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1 Dyadic data

One important type of modern data is dyadic data. Dyadic data are measurements on
pairs. The idea is that the observed value yij represents something measured about
the interaction of i and j .

One of the most prevalent types of dyadic data is user consumption data, where
yij represents an interaction between user i and item j . For example, yij can be
the number of times user i clicked on webpage j , whether user i purchased book
j , the rating user i gave to movie j , or how long user i spent at location j . This
problem has cropped up everywhere: Amazon (purchasing), web sites (clicks),
music listening services (listens). It is important both for forming predictions & for
understanding people’s behavior. Throughout this lecture, we will use the language
of user consumption behavior: there are users, items, and measurements about
them.

Typically these data are represented in a matrix, the consumption matrix.

‘ [DRAWAMATRIX,MOVIESANDUSERS; STARWARSANDROMCOMS]

As usual, the two types of problems we want to solve with dyadic data are prediction
and exploration. In exploration, we want to understand patterns of consumption—
what kind of user likes what kind of movie? These problems are less explored in
Computer Science, but they are very important in Econometrics.

Here we focus on prediction. In prediction we want to predict which unrated items
a user will like. For example, will user #3 like Star Wars? Empire Strikes Back?
When Harry Met Sally? (How about the new Star Wars movie? Already this gets
interesting. That prediction problem is called the cold start problem. More on that
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Figure 1: The graphical model for probabilistic matrix factorization.

later.) More realistically, in prediction we provide ranked lists of unwatched movies
for the users. A good list has movies they will like ranked higher in the list.

2 Matrix Factorization

In probabilistic matrix factorization, each user and each item is associated with a
latent vector. For users we call this vector her preferences; for items we call this
vector its attributes. Loosely, whether a user likes an item is governed by the distance
between a user’s preferences and the item’s attributes. If they are closer together in
the latent space, then it is more likely that the user will like the item.

‘ [DRAW PICTURE IN 2D; INCLUDE STAR WARS AND ROMCOMS]

Formally, the generative process is

1. For each user i , draw each preference xik � N .0; �2x /, where k 2 1; : : : ; K.
2. For each item j , draw each item attribute ˇik � N .0; �2

ˇ
/, where k 2 1; : : : K.

3. For each user item pair, draw yij � f .x>
i ǰ /.

Figure 1 gives the graphical model. (For those that are familiar, this is similar to
factor analysis and principal component analysis.)

Given a user/item matrix, our goal is to compute the posterior distribution of xi
(for each user) and ǰ (for each item). This embeds users and items into a low-
dimensional space. It places users close to the items that they like; and places items
close to the users who like them.
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Intuitively, why does this work? Consider two users, Jack and Diane. Jack has seen
every Star Wars movie except for Return of the Jedi. Diane has seen every Star
Wars movie. The posterior will want to place Jack near the movies he saw and place
Diane near the movies that she saw. But they have seen similar collections of movies.
Thus they will be near each other in the latent space, and near the Star Wars movies.
Consequently, Return of the Jedi will be close to Jack, and we can recommend that
he see it.

As we did for LDA, let’s write down the log of the joint distribution. This will help
us make these intuitions more rigorous.

The joint distribution of hidden and observed variables is

logp.ˇ; x; y/ D
X

logp.xi/C
X

logp. ǰ /C
XX

logp.yij j xi ; ǰ /: (1)

Assume the data are Gaussian,

yij j xi ; ǰ � N .x>
i ǰ ; �

2/: (2)

Thus the last term of the log joint is related to the mean squared error between
observed ratings yij and the model’s representation x>

i ǰ .

Again, consider a set of users who like the same two movies. The model can place
the movies close together in the latent space, place the users in the same vicinity, and
explain the ratings. When new users like one of those movies, they are placed in the
same part of the space; we predict that they like the other movie too.

The priors in the first two two terms in the log joint are regularization terms; they
shrink the representations of users and movies, pulling them towards zero. Empir-
ically, regularization is crucial in these models. Practitioners use cross-validation
to set the regularization parameters, i.e., the hyperparameters to the prior. When
we study regression, we will learn more about regularization and why it is impor-
tant.

We turn to inference. First, we discuss the MAP estimates of preferences x and
attributes ˛. (Recall theMAP estimate is the value of the latent variable that maximizes
the posterior.)

We expand the log joint to include the Gaussian assumptions and remove terms that
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do not depend on the latent variables,
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(To keep it simpler, we assumed that the likelihood variance is one.)

We take the derivative with respect to xik , user i ’s preference for factor k. We expand
the square in the likelihood term and collect terms that depend on xik,

L.xik/ D �x2ik=2�2x C
X
j

xik ǰkyij � .x>
i ǰ /

2=2: (4)

The derivative with respect to xik is
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For those of you that know regression, this is a (regularized) linear regression, one
per user. The coefficients are xi ; the covariates are ǰ ; the response is yij . (There is
one response per item.) We will see these types of gradients again when we study
generalized linear models.

The derivative with respect to ǰk is analagous:

@L
@ ǰk
D � ǰk=�

2
ˇ
CPi.yij � E

�
Yij j xi ; ǰ

�
/xik: (8)

This is a (regularized) regression—one per item—where ǰ are the coefficients, xi
are the covariates, and yij is the response. (There is one response per user.)

Coordinate updates of these latent variables, iterates between solving user-based
reguarlized regressions and item-based regularized regressions.

Now consider MCMC. The complete conditional of the preference xik is proportional
to the joint. Examining Equation 4, we see that this is a Gaussian distribution. It is
an exponential family with sufficient statistics xik and x2ik .
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We have scratched the surface. Further ideas:

� Tensor factorization
� The latent space model of networks
� Including observed characteristics
� Big challenges: sparsity, implicit data
� The cold start problem and content-based recommendation
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