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Modern regression problems are high dimensional, which means that the num-
ber of covariates p is large. In practice statisticians regularize their models,
veering away from the MLE solution to one where the coefficients have smaller
magnitude. This lecture is about regularization. It draws on the ideas and
treatment in Hastie et al. (2009) (referred to below as ESL).

1 The bias-variance trade off

We first discuss an important concept, the bias-variance trade off. In this
discussion we will take a frequentist perspective.

Consider a set of random responses drawn from a linear regression with “true”
parameter ˇ�,

Yn j xn; ˇ
�
� N .ˇ�xn; �2/: (1)

The data are D D f.xn; Yn/g. Note that we are holding the covariates xn fixed;
only the responses are random. (We are also assuming xn is a single covariate;
in general, it is p-dimensional and we replace ˇ�xn with ˇ�>xn.)

With this data set, the maximum likelihood estimate is a random variable whose
distribution is governed by the distribution of the data Ǒ.D/. Recall that ˇ� is
the true parameter that generated the responses. How close to we expect Ǒ.D/
to be to ˇ�?

We can answer this question in a couple of ways. First, suppose we observe
a new data input x. We consider the mean squared error of our estimate of
E Ǒ Œy j x� D Ǒx. This is the difference between our predicted expectation of
the response and the true expectation of the response,

MSE D Eˇ�

h
. Ǒ.D/>x � ˇ�>x/2

i
: (2)

It is important to keep track of which variables are random. The coefficient ˇ� is
not random; it is the true parameter that generated the data. The coefficient Ǒ.D/
is random; it depends on the randomly generated data set D. The expectation in
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this equation is with respect to the randomly generated data set. (For simplicity,
we will sometimes supress this notation below.)

The MSE decomposes in an interesting way,
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The second term is the squared bias,

bias D E
h
Ǒx
i
� ˇ�x: (4)

An estimate for which this term is zero is an unbiased estimate. The first term is
the variance,

variance D E
h
. Ǒx/2

i
� E

h
Ǒx
i2
: (5)

This reflects the spread of the estimates we might find on account of the ran-
domness inherent in the data. Note that the decomposition holds for any linear
function of the coefficients.

A famous result in statistics is the Gauss-Markov theorem. Recall that the MLE
Ǒ is an unbiased estimate. The theorem states that the MLE is the unbiased

estimate with the smallest variance. If you insist on unbiasedness, and you care
about the MSE, then you can do no better than the MLE.

Often we care about expected prediction error. Suppose we observe a new
input x. How wrong will we be on average when we predict the true y j x with
E Œy j x� from a fitted regression?

The expected squared prediction error is

ED

h
EY

h
. Ǒx � Y /2

ii
The first expectation is taken for the randomness of Ǒ, which is a function of
the data. The second is taken for the randomness of Y given x, which comes
from the true model. This decomposes as follows,

ED

h
EY

h
. Ǒx � Y /2

ii
D Var.Y /CMSE. Ǒx/ (6)

D �2 C Bias2. Ǒx/C Var. Ǒx/: (7)
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The first term is the inherent uncertainty around the true mean; the second
two terms are the bias variance decomposition of the estimator. We cannot do
anything about the inherent uncertainty; thus reducing the MSE also reduces
expected prediction error.

Classical statistics cared only about unbiased estimators. Modern statistics
has explored the trade-off, where it may be worth accepting some bias for a
reduction in variance. This can reduce the MSE and, consequently, the expected
prediction error on future data.

Here a simple picture to illustrate why:
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It may be that the MSE is smaller for the biased estimator, because it nevers
veers as far away from the truth as the unbiased estimator does.

2 Ridge regression

Regularization. In regression, we can make this trade-off with regularization,
which means placing constraints on the coefficients ˇ. Here is a picture from
ESL for our first example.
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.
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In this picture, contours represent values of ˇ with equal RSS (or, equiva-
lently, likelihood). Our procedure finds the best value that is within the blue
circle.

This reduces the variance because it limits the space that the parameter vector
ˇ can live in. If the true MLE of ˇ lives outside that space, then the resulting
estimate must be biased because of the Gauss-Markov theorem.

The picture also shows how regularization encourages smaller and perhaps
“simpler” models. Simpler models are more robust to overfitting, generalizing
pooly because of a close match to the training data. Simpler models can also
be more interpretable, which is another goal of regression. (This is particularly
true for the lasso, which we will talk about later.)

Ridge regression. Let’s discuss the details of ridge regression. We optimize
the RSS subject to a constraint on the sum of squares of the coefficients,

minimize
PN
nD1

1
2
.yn � ˇxn/

2

subject to
Pp
iD1 ˇ

2
i � s

(8)

This constrains the coefficients to live within a sphere of radius s. (See the
picture.) Question: What happens as the radius increases? Answer: Variance
goes up; bias goes down.

With some calculus, the ridge regression estimate can also be expressed as

Ǒridge
D arg min

ˇ

NX
nD1

1

2
.yn � ˇxn/

2
C �

pX
iD1

ˇ2i (9)

This is nice because the problem is convex. Further, it has an analytic solution.
(See the reading.) Question: Is it sensitive to scaling? Answer: Yes, in practice
we center and scale the covariates.

There is a 1-1 mapping between the radius s and complexity parameter �. Either
of these parameters trades off an increase in bias for a decrease in variance.
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How do we choose �? As we see, the value of the complexity parameter
affects our estimate. Question: What would happen if we used training error as
the criterion? (Look at the picture to see the answer.)

In practice, we choose � by cross validation. This is an attempt to minimize
expected test error. (But later on we will discuss hierarchical models. This can
be another way to choose the regularization parameter.)

Here is how it works:

� Divide the data into K folds (e.g., K D 10).
� Decide on candidate values of � (e.g., a grid between 0 and 1)
� For each fold k and value of �,

– Estimate Ǒridge
k

on the out-of-fold samples.
– For each xn assigned to fold k, compute its squared error

�n D . Oyn � yn/
2; (10)

where Oyn D E Ǒ ridge
k

ŒY j xn�. Note that this estimate of the coefficients
did not use .xn; yn/ as part of its training data.

� We now aggregate the individual errors. The score for � is

MSE.�/ D
1

N

NX
nD1

�n: (11)

This is an estimate of the test error. Choose � that minimizes this score.
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Aside: Connection to Bayesian statistics. We have motivated regularized
regression via frequentist thinking, i.e., the bias-variance trade-off and an ap-
peal to the true model. Regularized regression, in general, has connections to
Bayesian modeling.

We have discussed two common ways of using the posterior to obtain an estimate.
The first is maximum a posteriori (MAP) estimation,

�MAP
D arg max

�
p.� jy1; : : : ; yN ; ˛/ (12)

The second is the posterior mean,

�mean
D E Œ� jy1; : : : ; yN ; ˛� (13)

Question: How are these different from the MLE?

Ridge regression and Bayesian methods. Ridge regression corresponds to
MAP estimation in the following model:

ˇi � N .0; 1=�/ (14)

yn j xn; ˇ � N .ˇ>xn; �2/ (15)

Here is the corresponding graphical model

Xn Yn β
N

λ

[ This isn’t quite right; � should be a small dot. ]

We will derive the relationship. First, note that

p.ˇi j�/ D
1p

2�.1=�/
expf�ˇ2i g (16)

We now compute the MAP estimate of ˇ,

max
ˇ

p.ˇ jD; �/ D max
ˇ

logp.ˇ jy1WN ; x1WN ; �/ (17)

D max
ˇ

logp.ˇ; y1WN j x1WN ; �/ (18)

D max
ˇ

log

 
p.y1WN j x1WN ; ˇ/

pY
iD1

p.ˇi j�/

!
(19)

D max
ˇ
�RSS.ˇID/ �

pX
iD1

�ˇ2i : (20)
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Ridge regression is equivalent to MAP estimation in the model.

Observe that the hyperparameter � controls how far away the estimate will be
from the MLE. A small hyperparameter (large variance) will choose the MLE;
the data totally determine the estimate. As the hyperparameter gets larger, the
estimate moves further from the MLE; the prior (E Œˇ� D 0) becomes more
influential. This matches our recurring theme in Bayesian estimation; both the
data and the prior influence the answer.

Finally, note that a “true” Bayesian would not set the hyperparameter by cross-
validation. This uses the data to set the prior. However, I think it is a good idea.
It is an instance of a more general principle called “Empirical Bayes”.

Summary of ridge regression.

1. We constrain ˇ to be in a hypersphere around 0.

2. This is equivalent to minimizing the RSS plus a regularization term.

3. We no longer find the Ǒ that minimizes the RSS. (Contours illustrate
constant RSS.)

4. Ridge regression is a kind of shrinkage, so called because it reduces the
components to be close to 0 and close to each other.

5. Ridge estimates trade off bias for variance.

3 The lasso

A closely related regularization method is called the lasso. The lasso optimizes
the RSS subject to a different constraint,

minimize
PN
nD1

1
2
.yn � ˇxn/

2

subject to
Pp
iD1 jˇi j � s

(21)

This small change yields very different estimates. Here is the picture of the
constraint:
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

Question: What happens as s increases? Question: Where is the solution going
to lie with s fixed?

It’s a fact: unless it chooses Ǒ, the lasso (with p large) will set some of the
coefficients to exactly zero. The intuitions come from ESL: “Unlike the disk, the
diamond has corners; if the solution occurs at a corner, then it has one parameter

ǰ equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces; there are many more opporunities for the
estimated parameters to be zero.” (p 90).

In a sense, the lasso is a form of feature selection, identifying a relevant subset
of the covariates with which to predict. Like ridge regression, it trades off an
increase in bias with a decrease in variance. Further, by zeroing out some of the
covariates, it provides interpretable (as in, sparse) models.

Sparse models can also be important in real systems that might depend on many
inputs. Once the sparse solution is found, we need only measure a few of the
inputs in order to make predictions. This speeds up the performance of the
system.

The lasso is equivalent to

Ǒlasso
D arg min

ˇ

NX
nD1

1

2
.yn � ˇxn/

2
C �

pX
iD1

jˇi j (22)

Again, there is a 1-1 mapping between � and s. This objective, though it does
not have an analytic solution, is still convex.

Why is the lasso exciting? Prior to the lasso, the only “sparse” method was
subset selection, finding the best subset of features with which to model the data.
But subset selection has problems: searching over all subsets (of a fixed size)
is computationally expensive. In contrast, the lasso efficiently finds a sparse
solution by using convex optimization. In a sense, it is akin to a “smooth version”
of subset selection. Note the lasso won’t consider all possible subsets.
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The Bayesian interpretation of the lasso. Like ridge regression, lasso regres-
sion corresponds to MAP estimation in a Bayesian model. For the lasso, the
model is:

ˇi � Laplace.�/ (23)

Yn j xn; ˇ � N .ˇ>xn; �2/: (24)

Here the coefficients come from a Laplace distribution,

p.ˇi j�/ D
1

2
expf��jˇi jg: (25)

The lasso, and the general idea of L1 penalized models, has become a cottage
industry in modern statistics and machine learning. The reason is that we often
want sparse solutions to high-dimensional problems, and we want convex objec-
tive functions when analyzing data. L1 penalized methods give us both. Recent
research indicates that they have good theoretical properties to boot.

4 (Optional) Generalized regularization

In general, regularization can be seen as minimizing the RSS with a constraint
on a q-norm,

minimize
PN
nD1

1
2
.yn � ˇxn/

2

subject to jjˇjjq � s
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, where the penalty is

jjˇjjq D

 
pX
iD1

jˇi j
q

!1=q
The methods we discussed so far are

� q D 2 : ridge regression
� q D 1 : lasso
� q D 0 : subset selection

Here is the picture from ESL:
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Figure 3.13: Contours of constant value of
∑

j |βj |q
for given values of q.� This brings us away from the minimum RSS solution, but might provide

better test prediction via the bias/variance trade-off.

� Complex models have less bias; simpler models have less variance. Regu-
larization encourages simpler models.

Note that each of these methods correspond to a Bayesian solution with a
different choice of prior.

Ǒridge
D arg min

ˇ

NX
nD1

1

2
.yn � ˇxn/

2
C �jjˇjjq

The complexity parameter � can be chosen with cross validation.

Lasso (q D 1) is the only norm that provides sparsity and convexity.

And there are other variants, useful in the literature. Of note:

� The elastic net is a convex combination of L1 and L2.
� The grouped lasso finds sparse groups of covariates to include.

Finally, the glmnet package in R is amazing. It efficiently computes models
for a regularization path using L2 or L1 penalization. It uses the same model
syntax as lm or glm.
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