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Introduction

‘ We have seen mixture models in detail, which partition data into a collection of
latent groups. We now discuss mixed-membership models, an extension of mixture
models to grouped data. Each “data point” is a collection of data, and each collection
can belong to multiple groups.

‘ Here are the basic ideas behind mixed-membership modeling:

� Data are grouped, each group xi is a collection of xij , were j 2 f1; : : : ; nig.
� Each group is modeled with a mixture model.
� The mixture components are shared across all the groups.
� The mixture proportions vary from group to group

We will get into details later. For now, here is the graphical model that describes these
independence assumptions:

[ graphical model ]

This involves the following (generic) generative process,

1. Choose components ˇk � f .� j �/.
2. For each group i :

(a) Choose proportions �i � Dir.˛/.
(b) For each data point j within the group:

i. Choose a mixture assignment zij � Cat.�i /.
ii. Choose the data point xij � g.� jˇzij

/.

You can see a mixture model as a piece of this graphical model. But there is more to it
as well. Intuitively this captures that

� Each group of data is built from the same components or—as we will see—from
a subset of the same components.
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� How each group exhibits those components varies from group to group. Thus,
there is both homogeneity and heterogeneity.

‘ Text analysis (Blei et al., 2003)

� Observations are individual words.

� Groups are documents, i.e., collections of words.

� Components are distributions over the vocabulary. These represent recurring
patterns of observed words.

� Proportions represent how much each document reflects each pattern.

� The posterior components look like “topics”—like sports or health—and the
proportions describe how each document describes those topics.

� This algorithm has been adapted to all kinds of other data—images, computer
code, music data, others. More generally, it is a model of high-dimensional
discrete data.

� This will be our running example.

‘ Social network analysis (Airoldi et al., 2008)

� Somewhat different from the graphical model, but the same ideas apply.

� Observations are single connections between members of a network.

� Groups are the set of connections for each person. Here you can see why the GM
is wrong—this is not nested data.

� Components are communities, represented as distributions over which other com-
munities each community tends to link to. In a simplified case, each community
only links to others exhibiting that community.

� Proportions represent how much each person reflects a set of communities. You
might know several people from your graduate school cohort, others from your
neighborhood, others from the chess club, etc.

� Capturing these overlapping communities is not possible with a mixture model
of people, where each person is in just one community.

� Conversely, modeling each person individually doesn’t tell us anything about the
global structure of the network.

‘ Survey analysis (Erosheva, 2003)

� Much of social science analyzes carefully designed surveys.
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� There might be several social patterns that are present in the survey, but each
respondent exhibits different ones.

� (Adjust the graphical model here so that there is no plate around X , but rather
individual questions and parameters for each question.)

� The observations are answers to individual questions.

� The groups are the collection of answers by a single respondent.

� Components are collections of likely answers for each question, representing
recurring patterns in the survey.

� Proportions represent how much each individual exhibits those patterns.

� A mixture model assumes each respondent only exhibits a single pattern.

� Individual models tell us nothing about the global patterns.

‘ Population genetics (Pritchard et al., 2000)

� Observations are the alleles on the human genome, i.e., at a particular site are
you an A, G, C, or T?

� Groups are the genotype of individuals—each of our collection of alleles at each
of our loci.

� Components are patterns of alleles at each locus. These are “types” of people, or
the genotypes of ancestral populations.

� Proportions represent how much each individual exhibits each population.

� Application #1: Understanding population history and differences. For example,
in India everyone is part Northern ancestral Indian/Southern ancestral indian and
no one is 100% of either. This model gives us a picture of the original genotypes.

� Application #2: “Correcting” for latent population structure when trying to
associate genotypes with diseases. For example, prostrate cancer is more likely
in African American males than European American males. If we have a big
sample of genotypes, an allele that shows up in African American males will
look like it is associated with cancer. Correcting for population-level frequencies
helps mitigate this confounding effect.

� Application #3: “Chromosome painting.” Use the ancestral observations to try
to find candidate regions for genome associations. Knowing the AA males get
prostrate cancer more than EA males, look for places where a gene is more
exhibited than expected (in people with cancer) and less so (in people without
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cancer). This is a candidate region. (This was really done successfully for
prostrate cancer.)

‘ Compare these assumptions to a single mixture model. A mixture is less heterogeneous—
each group can only exhibit one component. (There is still some heterogeneity because
different groups come from different parameters.)

Modeling each group with a completely different mixture (proportions and components)
is too heterogeneous—there is no connection or way to compare groups in terms of the
underlying building blocks of the data.

‘ This is an example of a hierarchical model, a model where information is shared
across groups of data. The sharing happens because we treat parameters as hidden
random variables and estimate their posterior distributions.

There are two important characteristics for a successful hierarchical model.

[Use a running example of the graphical model with a few groups.]

One is that information is shared across groups. Here this happens via the unknown
mixture components. Consider if they were fixed. The groups of data would be
independent.

The other is that within-group data is more similar than across-group data. Suppose the
proportions were fixed for each group. Because of the components, there is still sharing
across groups. But two data points within the same group are just as similar as two data
points across groups. In fact, this is a simple mixture as though the group boundaries
were not there. When we involve the proportions as a group-specific random variable,
within-group data are more tightly connected than across-group data.

The Dirichlet distribution

‘ The observations x and the components ˇ are tailored to the data at hand. Across
mixed membership models, however, the assignments z are discrete and drawn from
the proportions � . Thus, all MMM need to work with a distribution over � .

The variable � lives on the simplex, the space of positive vectors that sum to one. The
exponential prior on the simplex is called the Dirichlet distribution. It’s important
across statistics and machine learning, and particularly important in Bayesian non-
parametrics (which we will study later). So, we’ll now spend some time studying the
Dirichlet.

‘ The parameter to the Dirichlet is a k-vector ˛, where ˛i > 0. In its familiar form,
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the density of the Dirichlet is

p.� j˛/ D
�
�Pk

jD1 j̨

�
Qk
jD1 �. j̨ /

kY
jD1

� j̨�1

j : (1)

The Gamma function a real-valued version of factorial. (For integers, it is facto-
rial.)

You can see that this is in the exponential family because

p.� j˛/ / exp

8<:˛> log � �
X
j

log �j

9=; : (2)

But we’ll work with the familiar parameterization for now.

As you may have noticed, the Dirichlet is the multivariate extension of the beta distribu-
tion,

p.� j˛; ˇ/ D
�.˛ C ˇ/

�.˛/�.ˇ/
�˛�1.1 � �/ˇ�1 (3)

A number between 0 and 1 is a point on the “1-simplex”.

‘ The expectation of the Dirichlet is

E Œ�`� D
˛`P
j j̨

: (4)

‘ Case #1, j̨ D 1.

� This is a uniform distribution.
� Every point on the simplex is equally likely.

Case #2, j̨ > 1.

� This is a “bump.”
� It is centered around the expectation.

Case #3, j̨ < 1.

� This is a sparse distribution.
� Some (or many) components will have near zero probability.
� This will be important later, in Bayesian nonparametrics.

(Show pictures here)

‘ The Dirichlet is conjugate to the multinomial.

Let z be an indicator vector, i.e., a k-vector that contains a single one. The parameter
to z is a point on the simplex � , denoting the probability of each of the k items. The
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density function for z is

p.z j �/ D

kY
jD1

�z
j

j ; (5)

which “selects” the right component of � . (This is a multivariate version of the
Bernoulli.)

‘ Suppose we are in the following model,

� � Dir.˛/ (6)

zi j � � Mult.�/ for i 2 f1; : : : ; ng: (7)

Let’s compute the posterior distribution of � ,

p.� j z1Wn; ˛/ / p.�; z1Wn j˛/ (8)

D p.� j˛/

nY
iD1

p.zi j �/ (9)

D

�
�Pk

jD1 j̨

�
Qk
jD1 �. j̨ /

kY
jD1

� j̨�1

j

nY
iD1

kY
jD1

�
z

j

i

j (10)

/

kY
jD1

�
j̨�1C

Pn
iD1 z

j

i

j : (11)

Note that
Pn
iD1 z

j
i D nj , i.e., the number of times we saw item j in the variables

z1Wn.

Eq. 11 is a Dirichlet distribution with parameter Ǫj D j̨ C nj .

‘ The expectation of the posterior Dirichlet is interesting,

E Œ�` j z1Wn; ˛� D
˛` C n`

nC
Pk
jD1 j̨

(12)

This is a “smoothed” version of the empirical proportions. As n gets large relative to ˛,
the empirical estimate dominates this computation. This is the old story—when we see
less data, the prior has more of an effect on the posterior estimate.

When used in this context, j̨ can be interpreted as “fake counts.” In fact this interpre-
tation is clearer when considering the n0, x0 parameterization of this prior. (See our
lecture on exponential families.) This expectation reveals why in a different way—it
is the MLE as though we saw nj C j̨ items of each type. This is used in language
modeling as a “smoother”.
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Topic models

‘ We will study topic models as a testbed for mixed-membership modeling ideas.
But keep in mind the other applications that we mentioned in the beginning of the
lecture.

‘ The goal of topic modeling is to analyze massive collections of documents. There
are two categories of motivations for why we want to do this:

� Predictive: Search, recommendation, classification, etc.
� Exploratory: Organizing the collection for browsing and understanding.

‘ Our data are documents.

� Each document is a group of words wd;1Wn.
� Each word wd;i is a value among V words.

The hidden variables are

� Multinomial parameters ˇ1WK (compare to Gaussian).
– Each component is a distribution over the vocabulary.
– These are called “topics.”

� Topic proportions �1WD .
– Each is a distribution over the K components.

� Topic assignments z1WD;1WN .
– Each is a multinomial indicator of the k topics.
– There is one for every word in the corpus.

‘ The basic model has the following generative process. This is an adaptation of the
generic mixed-membership generative process.

1. Draw ˇk � DirV .�/, for k 2 f1; : : : ; Kg.
2. For each document d :

(a) Draw �d � DirK.˛/.
(b) For each word n in each document,

i. Draw zd;n � Cat.�d /.
ii. Draw wd;n � Mult.ˇzd;n

/.

‘ Let’s contemplate the posterior. Note, this is usually a more productive (and
interesting) activity than wondering whether your data really comes from the model.
(The usual answer: It doesn’t.)

The posterior is proportional to the joint. We have seen in Gibbs sampling that we
are doing something that looks like optimizing the joint, getting to configurations of
the latent variables that have high enough probability under the prior & explain the
data.
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In LDA, the log joint is

logp.�/ D
KX
kD1

logp.ˇk/

C

DX
dD1

 
logp.�d /C

NX
nD1

logp.zd;n j �d /C logp.wd;n j zd;n; ˇ̌̌ ; �d /

!
(13)

Substitute in the simple categorical parameterizations,

logp.�/ D
KX
kD1

logp.ˇk/C
DX
dD1

 
logp.�d /C

NX
nD1

log �d;zd;n
C logˇwd;n;zd;n

!
We see that the posterior gets bonuses for choosing topics with high probability in the
document (�d ) and words with high probability in the topic (ˇk).

These two latent variables must sum to one. Therefore, the model prefers documents to
have peaky topic proportions, i.e., few topics per document, and for topics to have peaky
distributions, i.e., few words per topic. But these goals are at odds—putting a document
in few topics means that those topics must cover all the words of the document. Putting
few words in a topic means that we need many topics to cover the documents.

This intuition is why LDA gives us the kind of sharp co-occurrences.

Again, contrast to a mixture model. Mixtures assert that each document has one topic.
That means that the topics must cover all the words that each document contains. They
are less peaky and “sharp”.

‘ (Do the demo with Jonathan’s code.)

‘ Aside: de Finetti theorem says that if a collection of random variables are exchange-
able, then their joint can be written as a “Bayesian model”

p.x1; x2; : : : ; xn/ D

Z
p.�/

nY
iD1

p.xi j �/d� (14)

In document collections this says that the order of words doesn’t matter,

p.w1; w2; : : : ; wn jˇ/ D

Z
p.�/

nY
iD1

p.wi jˇ/d� (15)

This is called the “bag of words” assumption in NLP. Note this is an assumption about
exchangeability, rather than independence.

In topic modeling, this is palatable—shuffling the words of a document still tell you
what it’s about.
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Gibbs sampling in LDA

‘ We implement the basic Gibbs sampler by writing down the complete condition-
als.

The conditional of the topic (component) assignment zd;n is a multinomial over K
elements. Each probability is

p.zd;i D k j z�i ; ���; ˇ̌̌ ;w/ D p.zd;i D k j �d ; wd;i ; ˇ̌̌/ (16)

/ p.�d /p.zd;i D k j �d /p.wd;i jˇk/ (17)

/ �d;kp.wd;i j ǰ / (18)

� Independence follows from the graphical model.

� The prior p.�/ disappears because it doesn’t depend on zi .

� In LDA, the second term is the probability of word wd;i in topic ǰ . We leave it
general here enable other kinds of mixed-membership models.

The conditional of the topic (component) proportions �d is a posterior Dirichlet,

p.�d j z;����d ; w; ˇ̌̌/ D p.�d j zd / (19)

D Dir
�
˛ C

Pn
iD1 zd;i

�
: (20)

� Independence follows from the graphical model.

� The posterior Dirichlet follows from our discussion of the Dirichlet.

� The sum of indicators creates a count vector of the topics in document `.

� This is general for all mixed-membership models.

Finally, the conditional of the topic ˇk is a Dirichlet. (For other types of likelihoods,
this will be a different posterior.)

p.ˇk j z; �; w; ˇ̌̌�k/ D p. ǰ j z; w/ (21)

D Dir
�
�C

PD
dD1

PN
nD1 z

j

d;n
ı wd;n

�
(22)

� Independence follows from the graphical model.

� The posterior Dirichlet follows from the discussion of the Dirichlet.

� The double sum counts how many times each word occurs under topic k.

‘ A collapsed Gibbs sampler is available, where we integrate out all the latent
variables except for z (Griffiths and Steyvers, 2004).
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Each zd;n takes one of K values. It is a simple categorical distribution. The conditional
probability of topic assignment k is proportional to the following joint,

p.zd;n D k j z�.d;n/;w/ / p.zd;n; wd;n j z�.d;n/;w�.d;n// (23)

We will integrate out the topic proportions �d and topic ǰ to obtain an integrand
independent of the other assignments and words. First, note that the joint distribution
of a topic and word within a document is

p.zd;n D k;wd;n j �d ; ˇ1WK/ D p.zd;n D k j �d /p.wd;n jˇ1WK ; zd;n D k/

D �d;kˇk;wd;n
(24)

We use this to compute Eq. 23. We integrate out the topic and topic proportions,

p.zd;n D k j z�.d;i/; w/ /
Z
ˇk

Z
�d

p.zd;n D k;wd;n j �d ; ˇk/p.�d j zd;�n/p.ˇk j z�.d;n/;w�.d;n//

D

Z
ˇk

Z
�d

�d;kˇk;wd;n
p.�d j zd;�n/p.ˇk j z�.d;n/; w�.d;n// (25)

D

�Z
�d

�d;kp.�d j zd;�n/

��Z
ˇk

ˇk;wd;n
p.ˇk j z�.d;n/; w�.d;n//

�
: (26)

Each of these two terms are expectations of posterior Dirichlets.

� The first is like Eq. 20, but using all but zd;i to form counts.

� The second is like Eq. 22, but using all but wd;i to form counts.

The final algorithm is simple

p.zd;n D k j z�.d;n/;w/ D

 
˛ C nk

d

k˛ C nd

! 
�Cm

wd;n

k

v�Cmk

!
: (27)

The counts nd are per-document counts of topics and the countsmj are per topic counts
of terms. Each is defined excluding zd;n and wd;n.

[ Give the algorithm]
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