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‘ We have discussed probabilistic modeling, and have seen how the posterior
distribution is the critical quantity for understanding data through a model.

‘ The goal of probabilistic modeling is use domain and data-knowledge to build
structured joint distributions, and then to reason about the domain (and exploit
our knowledge) through the posterior and posterior predictive distributions.

‘ We have discussed tree propagation, a method for computing posterior marginals
of any variables in a tree-shaped graphical model.

‘ In theory, if our graphical model was a tree, we could shade the observations
and do useful inferences about the posterior.

‘ For many interesting models, however, the posterior is not tractable to com-
pute. Either the model is not a tree or the messages are not tractable to compute
(because of the form of the potentials). Most modern applications of probabilis-
tic modeling rely on approximate posterior inference algorithms.

‘ Thus, before we talk about the building blocks of models, we will talk about
an important and general method for approximate posterior inference.

Bayesian mixture of Gaussians

‘ To lock ideas, and to give you a flavor of the simplest interesting probabilistic
model, we will first discuss Bayesian mixture models.
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‘ Here is the Bayesian mixture of Gaussians model, its graphical model and
the generative process.

‘ To get a feel for what this model is about, let us generate data from it.

The posterior and posterior predictive distributions

‘ The posterior distribution is a distribution over the latent variables, the cluster
locations and the cluster assignments, p.z1Wn; �1WK j x1Wn/.
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‘ This gives an understanding of the data (at least, a grouping into K groups).

‘ What is this posterior? The mixture model assumes that each data point came
from one of K distributions. However, it is unknown what those distributions
are and how the data were assigned to them. The posterior is a conditional
distribution over these quantities.

‘ As usual, the posterior also gives a posterior predictive distribution,

p.xnC1 j x1Wn/ D E Œp.xnC1 j�1WK/� : (1)

‘ The expectation is taken over the posterior cluster locations �1WK . Why?
Conditional independence. Inside the expectation we condition on all the ob-
servations and latent variables. From Bayes ball we have that

xnC1 ?? zi j�1WK

for all i 2 1; : : : ; n.

‘ To make notation simpler, let’s denote the collection� , �1WK . The posterior
predictive distribution is

p.xnC1 j x1Wn/ D

Z
�

p.xnC1 j�/p.� j x1Wn/d� (2)

D

Z
�

 
KX
kD1

p.znC1 D k/p.xnC1 j�k/

!
d� (3)

D

KX
kD1

p.znC1 D k/

�Z
�k

p.xnC1 j�k/p.�k j x1Wn/d�k

�
(4)
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‘ What is this? We consider xnC1 as coming from each of the possible mixture
locations (one through K) and then take a weighted average of its posterior
density at each.

‘ This is a multi-modal distribution over the next data point. Here is a picture:

This predictive distribution involves the posterior through p.�k j x1Wn/, the pos-
terior distribution of the kth component given the data.

‘ Contrast this with the predictive distribution we might obtain if we used a
single Gaussian to model the data. In that case, the mean is at a location where
there is very little data.

‘ Through the posterior, a mixture model tells us about a grouping of our data,
and captures complex predictive distributions of future data.

The posterior is intractable to compute

‘ We cannot compute the posterior exactly. Let’s see why.

‘ First an aside: the Gaussian is conjugate to the Gaussian.

‘ Consider a simple model, where we draw a Gaussian mean� from a Gaussian
prior N .0; �/ and then generate n data points from a Gaussian N .�; �2/. (We
fix the variance �2.) Here is the graphical model
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‘ You have seen the beta-Bernoulli; this is another example of a conjugate pair.
Given x1Wn the posterior distribution of � is N . O�; O�/, where

O� D

�
n=�2

n=�2 C 1=�2

�
Nx (5)

O� D
�
n=�2 C 1=�2

��1
; (6)

where Nx is the sample mean.

As for the beta-Bernoulli, as n increases the posterior mean approaches the
sample mean and the posterior variance approaches zero. (Note: this is the
posterior mean and variance of the unknown mean. The data variance �2 is
held fixed in this analysis.)

‘ But now suppose we are working with a mixture of Gaussians. In that case,
p.�1; : : : ; �K j x1; : : : ; xn/ is not easy. Suppose the prior proportions � are
fixed and K D 3,

p.�01; �
0
2; �

0
3 j x1Wn/ D

p.�01; �
0
2; �

0
3; x1Wn/R

�1

R
�2

R
�3
p.�1; �2; �3; x1Wn/

: (7)

‘ The numerator is easy,

numerator D p.�01/p.�
0
2/p.�

0
3/

nY
iD1

p.xi j�
0
1; �

0
2; �

0
3/ (8)

where each likelihood term marginalizes out the zi variable,

p.xi j�
0
1; �

0
2; �

0
3/ D

KX
kD1

�kp.xi j�
0
k/: (9)

‘ But consider the denominator, which is the marginal probability of the data,

p.x1Wn/ D

Z
�1

Z
�2

Z
�3

p.�1/p.�2/p.�3/

nY
iD1

KX
kD1

�kp.xi j�k/: (10)
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‘ One way to see this is to simply believe me. Another way is to bring the
summation to the outside of the integral

p.x1Wn/ D
X
z1Wn

Z
p.�1/p.�2/p.�3/

nY
iD1

p.xi j�zi
/: (11)

This can be decomposed by partitioning the data according to z1Wn,

p.x1Wn/ D
X
z1Wn

3Y
kD1

0@Z
�k

p.�k/
Y

fi WziDkg

p.xi j�k/

1A : (12)

Each term in the product is an integral under the conjugate prior, which is an
expression we can compute. But there are 3n different assignments of the data
to consider.

‘ To work with Bayesian mixtures of Gaussians (and many other models), we
need approximate inference.

‘ Show a mixture model fit to real data, e.g., the image mixture model.

The Gibbs sampler

‘ The main idea behind Gibbs sampling (and all of MCMC) is to approximate
a distribution with a set of samples. For example, in the mixture model,

p.�; z j x/ �
1

B

BX
bD1

ı.�.b/;z.b//.�; z/; (13)

where we shorthand � D �1WK and z D z1Wn.

‘ Let’s first discuss Gibbs sampling for mixtures of Gaussians. Then we will
see how it generalizes and why it works.

‘ In the Gibbs sampler, we maintain a value for each latent variable. In each
iteration, sample from each latent variable conditional on the other latent vari-
ables and the observations. I like to call this distribution a complete conditional.

‘ Gibbs sampling for Gaussian mixtures
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Maintain mixture locations �1WK and mixture assignments z1Wn.

Repeat:

1. For each k 2 f1; : : : ; Kg:
Sample �k j f��k; z1Wn; x1Wng from Equation 18

2. For each i 2 f1; : : : ; ng:
Sample zi j f�1WK ; z�i ; x1Wng from Equation 16

‘ Note that within an iteration, when we sample one variable its value changes
in what we subsequently condition on. E.g., when we sample �k for k D 1,
this changes what �k for the subsequent samples.

‘ The theory around Gibbs sampling says that if we do this many times, the
resulting sample will be a sample from the true posterior.

‘ Preview of the theory: The reason is that we have defined a Markov chain
whose state space are the latent variables and whose stationary distribution is
the posterior we care about.

‘ After a long time, a sample of �1WK and z1Wn is a sample from the posterior.
After waiting many long times, we can obtain B samples from the posterior.

Details about the complete conditionals

‘ Let’s work out each step of the algorithm, beginning with the complete con-
ditional of zi . We first look at the graphical model and observe a conditional
independence,

p.zi j�1WK ; z�i ; x1Wn/ D p.zi j�1WK ; xi/: (14)

Now we calculate the distribution,

p.zi j�1WK ; xi/ / p.zi/p.xi j�zi
/ (15)

D �zi
�.xi I�zi

; �2/: (16)

‘ What is this? To keep things simple, assume �k D 1=K. Then this is a
categorical distribution where the probability of the the kth is proportional to
the likelihood of the i th data point under the kth cluster.
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‘ Notes: (a) Categorical distributions are easy to sample from. (b) This distri-
bution requires that we know �1WK .

‘ Now let’s derive the complete conditional of �k. Again, we observe a condi-
tional independence from the graphical model,

p.�k j��k; z1Wn; x1Wn/ D p.�k j z1Wn; x1Wn/ (17)

‘ Here let’s calculate the distribution intuitively. If we know the cluster as-
signments, what is the conditional distribution of �k? It is simple a posterior
Gaussian, conditional on the data that were assigned to the kth cluster.

‘ Technically: Let zi be an indicator vector, a K-vector with a single one.
Then,

�k j z1Wn; x1Wn � N . O�k; O�k/ (18)

where

O�k D

�
nk=�

2

nk=�2 C 1=�2

�
Nxk (19)

O� D
�
nk=�

2
C 1=�2

��1
; (20)

and

nk D

nX
iD1

zki (21)

Nxk D

Pn
iD1 z

k
i xi

nk
: (22)

‘ Important: Conjugacy is helping us, even in a model for which we cannot
compute the posterior.

‘ This is an approximate inference algorithm for mixtures of Gaussians. At
each iteration, we first sample each mixture assignment from Equation 16 and
then sample each mixture location from Equation 18.

‘ Discussion:

� The result of this sampler is one sample from the posterior. To get B
samples, we run several times. In practice, we begin from an initial state
and run for a fixed number of burn in iterations. We then continue to run
the algorithm, collecting samples a specified lag.

Initialization, burn-in, and lag are important practical issues. There are
no good principled solutions, but many ad-hoc ones that work well.
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� Notice that conditional independencies in the complete conditionals give
us opportunities to parallelize. What can be parallelized here?

� Notice the close relationship to the expectation-maximization (EM) algo-
rithm for mixtures.

In the EM algorithm we iterate between the E-step and M-step. In the
E-step we compute the conditional distribution of each assignment given
the locations. This is precisely Equation 16).

In the M-step we update the locations at maximum likelihood estimates
under expected sufficient statistics. As we know, the MLE relates to the
Bayesian posterior in Equation 19.

� The theory implies that we need infinite lag time and infinite burn-in.
Practical decisions around Gibbs sampling can be difficult to make. (But,
happily, in practice it’s easy to come up with sensible unjustified choices.)
One quantity to monitor is logp.�.t/1WK ; z

.t/
1Wn; x1Wn/, i.e., the log joint of the

assignments of the latent variables and observations.

This further relates to EM, which optimizes the conditional expectation
(over the mixture assignments z) of this quantity.

The collapsed Gibbs sampler

‘ Sometimes we can integrate out hidden random variables from a complete
conditional. This is called collapsing.

‘ In the mixture of Gaussians, consider collapsing the mixture locations,

p.zi D k j z�i ; x1Wn/ / p.zi D k/p.xi j z�i ; x�i ; zi D k/: (23)

‘ The second term is simply a posterior predictive distribution

p.xi j z�i ; x�i ; zi/ D

Z
�k

p.xi j�k/p.�k j z�i ; x�i/: (24)

‘ Collapsed Gibbs sampling for Gaussian mixtures
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Maintain mixture assignments z1Wn and two derived quantities:

nk ,
Pn
iD1 z

k
i (number of items per cluster)

sk ,
Pn
iD1 z

k
i xi (cluster sum)

Repeatedly cycle through each data point i 2 f1; : : : ; ng:

1. “Knock out” xi from its currently assigned cluster zi . Update nk and
sk for its assigned cluster.

2. Sample zi from Equation 23. The posterior Gaussian p.�k j z�i ; x�i/
can be computed from the nk and sk.

‘ Collapsed Gibbs sampling can be more expensive at each iteration, but con-
verges faster. Typically, if you can collapse then it is worth it.

Gibbs sampling in general

‘ The ease of implementing a Gibbs sampler depends on how easy it is to
compute and sample from the various complete conditionals.

‘ In a graphical model, the complete conditional depends on the Markov blan-
ket of the node.

‘ Suppose the nodes are x1; : : : ; xk (observed and unobserved).

In an undirected graphical model, the complete conditional only depends on a
node’s neighbors,

p.xi j x�i/ D p.xi j xN .i//: (25)

In a directed model, the complete conditional depends on a node’s parents, chil-
dren, and other parents of its children,

‘ We can see these facts from the graphical model and separation / d-separation
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‘ Theme: Difficult global computation is made easier in terms of many local
computations. Notice how Gibbs sampling is a form of “message passing”.

Markov chain Monte Carlo

‘ Markov chain Monte Carlo (MCMC) is a general and powerful methodology
for collecting samples from a wide class of distributions.

‘ We will discuss some of the main theory. But note that MCMC is now a
subfield of statistics. Entire dissertations and careers are built on developing
this class of algorithms.

‘ In contrast to other kinds of sampling—like importance sampling and rejec-
tion sampling—MCMC scales with the dimensionality of the hidden variables.
MCMC algorithms work in high dimensions, which is important for modern
problems.

The Metropolis algorithm (1953)

‘ In this discussion, we will assume a target distribution p.x/. We are chang-
ing notation slightly and not worrying about observed or unobserved variables.
(Recall we made the same jump when discussing exact inference with belief
propagation.)

‘ In Metropolis, we only need to compute p.x/ up to a constant,

p.x/ D Qp.x/=Z;

where Qp.x/ is an unnormalized distribution.

‘ Recall that the posterior is easy to compute up to a normalizing constant; it
is the normalizing constant that gives us difficulty.

‘ Our plan is to draw a sequence of states x.t/ such that the final state is a draw
from the target distribution. The main idea is to
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� Draw a sample x� from a proposal distribution q.x j x.t//.
� Accept the state according to a criterion, which can be random.

If accepted, x.tC1/ D x� otherwise x.tC1/ D x.t/.

‘ Specifically, we assume that q.x1 j x2/ D q.x2 j x1/. We accept the sample
x� with the following probability

p
�

accept x� j x.t/
�
D min

�
1;
p.x�/

p.x.t//

�
(26)

Note that we can compute this acceptance probability without needing to know
the normalizing constant.

‘ If we move to a state with higher probability we will always accept it. Some-
times we will move to a state with lower probability.

‘ This has the flavor of a kind of stochastic search. The proposal distribution
q governs our policy for taking steps, but we are careful about taking steps that
lower our probability.

‘ Let q.x1 j x2/ > 0 for all x1; x2. Then the marginal distribution of the t th
state (under this algorithm) converges to the target distribution,

pMet

�
x.t/

�
! p.x/: (27)

Markov chains

‘ The Metropolis algorithm defines a Markov chain on x whose stationary
distribution is p.x/.

‘ To obtain independent samples from p.x/ we (a) run the MC for a long time
(b) collect samples at some lag.

‘ We have already seen this in the Gibbs sampler. Let’s now discuss some of
the theory about why Gibbs sampling and Metropolis work.

‘ A first order Markov chain is defined by the conditional independence,

p .xtC1 j x1; : : : ; xt/ D p .xtC1 j xt/ (28)

(Show the graphical model, which looks like a chain. For simplicity let’s assume
that x is discrete.
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‘ A MC is specified by the initial state distribution p0.x0/ and the transition
probabilities from going to each state given the previous one.

‘ A MC is homogenous if the transition probabilities are the same across time
points, i.e., there is one distribution p.xtC1 j xt/.

‘ We calculate the marginal probability of a particular variable in the chain.
This is done recursively,

ptC1 .xtC1/ D
X
xt

p .xtC1 j xt/ pt.xt/ (29)

This is expressed with the transition probability and the marginal probability
of the previous variable. Thus, given the initial distribution p0.x0/, we can
compute any marginal.

‘ Some distributions can be invariant or stationary with respect to a Markov
chain. These distributions leave the corresponding marginal distribution invari-
ant.

‘ Define notation T .x0 ! x/ to be the probability of moving from x0 to x,

T .x0 ! x/ , p.x j x0/:

A distribution p�.x/ is stationary if

p�.x/ D
X
x0

p�.x0/T .x0 ! x/ (30)

In other words, suppose the marginal of the previous time point is p�.�/. Then
running the chain one step yields the same marginal for the current time step.

‘ In general, an MCMC can have zero or more stationary distributions. (Aside:
The algorithm that put Google on the map computes the stationary distribution
of a random walker on a graph of web pages.)

‘ A sufficient (but not necessary) condition for p.x/ being an invariant distri-
bution is that it satisfies detailed balance,

p�.x/T .x ! x0/ D p�.x0/T .x0 ! x/: (31)

This considers the two joint distributions: starting at x and moving to x0, starting
at x0 and moving to x. If these are equal under the MC’s transition matrix T
then p� is a stationary distribution of T .
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‘ We can see that detail balance is sufficientX
x0

p�.x0/T .x0 ! x/ D
X
x0

p�.x/T .x ! x0/ (32)

D p�.x/
X
x0

T .x ! x0/ (33)

D p�.x/ (34)

We used detailed balance in the first line. This shows that p�.x/ satisfies Equa-
tion 30.

‘ One more concept: ergodicity. A MC is ergodic if pt.x/! p�.x/ regardless
of p0.x/. An ergodic Markov chain has only one stationary distribution. In this
case, it is called the equilibrium distribution.

‘ The plan in designing MCMC algorithms is to create homogenous ergodic
Markov chains whose stationary distribution is the target distribution. In Bayesian
applications, such as in the mixture model we have discussed, we want a Markov
chain whose stationary distribution is the posterior.

‘ Neal (1993) has a Fundamental Theorem. Suppose we have a homogenous
MC on a finite state space with transition probabilities T .x0 ! x/, and we have
found a stationary distribution p�.x/. If

� , min
x

min
x0Wp�.x0/>0

T .x ! x0/

p�.x0/
> 0 (35)

then the MC is ergodic.

We know something about the distance to the stationary distribution at time t ,

jp�.x/ � pt.x/j � .1 � �/
t : (36)

‘ Intuition: A Markov chain is ergodic if there is a way of getting from any
state to any other state (that has non-zero probability under the stationary distri-
bution).

For example, in the Google webgraph, they needed to add an “escape probabil-
ity”. If there are islands of pages then the random walker is not ergodic.

‘ Again, the main goal of MCMC algorithms is to construct a homogenous MC
whose stationary distribution is the target distribution. Then run the chain and
collect samples.

The computational effort to obtain these samples involves
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1. The amount of computation needed to simulate each transition.

2. The time for the chain to converge to its equilibrium distribution. This is
called the burn in.

3. The number of draws needed to move from one state drawn from p� to
another independent state drawn from p�. This is called the lag.

Items 2 and 3 have no good theoretical answers (though there have been efforts).
These remain empirical matters.

Metropolis-Hastings

‘ We will prove that the Metropolis algorithm works and that Gibbs sampling
works by describing the algorithm that generalizes both, Metropolis-Hastings.

‘ First, a nuisance. Suppose our state space of interest has K components
x D fx1; : : : ; xKg. (For example, consider K nodes in a graphical model.)

� We will consider K transition matrices Bk.x ! x0/, where each one
holds all xj fixed for j ¤ k and only samples xk .

� To move from x.t/ to x.tC1/ we iteratively apply each of these transitions.
So the transition probabilities for the chain are the product of the Bk.�/’s.

� Key: If detailed balance holds for each Bk then it holds for their product.

‘ Our current state is x. At each iteration we draw x0 from Bk.x ! x0/. Note
this only changes xk . We accept the new x0 with probability

Ak.x
0; x/ D min

�
1;
p.x0/Bk.x

0 ! x/

p.x/Bk.x ! x0/

�
: (37)

Notes

� No need to compute the normalizer
� We do need to compute the transitions, not just sample from them.
� Suppose Bk.x0 ! x/ D Bk.x ! x0/. This is Metropolis.
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‘ We check detailed balance to confirm that this has the right stationary distri-
bution. Note that the transition for the kth Markov chain isBk.x ! x0/Ak.x

0; x/.

p.x/Bk.x ! x0/Ak.x
0; x/ D p.x/Bk.x ! x0/min

�
1;
p.x0/Bk.x

0 ! x/

p.x/Bk.x ! x0/

�
D min

�
p.x/Bk.x ! x0/; p.x0/Bk.x

0
! x/

�
D min

�
p.x0/Bk.x

0
! x/; p.x/Bk.x ! x0/

�
D p.x0/Bk.x

0
! x/Ak.x; x

0/

This means that MH has the right stationary distribution. (It also means that the
Metropolis algorithm has the right stationary distribution.)

‘ It is up to us to design the proposal distribution. In practice, the key to fast
mixing is to trade off the rejection rate and the amount of movement in the
proposal.

Both have to do with the amount of dependence between successive samples.
They are highly correlated if we reject a lot or we don’t move much.

The Gibbs sampler

‘ We are finally ready to show that the Gibbs sampler is a valid MCMC algo-
rithm.
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‘ Again, let x D fx1; : : : ; xKg. For each iteration we sample from p.xk j x�k/.
Fact: This is a Markov chain whose stationary distribution is p.x/.

‘ To see that this works, set Bk to change xk according to the complete condi-
tional. The acceptance probability is

Ak.x
0; x/ D min

�
1;
p.x0/p.xk j x

0
�k
/

p.x/p.x0
k
j x�k/

�
(38)

Unpack the second term

p.x0/p.x0
k
j x�k/

p.x/p.xk j x
0
�k
/
D
p.x0

�k
/p.x0

k
j x0
�k
/p.xk j x

0
�k
/

p.x�k/p.xk j x�k/p.x
0
k
j x�k/

(39)

Note that x�k D x0�k. Thus, the acceptance probability is equal to one.

‘ Gibbs sampling is a Metropolis-Hastings algorithm that always accepts.

‘ Some notes:

� Gibbs is usually a good first attempt at approximate inference. It often
works well, especially if you can collapse variables.

� That said, designing specialized proposal distributions in an MH context
can lead to more efficient samplers. But this requires more work and
experimentation.

� In some models MH is required because we cannot compute the complete
conditionals. MH inside Gibbs is also a good option, where some Bk are
Gibbs steps and others are MH steps.

� An interest research area is designing better generic MCMC algorithms,
those that do not require reasoning about the model. Later this semester,
we will have a guest lecture from Bob Carpenter about Stan. Stan imple-
ments efficient and generic sampling, which does not even require speci-
fying the complete conditionals.

Rao-Blackwellization and the collapsed Gibbs sampler

‘ Why does collapsing help? The reason is Rao-Blackwellization.

‘ Suppose our random variables are z and ˇ. Consider a function for which we
want to take a posterior expectation f .z; ˇ/. Our goal is to calculate E Œf .Z; ˇ/�
under the posterior distribution p.z; ˇ j x/.

17



‘ In all MCMC algorithms, we construct an estimator of this expectation through
independent samples from the distribution,

E Œf .Z; ˇ/� �
1

S

SX
sD1

f .zs; ˇs/ , � .x; z1WS ; ˇ1WS/ ; (40)

where fzs; ˇsg are independent samples from p.z; ˇ j x/.

‘ We emphasize that the expectation itself is a function of the “data”, including
x (non-random), z1WS (random), and ˇ1WS (random). This is a statistic and so we
can contemplate estimators of it with respect to random samples.

Consider the estimator as an expectation with respect to those samples,

E Œ�.x; z1WS ; ˇ1WS/� D E Œf .Z; ˇ/� : (41)

This assumes the samples really came from the posterior. It says that the esti-
mator is unbiased.

But the estimator also has a variance, Var Œ�.x; z1WS ; ˇ1WS/�, which is its spread
around the mean (i.e., the expected squared difference). For example, as you
might guess, the variance is larger when S D 1 and smaller when S is large.

‘ Rao-Blackwellization considers estimators derived from the “tower prop-
erty”, or iterated expectation. Specifically, consider

E ŒE Œf .Z; ˇ/ jZ�� D E Œf .Z; ˇ/� : (42)

On the LHS the first expectation is taken with respect to p.z j x/; the second ex-
pectation is taken with respect to p.ˇ j z; x/. Suppose we can take expectations
analytically with respect to the second expectation. We set up an the alternative
estimator,

E Œf .Z; ˇ/� �
1

S

SX
sD1

E Œf .zs; ˇ/ j zs� , �.zs; x/ (43)

where the RHS expectation is with respect to p.ˇ j zs; x/ and zs � p.zs j x/.
(Note that ˇ is integrated out.) This too is an unbiased estimator of E Œf .Z; ˇ/�.
But it has a smaller variance.

‘ In the mixture case above, we sample from the mixture assignments. This
implicitly integrates out the mixture locations. Resulting posterior expectations
(of anything, including of mixture locations) will have lower variance than in
the uncollapsed Gibbs sampler.
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A loose history

‘ Metropolis et al. (1953) introduces the Metropolis algorithm in the context of
some integrals that come up in physics. (He also invented simulated annealing
in the same paper.) This work stemmed from his work in the 40s (with others)
in Los Alamos.

‘ Hastings (1970) generalizes the algorithm to Metropolis-Hastings and sets
it in a more statistical context. He shows that the Metropolis algorithm (and
Metropolis-Hastings) works because they sample from a Markov chain with the
appropriate stationary distribution.

‘ Geman and Geman (1984) developed the Gibbs sampler for Ising models,
showing that it too samples from an appropriate Markov chain. Gelfand and
Smith (1990) built on this work to show how Gibbs sampling can be used in
many Bayesian settings. This is also what we’ve shown in these notes.1

‘ In the 90s, statisticians like Tierney, Kass, and Gelman (in a series of papers
and books) solidified the relationship between Metropolis, Metropolis-Hastings,
and Gibbs sampling. In parallel, the rise of computing power transformed where
and how these algorithms can be used.

‘ Today, MCMC is a vital tool for modern applications of probabilistic models.

Aside: Exponential families and conjugacy

[ To be written ]

Mixtures of exponential families

[ To be written ]
1At that same time, Gelfand (who was faculty at the University of Connecticut) played a

monthly poker game with a group of mathematicians and statisticians including Prof. Ron Blei
(relation to author: father). They called it “the probability seminar.” Sometimes they played in
the author’s childhood home. Early in the evening, he was allowed to grab a handful of pretzels
but, otherwise, was encouraged to stay out of the way.
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