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The exponential family is a class of densities (Brown, 1986). It encompasses many
familiar forms of likelihoods, such as the Gaussian, Poisson, multinomial, and
Bernoulli. It also encompasses their conjugate priors, such as the Gamma, Dirichlet,
and beta.

1 Definition

A probability density in the exponential family has this form

p.x j �/ D h.x/ expf�>t .x/ � a.�/g; (1)

where

� � is the natural parameter;
� t .x/ are sufficient statistics;
� h.x/ is the “base measure;”
� a.�/ is the log normalizer.

Examples of exponential family distributions include Gaussian, gamma, Poisson,
Bernoulli, multinomial, Markov models.

Examples of distributions that are not in this family include student-t, mixtures, and
hidden Markov models. (We are considering these families as distributions of data.
The latent variables are implicitly marginalized out.)

� The statistic t .x/ is called sufficient because the probability as a function of � only
depends on x through t .x/.

� The exponential family has fundamental connections to the world of graphical
models (Wainwright and Jordan, 2008). For our purposes, we’ll use exponential
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families as components in directed graphical models, e.g., in the mixtures of
Gaussians.

� The log normalizer ensures that the density integrates to 1,

a.�/ D log
Z
h.x/ expf�>t .x/gd�.x/ (2)

This is the negative logarithm of the normalizing constant.

� The function h.x/ can be a source of confusion. One way to interpret h.x/ is the
(unnormalized) distribution of x when � D 0. It might involve statistics of x that
are not in t .x/, i.e., that do not vary with the natural parameter.

How do we take a familiar distribution with parameter � and try to turn it into an
exponential family?

1. Exponentiate the log density to find expflogp.x j�/g.

2. Inside the exponential, find terms that can be written as �i.�/ti.x/ for sets of
functions �i.�/ and ti.x/. These are natural parameters and sufficient statistics.

3. Find terms that are a function only of the parameters, a.�/. Try to write them
in terms of the �i.�/ identified in the previous step. This is the log normalizer.

4. Now look at the rest—hopefully it’s a function of x and constants, i.e., not of
any of the free parameters �. This is h.x/.

Bernoulli. As an example, let’s put the Bernoulli (in its usual form) into its expo-
nential family form. The Bernoulli you are used to seeing is

p.x j�/ D �x.1 � �/1�x x 2 f0; 1g (3)

In exponential family form

p.x j�/ D exp
˚
log

�
�x.1 � �/1�x

�	
(4)

D expfx log� C .1 � x/ log.1 � �/g (5)

D expfx log� � x log.1 � �/C log.1 � �/g (6)

D expfx log.�=.1 � �//C log.1 � �/g (7)
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Figure 1: The logistic function (from Wikipedia).

This reveals the exponential family where

� D log.�=.1 � �// (8)

t .x/ D x (9)

a.�/ D � log.1 � �/ D log.1C e�/ (10)

h.x/ D 1 (11)

Note the relationship between � and � is invertible

� D 1=.1C e��/ (12)

This is the logistic function. See Figure 1.

Poisson. The Poisson is a distribution on integers, often used for count data. The
familiar form of the Poisson is

p.x j�/ D
1

xŠ
�x expf��g: (13)

Put this in exponential family form

p.x j�/ D
1

xŠ
expfx log� � �g: (14)
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We see that

� D log� (15)

t .x/ D x (16)

a.�/ D � D expf�g (17)

h.x/ D 1=xŠ (18)

Gaussian. See Appendix A for the natural parameterization of the Gaussian.

2 Moments of an exponential family

Let’s go back to the general family. We are going to take derivatives of the log
normalizer. This gives us moments of the sufficient statistics,

r�a.�/ D r�flog
R
expf�>t .x/gh.x/dxg (19)

D
r�

R
expf�>t .x/gh.x/dxR

expf�>t .x/gh.x/dx
(20)

D

Z
t .x/

expf�>t .x/gh.x/R
expf�>t .x/gh.x/dx

dx (21)

D E�Œt .X/� (22)

Check: Higher order derivatives give higher order moments. For example,

@2a.�/

@�i@�j
D E

�
ti.X/tj .X/

�
� E Œti.X/�E

�
tj .X/

�
D Cov.ti.X/; tj .X//: (23)

There is a 1-1 relationship between the mean of the sufficient statistics E Œt .X/� and
natural parameter �. In other words, the mean is an alternative parameterization of
the distribution. (Many of the forms of exponential families that you know are the
mean parameterization.)

We can easily see the 1 � 1 relationship between E Œt .X/� and � in one dimension.
Let X be a scalar. Note that

� Var.t.X// D r2a� is positive.
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� ! a.�/ is convex.
� ! 1-1 relationship between its argument and first derivative

Here is some notation for later (when we discuss generalized linear models). Denote
the mean parameter as � D E Œt .X/�; denote the inverse map as  .�/, which gives
the � such that E Œt .X/� D �.

Bernoulli. We saw the 1-1 relationship through the logistic function. Note that
� D E ŒX� because X is an indicator.

Gaussian. The derivative with respect to �1 is

da.�/

d�1
D �

�1

2�2
(24)

D � (25)

D E ŒX� (26)

The derivative with respect to �2 is

da.�/

d�2
D

�21
4�22
�

1

2�2
(27)

D �2 C �2 (28)

D E
�
X2
�

(29)

This means that the variance is

Var.X/ D E
�
X2
�
� E ŒX�2 (30)

D �
1

2�2
(31)

D �2 (32)

Poisson. The expectation is the rate,

E ŒX� D
da.�/

d�
D expf�g D �: (33)

All higher moments are the rate. This tying of mean and variance leads applied
statisticians to alternatives, such as the negative Binomial, where we separately
control the mean and variance.
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3 Maximum likelihood estimation of an exponential family.

The data are x1Wn. We seek the value of � that maximizes the likelihood.

The log likelihood is

L D

NX
nD1

logp.xn j �/ (34)

D

NX
nD1

.log h.xn/C �>t .xn/ � a.�// (35)

D
PN
nD1 log h.xn/C �>

PN
nD1 t .xn/ �N � a.�/ (36)

As a function of �, the log likelihood only depends on
PN
nD1 t .xn/. It has fixed

dimension; there is no need to store the data. (And note that it is sufficient for
estimating �.)

Take the gradient of the likelihood and set it to zero,

r�L D

NX
nD1

t .xn/ �Nr�a.�/: (37)

It’s now easy to solve for the mean parameter:

�ML D

PN
nD1 t .xn/

N
: (38)

This is, as you might guess, the empirical mean of the sufficient statistics. The inverse
map gives us the natural parameter,

�ML D  .�ML/: (39)

Bernoulli. The MLE of the mean parameter �ML is the sample mean; the MLE of
the natural parameter is the corresponding log odds.

Gaussian. The MLE of the mean parameters are the sample mean and the sample
variance.

Poisson. The MLE of the mean parameters is the sample mean; the MLE of the
natural parameter is its log.
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4 Conjugacy

Consider the following set up:

� � F.� j�/ (40)

xi � G.� j �/ for i 2 f1; : : : ; ng: (41)

This is a classical Bayesian data analysis setting. And, this is used as a component in
more complicated models, e.g., in hierarchical models.

The posterior distribution of � given the data x1Wn is

p.� j x1Wn; �/ / F.� j�/

nY
iD1

G.xi j �/: (42)

Suppose this distribution is in the same family as F , i.e., its parameters are in the
space indexed by �. Then F and G are a conjugate pair.

For example,

� Gaussian likelihood with fixed variance; Gaussian prior on the mean
� Multinomial likelihood; Dirichlet prior on the probabilities
� Bernoulli likelihood; beta prior on the bias
� Poisson likelihood; gamma prior on the rate

In all these settings, the conditional distribution of the parameter given the data is in
the same family as the prior.

4.1 A generic conjugate prior

Suppose the data come from an exponential family. Every exponential family has a
conjugate prior (Diaconis and Ylvisaker, 1979; Bernardo and Smith, 1994),

p.xi j �/ D h`.x/ expf�>t .xi/ � a`.�/g (43)

p.� j�/ D hc.�/ expf�>1 �C �2.�a`.�// � ac.�/g: (44)

The natural parameter � D Œ�1; �2� has dimension dim.�/ C 1. The sufficient
statistics are Œ�;�a.�/�.

7



The other terms hc.�/ and ac.�/ depend on the form of the exponential family. For
example, when � are multinomial parameters, these terms define a Dirichlet.

4.2 The posterior

We compute the posterior in the general case,

p.� j x1Wn; �/ / p.� j�/

nY
iD1

p.xi j �/ (45)

D h.�/ expf�>1 �C �2.�a.�// � ac.�/g (46)

�
�Qn

iD1 h.xi/
�
expf�>

Pn
iD1 t .xi/ � na`.�/g

/ h.�/ expf.�1 C
Pn
iD1 t .xi//

>�C .�2 C n/.�a.�//g: (47)

This is the same exponential family as the prior, with parameters

O�1 D �1 C

nX
iD1

t .xi/ (48)

O�2 D �2 C n: (49)

4.3 The posterior predictive

We compute the posterior predictive distribution. This comes up frequently in
applications of models (i.e., when doing prediction) and in inference (i.e., when
doing collapsed Gibbs sampling).

Consider a new data point xnew. Its posterior predictive is

p.xnew j x1Wn/ D

Z
p.xnew j �/p.� j x/d� (50)

D

Z
expf�>xnew � a.�/g expfO�>1 �C O�2.�a.�// � a. O�/gd� (51)

D

R
expf. O�1 C xnew/>�C . O�2 C 1/.�a.�//d�

expfa. O�1; O�2/g
(52)

D expfa. O�1 C xnew; O�2 C 1/ � a. O�1; O�2/g (53)

In other words, the posterior predictive density is a ratio of normalizing constants.
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In the numerator is the posterior with the new data point added; in the denominator
is the posterior without the new data point.

Note: this is how we can derive collapsed Gibbs samplers.

4.4 Canonical prior

There is a variation on the form of the simple conjugate prior that is useful for
understanding its properties. Set �1 D x0n0 and �2 D n0. (And, for convenience,
drop the sufficient statistic so that t .x/ D x.)

In this form the conjugate prior is

p.� j x0; n0/ / expfn0x>0 � � n0a.�/g: (54)

We can interpret x0 as our prior idea of the expectation of x, and n0 as the number
of “prior data points.”

Consider the predictive expectation of X , E� ŒEX ŒX j ���. The first expectation is
with respect to the prior; the second is respect to the data distribution. Fact:

E ŒE ŒX j ��� D x0: (55)

Assume data x1Wn. The mean is

Nx D .1=n/

nX
iD1

xi (56)

Given the data and a prior, the posterior parameters are

Ox0 D
n0x0 C n Nx

nC n0
(57)

On D n0 C n (58)

This follows from O�1; O�2 in Equation 48 and Equation 49. Notice the posterior
expectation of X , Ox0, is a convex combination of x0 (our prior idea) and Nx (the data
mean). This is a property of conjugate priors (Diaconis and Ylvisaker, 1979).
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As an example, we now derive the canonical prior for a Bernoulli likelihood. (Ap-
pendix B derives the canonical prior for a unit-variance Gaussian.)

4.5 Example: Data from a Bernoulli

The Bernoulli likelihood is

p.x j�/ D �x.1 � �/1�x: (59)

Above we have seen its form as a minimal exponential family. Let’s rewrite that, but
keeping the mean parameter in the picture,

p.x j�/ D expfx log.�=.1 � �//C log.1 � �/g (60)

The canonical conjugate prior therefore looks like this,

p.� j x0; n0/ D expfn0x0 log.�=.1 � �//C n0 log.1 � �/ � a.n0; x0/g (61)

This simplifies to

p.� j x0; n0/ D expfn0x0 log.�/C n0.1 � x0/ log.1 � �/ � a.n0; x0/g (62)

Putting this in non-exponential family form,

p.� j x0; n0/ / �
n0x0.1 � �/n0.1�x0/ (63)

which nearly looks like the familiar Beta distribution.

To get the beta, we set ˛ , n0x0 C 1 and ˇ , n0.1 � x0/ C 1. Bringing in the
resulting normalizer, we have

p.� j˛; ˇ/ D
�.˛ C ˇ/

�.˛/�.ˇ/
�˛�1.1 � �/ˇ�1: (64)

The posterior distribution follows the usual recipe, from which we can derive that
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the corresponding updates are

Ǫ D ˛ C

nX
iD1

xi (65)

Ǒ D ˇ C

nX
iD1

.1 � xi/ (66)

To see this, update Ox0 and On0 as above and compute Ǫ and Ǒ from the definitions.

4.6 The big picture

Exponential families and conjugate priors can be used in many graphical models.
Gibbs sampling is straightforward when each complete conditional involves a conju-
gate “prior” and likelihood pair.

For example, we can now define an exponential family mixture model. The mix-
ture components are drawn from a conjugate prior; the data are drawn from the
corresponding exponential family.

[graphical model]

In the mixture of Gaussians, the conditional distribution of the mixture locations was
Gaussian. This was thanks to conjugacy. In general, we can imagine a mixture of
multinomials (with Dirichlet priors), a mixture of Poissons (with Gamma priors),
and so on.

Imagine a generic model p.z; x j˛/. Suppose each complete conditional is in the
exponential family,

p.zi j z�i ; x; ˛/ D h.zi/ expf�i.z�i ; x/>zi � a.�i.z�i ; x//g: (67)

Notice the natural parameter is a function of the variables we condition on. This
is called a conditionally conjugate model. Provided we can compute the natural
parameter, Gibbs sampling is immediate.

Many models from the machine learning research literature are conditionally con-
jugate. Examples include hidden Markov models, Kalman filters, mixture models,
hierarchical linear regression, probit regression, factorial models, and others.
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Consider the HMM, for example, but with its parameters unknown,

[ graphical model ]

Notice that this is like a mixture model, but where the mixture components are
embedded in a Markov chain.

Each row of the transition matrix is a point on the .K � 1/-simplex; each set of
emission probabilities is a point on the .V � 1/-simplex. Place Dirichlet priors on
these components. (We discuss the Dirichlet later. It is a multivariate generalization
of the beta distribution, and is the conjugate prior to the categorical/multinomial
distribution.)

We easily obtain the complete conditional of zi . The complete conditionals of the
transitions & emissions follow from our discussion of conjugacy.

References

Bernardo, J. and Smith, A. (1994). Bayesian Theory. John Wiley & Sons Ltd.,
Chichester.

Brown, L. (1986). Fundamentals of Statistical Exponential Families. Institute of
Mathematical Statistics, Hayward, CA.

Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for expontial families. The
Annals of Statistics, 7(2):269–281.

Wainwright, M. and Jordan, M. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305.

12



A The natural parameterization of the Gaussian

The familiar form of the univariate Gaussian is

p.x j�; �2/ D
1

p
2��2

exp
�
�
.x � �/2

2�2

�
(68)

We put it in exponential family form by expanding the square

p.x j�; �2/ D
1
p
2�

exp
�
�

�2
x �

1

2�2
x2 �

1

2�2
�2 � log �

�
(69)

We see that

� D Œ�=�2;�1=2�2� (70)

t .x/ D Œx; x2� (71)

a.�/ D �2=2�2 C log � (72)

D ��21=4�2 � .1=2/ log.�2�2/ (73)

h.x/ D 1=
p
2� (74)

B The unit-variance Gaussian and its canonical prior

Suppose the data xi come from a unit variance Gaussian

p.x j�/ D
1
p
2�

expf�.x � �/2=2g: (75)

This is a simpler exponential family than the previous Gaussian

p.x j�/ D
expf�x2=2g
p
2�

expf�x � �2=2g: (76)
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In this case

� D � (77)

t .x/ D x (78)

h.x/ D
expf�x2=2g
p
2�

(79)

a.�/ D �2=2 D �2=2: (80)

What is the conjugate prior? It is

p.� j�/ D h.�/ expf�1�C �2.��2=2/ � ac.�/g (81)

This has sufficient statistics Œ�;��2=2�, whichmeans it’s aGaussian distribution.

Put it in canonical form,

p.� jn0; x0/ D h.�/ expfn0x0� � n0.�2=2/ � ac.n0; x0/g: (82)

The posterior parameters are

Ox0 D
n0x0 C n Nx

n0 C n
(83)

On0 D nC n0: (84)

We now use the mapping from mean to natural parameters (Equation 70) to derive
the posterior mean and variance. They are

O� D Ox0 (85)

O�2 D 1=.n0 C n/: (86)

These are results that we asserted earlier.

When we haven’t seen any data then our estimate of the mean is the prior mean. As
we see more data, our estimate of the mean moves towards the sample mean.

Before seeing data, our “confidence” about the estimate is the prior variance. As we
see more data, the confidence decreases.
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