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1 Introduction

We studied mixture models in detail, models that partition data into a collection of
latent groups. We now discuss mixed-membership models, an extension of mixture
models to grouped data. In grouped data, each “data point” is itself a collection of
data; each collection can belong to multiple groups.

Here are the basic ideas:

� Data are grouped, each group xi is a collection of xij , were j 2 f1; : : : ; nig.
� Each group is modeled with a mixture model.
� The mixture components are shared across groups.
� The mixture proportions vary from group to group.

Figure 1 is the graphical model that describes these independence assumptions. This
involves the following generative process,

1. Draw components ˇk � f .� j �/.
2. For each group i :

(a) Draw proportions �i � Dir.˛/.
(b) For each data point j within the group:

i. Draw a mixture assignment zij � Cat.�i/.
ii. Draw the data point xij � g.� jˇzij

/.

A mixture model is a piece of this graphical model, but there is more to it. Intuitively,
mixed-membership models capture that

� Each group of data is built from the same components or, as we will see, from
a subset of the same components.

1



⌘

˛

K

N

ˇk

xij

zij

M

⇠ DirichletK.˛/

⇠ Cat.✓i /

⇠ p.� jˇzij /

⇠ p.� j ⌘/

✓i

Figure 1: The mixed-membership model.

� How each group exhibits those components varies from group to group. Thus
the model captures homogeneity, in that the data share the same collection of
components, and heterogeneity, in that each data point exhibits those compo-
nents to different degree.

These ideas have many applications. Here are a few.

� Text analysis (Blei et al., 2003)

– The graphical model for LDA is in Figure 2 (a).

– Observations are individual words.
Each groups is a document, a collection of words.
Components are distributions over the vocabulary.
Proportions are how much each document reflects each component.

– The posterior components look like “topics”—distributions that place their mass
on words that exhibit a theme, such as sports or health. The proportions describe
how each document exhibits those topics. For example, a document that is half
about sports and half about health will place its proportions in those two topics.

– This model has been adapted to all kinds of other discrete data—images, com-
puter code, music data, recommendation data, and others. More generally, it is
a model of high-dimensional discrete data.
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Figure 2: Four applications of mixed-membership models.

– This will be our running example.

� Survey analysis (Erosheva, 2003)

– Much of social science analyzes carefully designed surveys. There might be
several social patterns that are present in the survey, but each respondent exhibits
different ones.

– The graphical model is in Figure 2 (b).

– Observations are answers to individual questions.
Each group is the collection of answers by a single respondent.
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Components are collections of likely answers for each question.
Proportions represent how much each individual exhibits those components.

– As we have seen, these assumptions are more flexible than a simple mixture. A
mixture model assume each respondent only exhibits a single pattern.

� Population genetics (Pritchard et al., 2000)

– Observations are pairs of alleles on the human genome. At each location, these
are the alleles inherited from your mother and your father (A, C, G, T).

– Groups are people; each is a collection of alleles at each location.
Components are patterns of alleles at each locus, “ancestral populations.”
Proportions represent how much each individual exhibits each population.

– This is the same graphical model as for survey analysis, Figure 2 (b).

– Application #1: Understanding population history and differences. For example,
in India everyone is part Northern ancestral Indian/Southern ancestral indian
and no one is 100% of either. This model gives us a picture of the original
genotypes.

– Application #2: “Correcting” for latent population structure when trying to
associate genotypes with diseases. For example, prostrate cancer is more likely
in African American males than European American males. If we have a big
sample of genotypes, an allele that shows up in African American males will
look like it is associated with cancer. Correcting for population-level frequencies
helps mitigate this confounding effect.

– Application #3: “Chromosome painting.” Use the ancestral observations to
try to find candidate regions for genome associations. Knowing the AA males
get prostrate cancer more than EA males, look for places where a gene is more
exhibited than expected (in people with cancer) and less so (in people without
cancer). This is a candidate region. (This was really done successfully for
prostrate cancer.)

� Social network analysis (Airoldi et al., 2008)

– Observations are connections between members of a network
Groups are the set of connections for each person; they are not nested.
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– Components are communities, distributions over which other communities each
community tends to link to. In a simplified case, each community only links to
others in the same community.

– Proportions represent how much each person reflects a set of communities. You
might know several people from your graduate school cohort, others from your
neighborhood, others from the chess club, etc.

– See Figure 2 (c).

– Capturing these overlapping communities is not possible with a mixture model
of people, where each person is in just one community. (Mixture models of
social network data are called stochastic block models.)

– Conversely, modeling each person individually doesn’t tell us anything about
the global structure of the network.

Mixed-membership and hierarchicalmodels. Mixed-membership is a compromise
between a mixture model and a model of independent groups.

First, compare the assumptions of Figure 1 to a single mixture model. A mixture is
less heterogeneous because each group can only exhibit one component. (Though
note there is still some heterogeneity because different groups come from different
clusters.)

At the other end of the spectrum, we could modeling each group with a completely
different mixture model (proportions and components). This is too heterogeneous—
there is no connection between data, no way to relate groups in terms of the underlying
building blocks of the data. You can see this with the Bayes ball algorithm.

The mixed-membership model is a compromise between these perspectives.

More broadly this is an example of a hierarchical model, a model where information
is shared across groups of data. The sharing arises because we treat parameters as
hidden random variables and estimate their posterior distributions.

There are two important characteristics for a successful hierarchical model.

[MM graphical model with two groups and two observations per group.]

One is that information is shared across groups. Here this happens via the unknown
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mixture components. Consider if they were fixed. The groups of data would be
independent.

The other is that within-group data is more similar than across-group data. Suppose
the proportions were fixed and the same for each group. Because of the components,
there is still sharing across groups. But two data points within the same group are
just as similar as two data points across groups. In fact, this is a simple mixture as
though the group boundaries were not there. When we involve the proportions as a
group-specific random variable, within-group data are more tightly connected than
across-group data.

2 The Dirichlet distribution

The observations x and the components ˇ are tailored to the data at hand. Across
mixed membership models, however, the assignments z are discrete and drawn from
the proportions � . Thus, all MMM need to work with a distribution over � .

The variable � lives on the simplex, the space of positive vectors that sum to one.
The exponential prior on the simplex is called the Dirichlet distribution. It’s impor-
tant across statistics and machine learning, and particularly important in Bayesian
nonparametrics (which we study later).

The parameter to the Dirichlet is a k-vector ˛, where ˛i > 0. In its familiar form,
the density of the Dirichlet is

p.� j˛/ D
�
�Pk

jD1 j̨

�
Qk
jD1 �. j̨ /

kY
jD1

� j̨�1
j : (1)

The Gamma function a real-valued extension of the factorial function. (For integers,
it is factorial.)

You can see that this is in the exponential family because

p.� j˛/ / exp

8<:˛> log � �X
j

log �j

9=; : (2)

But we’ll work with the familiar parameterization for now.

6



The Dirichlet is the multivariate extension of the beta distribution,

p.� j˛; ˇ/ D �.˛ C ˇ/
�.˛/�.ˇ/

�˛�1.1 � �/ˇ�1: (3)

A number between 0 and 1 is a point on the “1-simplex”.

The expectation of the Dirichlet is

E Œ�`� D ˛`P
j j̨

: (4)

Notice that this is the normalized parameter vector, a point on the simplex.

We gain more intuition about the Dirichlet by looking at independent draws. An
exchangeableDirichlet is one where each parameter is the same scalar, Dir.˛; : : : ; ˛/.
Its expectation is always the uniform distribution.

Figure 3 shows example draws from the exchangeable Dirichlet (on the 9-simplex)
with different values of ˛.

Case #1, j̨ D 1:

� This is a uniform distribution.
� Every point on the simplex is equally likely.

Case #2, j̨ > 1:

� This is a “bump.”
� It is centered around the expectation.

Case #3, j̨ < 1:

� This is a sparse distribution.
� Some (or many) components will have near zero probability.
� This will be important later, in Bayesian nonparametrics.

The Dirichlet is conjugate to the multinomial. Let z be an indicator vector, i.e., a
k-vector that contains a single one. The parameter to z is a point on the simplex � ,
denoting the probability of each of the k items. The density function for z is

p.z j �/ D
kY

jD1
�z

j

j ; (5)
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Figure 3: Draws from the (exchangeable) Dirichlet distribution.
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which “selects” the right component of � . (This is a multivariate version of the
Bernoulli.)

Consider the model,

� � Dir.˛/ (6)

zi j � � Mult.�/ for i 2 f1; : : : ; ng: (7)

Compute the posterior distribution of � ,

p.� j z1Wn; ˛/ / p.�; z1Wn j˛/ (8)

D p.� j˛/
nY
iD1

p.zi j �/ (9)

D
�
�Pk

jD1 j̨

�
Qk
jD1 �. j̨ /

kY
jD1

� j̨�1
j

nY
iD1

kY
jD1

�
z

j

i

j (10)

/
kY

jD1
�

j̨�1CPn
iD1 z

j

i

j : (11)

We use the sum
Pn
iD1 z

j
i D nj ; it is the number of times item j appeared in

z1Wn.

Equation 11 is a Dirichlet distribution with parameter Ǫj D j̨ C nj . It is the
multivariate analog of our earlier result about the beta distribution.

The expectation of the posterior Dirichlet is interesting,

E Œ�` j z1Wn; ˛� D ˛` C n`
nCPk

jD1 j̨

(12)

This is a “smoothed” version of the empirical proportions. As n gets large relative to
˛, the empirical estimate dominates this computation. This is the old story—when
we see less data, the prior has more of an effect on the posterior estimate.

When used in this context, j̨ can be interpreted as “fake counts.” (This interpretation
is clearer when considering the n0, x0 parameterization of this prior; see the notes on
exponential families.) The expectation reveals why—it is the MLE as though we saw
nj C j̨ items of each type. This is used in language modeling as a “smoother.”
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3 Topic models

We will study topic models as a testbed for mixed-membership modeling ideas. But
keep in mind the other applications.

The goal of topic modeling is to analyze massive collections of documents. There
are two types of reasons for why we might want to do this:

� Predictive: Search, recommendation, classification, etc.
� Exploratory: Organizing the collection for browsing and understanding.

Our data are documents.

� Each document is a group of words wd;1Wn.
� Each word wd;i is a value among V words.

The hidden variables are

� Multinomial parameters ˇ1WK (compare to Gaussian).
– Each component is a distribution over the vocabulary.
– These are called “topics.”

� Topic proportions �1WD.
– Each is a distribution over the K components.

� Topic assignments z1WD;1WN .
– Each is a multinomial indicator of the k topics.
– There is one for every word in the corpus.

The basic model has the following generative process. This is an adaptation of the
generic mixed-membership generative process.

1. Draw ˇk � DirV .�/, for k 2 f1; : : : ; Kg.
2. For each document d :

(a) Draw �d � DirK.˛/.
(b) For each word n in each document,

i. Draw zd;n � Cat.�d /.
ii. Draw wd;n � Mult.ˇzd;n

/.

This model is called latent Dirichlet allocation (LDA) (Blei et al., 2003).
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The posterior. Let’s contemplate the posterior. Note, this is usually a more produc-
tive (and interesting) activity than wondering whether your data really comes from
the model. (It doesn’t.)

The posterior is proportional to the joint. We have seen in Gibbs sampling that we
are doing something that looks like optimizing the joint, getting to configurations of
the latent variables that have high enough probability under the prior & explain the
data.

In LDA, the log joint is

logp.�/ D
KX
kD1

logp.ˇk/

C
DX
dD1

 
logp.�d /C

NX
nD1

logp.zd;n j �d /C logp.wd;n j zd;n; ˇ̌̌/
!

(13)

Substitute in the simple categorical parameterizations,

logp.�/ D
KX
kD1

logp.ˇk/C
DX
dD1

 
logp.�d /C

NX
nD1

log �d;zd;n
C logˇwd;n;zd;n

!
We see that the posterior gets bonuses for choosing topics with high probability in
the document (�d ) and words with high probability in the topic (ˇk).

These two latent variables must sum to one. Therefore, the model prefers documents
to have peaky topic proportions, i.e., few topics per document, and for topics to have
peaky distributions, i.e., few words per topic. But these goals are at odds—putting
a document in few topics means that those topics must cover all the words of the
document. Putting few words in a topic means that we need many topics to cover the
documents.

This intuition is why LDA gives us the kind of sharp co-occurrences.

Again, contrast to a mixture. Mixtures assert that each document has one topic. That
means that the topics must cover all the words that each document contains. They
are less peaky and “sharp”.

De Finetti and LDA (optional). An exchangeable joint distribution is one that is
invariant to permutation of its random variables. De Finetti’s theorem says that if a
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collection of random variables are exchangeable, then their joint can be written as a
“Bayesian model”

p.x1; x2; : : : ; xn/ D
Z
p.�/

nY
iD1

p.xi j �/d� (14)

In document collections this says that the order of words doesn’t matter,

p.w1; w2; : : : ; wn jˇ/ D
Z
p.�/

nY
iD1

p.wi jˇ/d�: (15)

In natural language processing, this is called the “bag of words” assumption. Though
commonly associated with independence, this assumption is really about exchange-
ability.

In topic modeling, this is palatable—we can still understand what a document is
about (at a high level) even after shuffling its words.

4 Gibbs sampling in LDA

We derive a Gibbs sampler for LDA, calculating the complete conditionals.

The conditional of the topic (component) assignment zd;n is a categorical distribution
over K elements. Each probability is

p.zd;n D k j z�n; ���; ˇ̌̌ ;w/ D p.zd;n D k j �d ; wd;n; ˇ̌̌/ (16)

/ p.�d /p.zd;n D k j �d /p.wd;n jˇk/ (17)

/ �d;kp.wd;n jˇk/ (18)

� We used independencies that follow from the graphical model.

� The prior p.�/ disappears because it doesn’t depend on zd;n.

� In LDA, the second term is the probability of word wd;n in topic ˇk . (We left
it general here to enable other likelihoods.)

12



The conditional of the topic (component) proportions �d is a posterior Dirichlet,

p.�d j z; ����d ;w; ˇ̌̌/ D p.�d j zd / (19)

D Dir
�
˛ CPN

nD1 zd;n
�
: (20)

� Independence follows from the graphical model.
� The posterior Dirichlet follows from our discussion of the Dirichlet.
� The sum of indicators creates a count vector of the topics in document d .
� This is general for all mixed-membership models.

Finally, the conditional of the topic ˇk is a Dirichlet. (For other types of likelihoods,
this will be a different posterior.)

p.ˇk j z; ���;w; ˇ̌̌�k/ D p. ǰ j z; w/ (21)

D Dir
�
�CPD

dD1
PN
nD1 z

j

d;n
wd;n

�
(22)

� Independence follows from the graphical model.
� The posterior Dirichlet follows from the discussion of the Dirichlet.
� The double sum counts how many times each word occurs under topic k.

‘ [ ALGORITHM ]

In population genetics, this was the algorithm developed in Pritchard et al. (2000).

The collapsed Gibbs sampler. A better algorithm is the collapsed Gibbs sampler.
It integrates out all latent variables except for z (Griffiths and Steyvers, 2004).

Each zd;n takes one of K values. It is a simple categorical distribution. The condi-
tional probability of topic assignment k is proportional to the joint of the assignment
and word,

p.zd;n D k j z�.d;n/;w/ / p.zd;n D k;wd;n j z�.d;n/;w�.d;n// (23)

Computing this joint gives us the collapsed Gibbs sampler.

We will integrate out the topic proportions �d and topic ǰ to obtain an integrand
independent of the other assignments and words. Given the proportions and topics,

13



the joint distribution of a topic assignment and word is

p.zd;n D k;wd;n j �d ; ˇ1WK/ D p.zd;n D k j �d /p.wd;n jˇ1WK ; zd;n D k/
D �d;kˇk;wd;n

(24)

We use this to compute Equation 23. We short hand zd;n D k to zd;n. We integrate
out the topic and topic proportions,

p.zd;n j z�.d;n/;w/ / p.zd;n; wd;n j z�.d;n/;w�.d;n// (25)

/
Z
ˇk

Z
�d

p.�d ; ˇk; zd;n; wd;n j z�.d;n/;w�.d;n// (26)

D
Z
ˇk

Z
�d

p.zd;n; wd;n j �d ; ˇk/p.�d j zd;�n/p.ˇk j z�.d;n/;w�.d;n//

(27)

D
Z
ˇk

Z
�d

�d;kˇk;wd;n
p.�d j zd;�n/p.ˇk j z�.d;n/;w�.d;n//

(28)

D
�Z

�d

�d;kp.�d j zd;�n/
��Z

ˇk

ˇk;wd;n
p.ˇk j z�.d;n/;w�.d;n//

�
:

(29)

Each of these two terms are expectations of posterior Dirichlets.

� In line 2, z.�d;n/ became zd;�n. The proportions �d are independent of all
assignments zf where f ¤ d .

� The first is like Equation 20, but using all but zd;n to form counts.

� The second is like Equation 22, but using all but wd;n to form counts.

The final algorithm is simple

p.zd;n D k j z�.d;n/;w/ D
 
˛ C nk

d

k˛ C nd

! 
�Cmwd;n

k

v�Cmk

!
: (30)

The counts nd are per-document counts of topics and the counts mj are per topic
counts of terms. Each is defined excluding zd;n and wd;n.

‘ [ ALGORITHM ]
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5 Mean-field variational inference

LDA is a good testbed for variational inference (Jordan et al., 1999; Wainwright and
Jordan, 2008). This was the original algorithm that we derived in Blei et al. (2003).
However, we can now derive it in a much simpler way.

Variational inference (VI) is a method of approximate inference. It is an alternative
to Gibbs sampling, but is closely related. VI tends to be faster than MCMC, but
there is substantially less theory. It is an active area of machine learning research.
(Like MCMC, VI adapts ideas from statistical physics to more general questions of
probabilistic inference.)

We will describe VI in general, and then describe VI for topic models. Consider a
general model p.z; x/, where x are observations and z are hidden variables. Our goal
is to calculate the posterior

p.z j x/ D p.z; x/
p.x/

: (31)

As we have seen, this is hard because the denominator is hard to compute. Gibbs
sampling constructs a Markov chain whose stationary distribution is the posterior.
Variational inference takes a different approach.

VI first posits a new distribution over the hidden variables q.zI �/, indexed by vari-
ational parameters �; note this defines a family of distributions over the hidden
variables. VI then tries to find the value �� which indexes the distribution closest
to the exact posterior. (Closeness is measured by Kullback-Leibler divergence.) VI
turns the inference problem into an optimization problem. Turning computation into
optimization is the hallmark of variational algorithms.

Once VI has found ��, it uses q.zI ��/ as a proxy for the posterior. The fitted
variational distribution can be used to explore the data or to form posterior predictive
distributions.

Aside: The Kullback-Leibler divergence. The KL divergence from q.zI �/ to
p.z j x/ is

KL .q.zI �/jjp.z j x// D Eq

�
log q.ZI �/
logp.Z j x/

�
: (32)
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Alternatively,

KL .q.zI �/jjp.z j x// D Eq Œlog q.ZI �/� � Eq Œlogp.Z j x/� : (33)

We gain intuitions about KL by drawing a picture. Consider:

� Mass at q.�/; no mass at p.� j x/.
� Mass at p.� j x/; no mass at q.�/.
� Mass at both
� Two equal distributions have zero KL.

Minimizing KL. We return to variational inference. The optimization problem is

�� D argmin
�

KL .q.zI �/jjp.z j x// (34)

First, we define the family of distributions. Many VI methods use the mean-field
family, where each hidden variable is independent and governed by its own parameter.
The mean-field distribution is

q.zI �/ D
mY
iD1

q.zi I �i/ (35)

At first this looks funny—this is a “model” that contains no data and where nothing is
shared between the variables. The idea is that Equation 35 is a family of distributions;
its connection to the data, specifically to the posterior, is through the optimization
problem in Equation 34.

The mean-field variational distribution is flexible in that it can capture any configura-
tion of marginal distributions of the latent variables. However it is also limited in
that it does not capture any dependencies between them. In general, latent variables
are dependent in the posterior distribution.

If the family q.�I �/ ranged over all distributions of z then the optimization problem in
Equation 34 would have its optimal at the posterior p.z j x/. However, we would not
be able to find this optimum—recall that we are doing variational inference because
we cannot compute the posterior. The reason we limit the family is to facilitate the
optimization.
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To see how, expand the objective function,

KL .q.zI �/jjp.z j x// D Eq Œlog q.ZI �/� � Eq Œlogp.Z j x/� (36)

D Eq Œlog q.ZI �/� � Eq Œlogp.Z; x/� � logp.x/: (37)

In variational inference we optimize the first two terms, i.e., the terms that depend on
q.�I �/. Taking these expectations is not possible without simplifying the variational
family.

The evidence lower bound. We describe a general algorithm for mean-field varia-
tional inference.

Traditionally, the variational objective is a quantity called the evidence lower bound
(ELBO). It negates the first two terms from Equation 37,

L D Eq Œlogp.Z; x/� � Eq Œlog q.ZI �/� (38)

D Eq Œlogp.Z/�C Eq Œlogp.x jZ/� � Eq Œlog q.ZI �/� ; (39)

and our goal is to maximize the ELBO. Maximizing the ELBO is equivalent to
minimizing the KL divergence in Equation 37. (The name ELBO comes from the
fact that it is a lower bound on the evidence, logp.x/. Many derivations of variational
inference use the lower-bound perspective to develop the objective.)

The ELBO gives alternative intuitions about the variational objective function. The
term Eq Œlogp.x jZ/� encourages q.�I �/ to place its mass on configurations of z
that explain the data. (This is tempered by the probability of the latent variables
Eq Œlogp.Z/�.)

The last term �Eq Œlog q.ZI �/� is the entropy of the variational distribution. It
“regularizes” the objective to prefer variational distributions that spread their mass
across many configurations of the latent variables. Without this term, the objec-
tive would choose a variational distribution that placed all of its mass on the best
configuration.

Note that the entropy decomposes in the mean-field family,

�Eq Œlog q.ZI �/� D
mX
iD1

Eq Œlog q.Zi I �i/� : (40)
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We have now transformed approximate inference into an optimization problem.
This opens the door to the (large) world of optimization techniques to help with
computation in probabilistic models. For good references see Spall (2003); Boyd
and Vandenberghe (2004); Kushner and Yin (1997). But for now we will use one
method, coordinate ascent.

Coordinate-ascent variational inference. Coordinate ascent iteratively optimizes
each variational parameter while holding the others fixed. Each step goes uphill
in the ELBO; variational inference with coordinate ascent converges to a local
optimum.

The coordinate update in mean-field variational inference is

q.zi I �i/ / exp
˚
Eq�i

Œlogp.zi ;Z�i ; x/�
	
; (41)

where q�i.z�i/ is the mean-field distribution with the i th factor removed. This update
says that the optimal variational factor for zi is proportional to an exponentiated
expected log joint with zi fixed to its value.

Recall p.zi j z�i ; x/ is the complete conditional. (This is the distribution we sample
from in the Gibbs sampler.) A trivial consequence of Equation 41 is that

q.zi I �i/ / exp
˚
Eq�i

Œlogp.zi jZ�i ; x/�
	

(42)

This update reveals a connection between variational inference and Gibbs sam-
pling.

Finally, suppose the complete conditional is in the exponential family,

p.zi j z�i ; x/ D exp
˚
�i.z�i ; x/>zi � a.�i.z�i ; x//

	
: (43)

(This is the case for most of the models that we will study.) Now place �i in the same
exponential family, i.e., it is a free parameter that indexes the family with the same
dimension and the same log normalizer a.�/. The coordinate update is

�i D Eq�i
Œ�i.Z�i ; x/� (44)

The algorithm is in Algorithm 1.
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Algorithm 1: Coordinate-ascent mean-field variational inference.

Input: A data set x
Output: A variational distribution q.zI �/ DQm

iD1 q.zi I �i/
Initialize: Variational factors q.zi I �i/
while the ELBO has not converged do

for i 2 f1; : : : ; mg do
Set q.zi I �i/ / expfE�i Œlogp.zi jZ�i ; x/�g

end
Compute ELBO D E Œlogp.Z; x/�C E Œlog q.Z/�

end
return q.zI �/

Note that the coordinate updates involve the complete conditional. Recall, from our
lecture on Gibbs sampling, that this involves theMarkov blanket of of the node zi ,
i.e., its children, its parents, and the other parents of its children.

As for the Gibbs sampler, variational inference can also be seen as a message-passing
algorithm. The variational parameters live on the nodes in the network; a node passes
its “messages” to its neighbor when its neighbor is updating its parameter (Winn and
Bishop, 2005).

Variational inference for LDA. Let’s return to LDA. The mean-field variational
family is

q.ˇ; „; zI �/ D
KY
kD1

q.ˇkI�k/
DY
dD1

 
q.�d I 
d /

NY
nD1

q.znI'd;n/
!
: (45)

The variational parameters are a V -Dirichlet distribution �k for each topic, a K-
Dirichlet distribution 
d for each document’s topic proportions, and a K-categorical
distribution 'd;i for each word in each document.

Consider each update in turn. The update for the variational topic assignment 'd;n
applies the complete conditional in Equation 24 in Equation 42,

'd;n / exp
˚
E
d

Œlog �d �C E�k

�
logˇ�;wd;n

�	
: (46)

In this update, ˇ�;wd;n
is the vector of probabilities of word wd;n under each of the
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topics. The expectations are

E
d
Œlog �d;k� D ‰.
d;k/ �‰

�P
j 
d;j

�
(47)

E�k
Œlogˇk;w � D ‰.�k;w/ �‰

�P
v �k;v

�
; (48)

where ‰.�/ is the digamma function, the first derivative of log�.�/. (This function is
available in most mathematical libraries.) These identities come from the exponential
family representation of the Dirichlet in Equation 2. The sufficient statistic is log �k ,
and so its expectation is the first derivative of the log normalizer.

Now we turn to the variational Dirichlet parameters. These updates come from the
exponential family result in Equation 44. For the variational topic proportions 
d ,
we take the expectation of Equation 20,


d D ˛ C
NX
nD1

'd;n: (49)

(Note that the expectation of an indicator vector is its vector of probabilities.) For
each document, this is a “posterior Dirichlet.” The second term counts the expected
number of times each topic appears in each document.

Similarly, the variational update for the topics comes from Equation 22,

�k D �C
DX
dD1

NX
nD1

'd;n;kwd;n: (50)

The second term counts the expected number of times each word appears in each
topic.

‘ [ ALGORITHM ]

Discussion.

� VI does not find a global optimum of the KL; it converges to a local optimum;
it is sensitive to the starting point.

� We canmove beyond the mean-field, finding structured variational distributions
that account for posterior dependence in the latent variables.

� We can also move beyond assumptions around the complete conditional. Stan
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includes a variational inference algorithm that does this (Kucukelbir et al.,
pear). There are many other methods.

� There are many open problems around variational inference.
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