perspective is that there is no real debate. More accurately, we must not confuse
using Bayesian computation with being Bayesian. Being Bayesian means that all
inferences about unknowns must arise through reasoning about a posterior, and there
is no reason to assess these inferences in another way because we are Bayesian.
Being frequentist means that we impose a theoretical framework on what it means to
estimate an unknown, and then we evaluate our procedures (whether they come from

3And controversial: D. Lindley said: “There is nothing less Bayesian than empirical Bayes.”
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a posterior or another way) through that framework. As Freedman (1994) articulately
points out, both schools of thought make assumptions and include models of the
world.

Bayesian computation is computation about a posterior, regardless of why we think
its a good idea. As examples, it may have good frequentist properties that we care
about; our experience might indicate that it works well in practice; it might be the
easiest way to analyze data that reflect assumptions we want to make (e.g., because
we use a probabilistic programming system like Stan or Edward); or we might be
Bayesians and will not consider another approach. In statistical machine learning
we often lean on Bayesian computation because it is modular and convenient, rather
than for philosophical reasons.

4 The Big Picture

We build a statistical model by developing a joint distribution of hidden and observed
random variables. Our data are observed variables and the hidden quantities that
govern them are hidden variables. In addition to the joint, a statistical model can be
described by its graphical model or its generative process.

The key statistical quantity is the posterior, the conditional distribution of the hidden
variables given the observations. The posterior is how we “learn” about our data via
the model. The posterior predictive distribution gives us predictions about new data.
Posterior estimates, like the posterior mean and the MAP estimate, tell us about the
hidden variables that likely generated our data.

4.1 Example models

We will start getting used to thinking about models and also thinking about what
their posterior gives us. When we design models, we design them to have useful
posterior distributions. Here are some examples:

Mixture models. Mixture models cluster the data into groups. The hidden variables
are the cluster assignments for each data point and the cluster parameters for each
cluster. The cluster assignments form the grouping; the cluster parameters specify
the distribution for the data in each group.

14



The posterior groups the data and describes each group. (Mixtures are the “simplest
complicated model”, and will form the core example when we discuss approximate
posterior inference.)

Factor models. Factor models embed high-dimensional data in a low-dimensional
space. The hidden variables are the per-data point component weights and the
components. The component weights describe how each data point exhibits the
components; the components themselves describe properties of the data that exhibit
them. These models relate closely to ideas you have heard of like factor analysis,
principal component analysis, and independent component analysis.

The posterior factorization describes a low-dimensional space (components) and
each data point’s position in it (weights).

Generalized linear models. Regression models or generalized linear models de-
scribe the relationship between input variables and response variables (or output
variables). Each response variable (e.g., “income”) arises from a distribution whose
parameter is a weighted linear combination of the inputs (e.g., demographic infor-
mation). The hidden variables are the weights of each type of input in the linear
combination, called the coefficients. Related models, like hierarchical regressions
and mixed-effect models, include additional hidden variables.

Regression models are called discriminative models because each data point is
conditioned on inputs that are not modeled. The posterior of the coefficients describes
a relationship between the inputs and the outputs. The posterior predictive distribution
forms predictions from new inputs.

Here we note a distinction between “training” and “testing”. When we fit the model
we observe both inputs and response. When we use the model we only observe the
inputs and must make inferences about the response.

This speaks to the larger distinction of unsupervised and supervised learning. In
supervised learning, what we observe when fitting our model is different from what
we observe when using it. In unsupervised learning, we never see the hidden variables.
(As with all distinctions, many models are in a middle ground.)

Classification. Finally we can also examine a supervised “mixture” model, which
is also known as generative classification. In this case the mixture assignments
are known in training (e.g., spam and not spam). In testing, we infer the mixture
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assignments, i.e., classify new data points.

4.2 Example data (and corresponding models)

So far, we have described simple data sets and different types of models. Different
types of data lead to further different types of models.

Dyadic data. Dyadic data are measured on pairs. In a social network, the data
are edges between nodes; in web behavior, the data are which pages people clicked
on.

For example, matrix factorization is a model of dyadic data.

Grouped data. Grouped data are data that are themselves individual data sets.
Examples include test results from students grouped by class, documents that are
groups of words, and images that are groups of image patches.

Hierarchical models capture grouped data. Hierarchical regression models are a
supervised model of grouped data; mixed-membership models are an unsupervised
model of grouped data.

Sequential and spatial data. Sequential data take place over time; spatial data
are located in a space, such as latitude and longitude. Sequential data leads to
dynamic models, like the hidden Markov model (HMM) or the Kalman filter (a linear
dynamical model). Spatial data lead to spatial models, where correlation between
data points relates to their distance.

In our discussion of the HMM, we assumed that the parameters were known. In
some settings we can estimate these separately from observed data. For example, in
speech recognition we can learn the audio model from observed utterances of words
and the language model from written texts. But sometimes we cannot assume that
they are known. In these unsupervised settings, inference involves learning both
the state sequences (as before) as well as the transition matrices and observation
probabilities.
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4.3 Building models

I emphasize that these distinctions are blurry. Many models and data mix and match
these properties, or express them to different degrees. There are many ways to
construct latent spaces and to organize how data arises from them. Other ideas
you might hear about include factorial models, Bayesian nonparametric models,
mixed-effect models, multi-level models, and others.

The important point is that probabilistic modeling is not a cookbook of methods.
Rather, these models can be used as modules in larger and more complicated models,
customized to specific problems and applications. What is common in probabilistic
modeling is that we treat our data as observed random variables in joint distribu-
tion that contains both observed and hidden quantities. We then use probabilistic
computations about that model to help explore our data and form predictions.

Of course, we are conspicuously dancing around the important issue of “how do
we choose a model?” This necessarily remains somewhat of a craft, the problem
of translating your domain knowledge and knowledge of statistics into a graphical
model that can help solve your problem.

Gelman et al. (1995) give a good summary of the process, another perspective on
“Box’s loop” (Blei, 2014).

1. Set up the full probability model, a joint distribution of all observed and hidden
quantities. Try to write a model that is consistent with your knowledge about
the underlying scientific problem and data collection process.

(I add: write down a sequence of models from the least to more complicated.
Consider an prioritization of the knowledge you want to inject in the model.
Some is essential for solving a problem; others are instincts you have; others
might be complications that, in retrospect, you do not need to address.

And: think about the posterior, not necessarily the generative process. What
unknown quantities do you hope to get out of the data?)

2. Conditioned on observed data, calculate and interpret the posterior distribution,
the distribution of the unobserved variables of interest given the observed data.

3. Evaluate the fit of the model, and the implications of the posterior.

17



� Does the model fit the data?
� Are the conclusions reasonable?
� How sensitive are the results to the modeling assumptions?

If necessary, change the model.

There is no single organizing principle to organize statistical computations. But
through probabilistic modeling, several distinctions emerge:

� Bayesian versus Frequentist. See above. Note that both perspectives involve
probabilistic computations about the joint distribution.

� Discriminative versusGenerative. Dowework conditional on some observations,
or do we create a joint distribution about everything?

� Per-data point prediction versus data set density estimation. Do we care about
predicting something about an unobserved quantity or are wemore concerned about
understanding the structure of the distribution that generated our observations?

� Unsupervised versus supervised learning. Is there an external signal that I care
about? Do I observe it in one phase of my data, and is it hidden in the other phase?

Again, these are blurry boundaries. However, many statistical computations in all of
these settings involve (a) treating observations as random variables in a structured
probability model, and then (b) computing about that model.
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