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These lecture notes follow the ideas in Chapter 2 of An Introduction to Proba-
bilistic Graphical Models by Michael Jordan. In addition, many of the figures
are taken from this chapter.

1. Consider a set of random variables fX1; : : : ; Xng. We are interested in

� Which variables are independent?
� Which variables are conditionally independent given others?
� What are the marginal distributions of subsets of variables?

These questions are all answered with the joint distributionP.X1; : : : ; Xn/.

� Marginalization is answered by summing over the joint.
� Independence is answered by checking factorizations.

2. Assume the variables are discrete and take on r values. The joint distri-
bution is a table p.x1; : : : ; xn/. Each cell is non-negative and the table
sums to one. The naive representation of this table contains rn elements.
When n is large, this is expensive both to store and to use.

Graphical models provide a more economic representation of the joint
distribution by taking advantage of local relationships between random
variables.

1



3. A directed graphical model is a directed acyclic graph. The vertices are
random variables X1; : : : ; Xn; edges denote the “parent of” relationship,
where �i are the parents of Xi .

Here is an example:

1X

2X

3X

X 4

X 5

X6

� The random variables are fX1; : : : ; X6g.
� E.g., �6 D fX5; X2g.

4. The graph defines a factorization of the joint distribution in terms of the
conditional distributions p.xi j x�i

/.

p.x1W6/ , p.x1/p.x2 j x1/p.x3 j x1/p.x4 j x2/p.x5 j x3/p.x6 j x2; x5/

In general,

p.x1Wn/ ,
nY
iD1

p.xi j x�i
/: (1)

(Note that we can use a set in the subscript.)

This joint is defined in terms of local probability tables, tables of con-
ditional probabilities for each value of the conditioning set. Confirm for
yourself that we can do this: Given a set of local probability tables, this
is a valid joint distribution.

5. By filling in the specific values for the conditional distributions, we pro-
duce a specific joint distribution of the ensemble of random variables.
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Holding the graph fixed, we can change the local probability tables to ob-
tain a different joint. Considering all possible local probability tables, we
see that the graphical model represents a family of distributions.

The family is defined by those whose joint can be written in terms of the
factorization implied by the graph. This is not all distributions over the
collection of random variables.

6. What is the advantage? Suppose x1Wn are binary random variables. The
full joint requires 2n values, one per entry. The graphical model joint
requires

Pn
iD1 2

j�i j entries. We have replaced exponential growth in n by
exponential growth in j�i j.

In statistical and machine learning applications, we represent data as ran-
dom variables and each data point only depends on a couple of parents.
This is a big savings.

Note that this is only part of the story. In addition to economic representa-
tion, graphical models give us inferential machinery for computing prob-
abilistic quantities and answering questions about the joint. The graph de-
termines, and lets us control, the cost of computation. (And, as an aside,
these same considerations apply when thinking about data and statistical
efficiency. But this is less looked at in the graphical models literature.)

7. Recall the definition of independence

xA ?? xB ! p.xA; xB/ D p.xA; xB/

! p.xA j xB/ D p.xA/

! p.xB j xA/ D p.xB/

And recall the equivalent definitions of conditional independence

xA ?? xB j xC ! p.xA; xB j xC / D p.xA; xB j xC /

! p.xA j xB ; xC / D p.xA j xC /

! p.xB j xA; xC / D p.xB j xC /

These are questions about factorizations of marginal distributions. They
can be answered by examining—or computing about—the graph.
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8. Recall the chain rule of probability

p.x1Wn/ D

nY
iD1

p.xi j x1; : : : ; xi�1/ (2)

In our example

p.x1W6/ D p.x1/p.x2 j x1/p.x3 j x1; x2/ � � �p.x6 j x1W5/: (3)

The joint distribution defined by the graph is suggestive that, e.g.,

p.x4 j x1; x2; x3/ D p.x4 j x2/; (4)

which means that
x4 ?? xf1;3g j x2: (5)

This statement is true. It is one of the basic conditional independence
statements.

(a) Write the conditional as a ratio of marginals

p.x4 j x1; x2; x3/ D
p.x1; x2; x3; x4/

p.x1; x2; x3/
(6)

(b) Numerator: take the joint and marginalize out x5 and x6
(c) Denominator: Further marginalize out x4.
(d) Divide to show that this equals p.x4 j x2/.

9. More generally, let I be a topological ordering of the random variables,
which ensures that �i occurs in the ordering before i . Let �i be the set of
indices that appear before i , not including �i . The set of basic conditional
independence statements is

fxi ?? x�i
j x�i
g (7)

In our example, one valid topological ordering is I D f1; 2; 3; 4; 5; 6g.
This implies the following independencies,

X1 ?? 0 j 0

X2 ?? 0 j 0

X3 ?? X2 j X1

X4 ?? fX1; X3g j X2

X5 ?? fX1; X2; X4g j X3

X6 ?? fX1; X3; X4g j fX2; X5g
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10. This is a little inelegant because it depends on an ordering. Here is a
graph-specific definition of the basic conditional independencies.

Define �i to be all the ancestors of i excluding the parents. Using this
definition, we can define the basic conditional independencies as in Equa-
tion 7.

11. These independencies hold regardless of the specific local probability ta-
bles. By using the cheaper factorized representation of the joint, we are
making certain independence assumptions about our random variables.

This makes more precise—a little anyway—the difference between the
family specified by the graphical model and the family of all joints.

Question: Are these the only independence assumptions we are making?

12. Note that a node’s parents separate it from its ancestors. It appears that
conditional independencies are related to the graph and, in particular, to
graph separation. We will next uncover the relationship between graph
separation and conditional independence.

To do this, and deepen our understanding of independence and graphical
models, we look at three simple graphs.

13. The first is a little sequence,

X Y Z

p.x; y; z/ D p.x/p.y j x/p.z jy/: (8)

Here,
X ?? Z jY: (9)
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To see this,

p.x jy; z/ D
p.x; y; z/

p.y; z/
(10)

D
p.x/p.y j x/p.z jy/

p.z jy
P
x0 p.x0/p.y j x0/

(11)

D
p.x; y/

p.y/
(12)

D p.x jy/ (13)

We assert that no other independencies hold. (E.g., is it not true that
X ?? Z.)

Important subtlety: This means that other independencies do not neces-
sarily hold. For some settings of p.y j x/ it may be true that X ?? Z.
But, not for all. In other words, a more restrictive family of joints will be
contained in the less restrictive family.

In this graph, conditional independence can be interpreted as graph sep-
aration. In graphical models notation, we shade the node that we are
conditioning on:

X Y Z .

We can see that Y separates X and Z.

The intuition: X is the “past”, Y is the “present”, Z is the “future”. Given
the present, the past is independent of the future. This is the Markov
assumption. This graph is a three step Markov chain.

14. The second graph is a little tree,
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X

Y

Z

p.x; y; z/ D p.y/p.x jy/p.z jy/ (14)

Here we have again that X ?? Z jY . We calculate that the conditional
joint factorizes,

p.x; z jy/ D
p.y/p.x jy/p.z jy/

p.y/
(15)

D p.x jy/p.z jy/ (16)

We assert that no other conditional independencies hold. Again, simple
graph separation indicates independence,

X

Y

Z

The intuition behind this graph comes from a latent variable model. In our
previous lecture, this graph describes the unknown coin flipped twice.

As another example, let X be “shoe size” and Z be “amount of gray
hair”. In general, these are dependent variables. But suppose Y is “age”.
Conditioned on Y , X and Z become independent. Graphically, we can
see this. It is through “age” that “shoe size” and “gray hair” depend on
each other.

15. The last simple graph is an “inverse tree”
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X

Y

Z

p.x; y; z/ D p.x/p.z/p.y j x; z/ (17)

Here the only independence statement is X ?? Z. In particular, it is not
necessarily true that X ?? Z jY .

For intuition, think of a causal model: Y is “I’m late for lunch”; X is
“I’m abducted by aliens”, a possible cause of being late; Z is “My watch
is broken”, another possible cause. Marginally, being abducted and break-
ing my watch are independent. But conditioned on my lateness, knowing
about one tells us about the likelihood of the other. (E.g., if I’m late and
you know that my watch is broken, then this decreases the chance that I
was abducted.)

Alas, this independency does not correspond to graph separation.

16. With these simple graphs in hand, we can now discuss d -separation, a
notion of graph separability that lets us determine the validity of any con-
ditional independence statement in a directed graphical model.

Suppose we are testing a conditional independence statement,

XA ?? XB jXC : (18)

We shade the nodes being conditioned on. We then decide, using the
“Bayes ball” algorithm, whether the conditioned nodes d -separate the
nodes on either side of the independence relation.

The Bayes ball algorithm is a reachability algorithm. We start balls off at
one of the sets of variables. If they can reach one of the other set then the
conditional independence statement is false.

The balls bounce around the graph according to rules based on the three
simple graphs. We consider a ball starting at X and going through Y on
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its way to Z. (To be clear, if the move is allowed, then the next step is for
the ball to be at Y and we ask if it can go through Z en route to another
node.)

Note that it does not matter if the source node X and destination node Z
are shaded. Here are the rules:

In addition, there are rules derived by contemplating a ball going through
a node and then back to the source node:

17. Examples:

(a) Look at our example graph.

i. X1 ?? X6 j fX2; X3g? Yes.
ii. X2 ?? X3 j fX1; X6g? No.
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(b) A Markov chain is the simple sequence graph with any length se-
quence. The basic conditional independencies are that

XiC1 ?? X1W.i�1/ jXi : (19)

But Bayes ball tells us more, e.g.

X1 ?? X5 j X4

X1 ?? X5 j X2

X1 ?? X5 j X2; X4

(c) Now consider a hidden Markov model which is used, for example,
in speech recognition. The Bayes ball algorithm reveals that there
are no conditional independencies among the observations.

(d) Look at a tree model, e.g., of genetic sequences in a family tree.
What kinds of independencies do we see?

(e) Look at a Bayesian hierarchical regression model. (E.g., consider
testing in different schools.) How are the groups related? What if
we know the prior?

18. Remarks on Bayes ball:

(a) It’s not an algorithm that is necessarily very interesting to imple-
ment. But it’s very useful to look at graphs—i.e., at structured joint
distributions—and understand the complete set of conditional inde-
pendence and independence assumptions that are being made. As
we have shown, this is not obvious either from the joint distribution
or the structure alone.

(b) The idea of a ball bouncing around is a theme that we will come
back to. It won’t be balls, but be “messages” (i.e., information).
Just as balls bouncing around the graph help us understand inde-
pendence, messages traveling on the graph will help us make prob-
abilistic computations.

19. Punchline: Hammersley-Clifford theorem.

Consider two families of joint probability distributions, both obtained
from the graphical model G.
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(a) Family of joints found by ranging over all conditional probability
tables associated with G.

(b) All joints that respect all conditional independence statements, im-
plied by G and d -separation.

The Hammersley-Clifford theorem says that these families are the same.

More verbose:

We find the first family by varying the local conditional probability tables
and computing the resulting joint from its factorization. This is what we
meant earlier when we said that a graphical model defines a family of
probability distributions.

We obtain the second family as follows. First, compute every conditional
independence statement that is implied by the graph. Use Bayes ball and
check for all disjoint subsets of the nodes. Then, consider every joint
distribution of the same set of variables. (Note: this does not reference
the local conditional probability tables.) For each joint, check whether
the conditional independence statements hold. If one does not, throw the
joint away. Those that remain are the second family.

The Hammersley-Clifford theorem says that these two families of joints—
one obtained by checking conditional independencies and the other ob-
tained by varying local probability tables—are the same.

As stated in the chapter, this theorem is at the “core” of the graphical
models formalism. It makes precise and clear what limitations (or as-
sumptions) we place on the family of joint distributions when we specify
a graphical model.

Undirected graphical models

In this class, we will mainly focus on directed graphical models. However,
undirected graphical models, which are also known as Markov random fields,
are a very useful formalism as well. They are important to learn about to be flu-
ent in graphical models, will be useful later when we talk about exact inference,
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and further refine the picture of the relationship between graphs and probability
models.

A definition, via conditional independencies

When discussing directed models, we began with a definition of how to map a
graph to a joint and then showed how the resulting conditional independencies
can be seen from the graph. Here we will go in reverse.

Consider an undirected graph G D .V;E/ and three sets of nodes A, B , and
C . We assert that XA ?? XC jXB if XB separates XA and XC , in the usual
graph-theoretic sense of separate.

Formally, quoting from the book, “if every path from a node in X_A to a node
in X_C includes at least one node in X_B then we assert that XA ?? XC jXB .”

Again we emphasize that we are representing a family of distributions. These
are the conditional independence statements that (we assert) have to hold. For
various instantiations of the graphical model (i.e., various members of the fam-
ily) other conditional independencies may also hold.

Undirected and directed graphical models are different

Consider the families of families expressable by directed and undirected graph-
ical models, respectively. Not all directed graphical models can be written as an
undirected graphical model, and vice versa.

First consider this directed graph,

X

Y

Z

As we said, the only conditional independence statement that is true for this
graph is X ?? Z. We cannot write an undirected graphical model such that this
is the only conditional independence statement, i.e. where X 6?? Z jY .

Now consider this undirected graph,
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[Four nodes connected in a square]

This graph expresses the family characterized by the following independencies,

X ?? Y j fW;Zg (20)

W ?? Z j fX; Y g (21)

And these are the only ones.

We cannot write down a directed graphical model such that these are the only
two conditional independence statements. Exercise: Confirm this.

Note that there are types of directed and undirected graphical models that can
be written as either. We will one such important class when we talk about
inference. But, in general, we have just demonstrated that they have different
expressive power.

The joint distribution in an undirected graphical model

From the conditional independencies, we will now develop a representation of
the joint distribution. Our goal is to represent the joint as a product of “local”
functions, which we will call potential functions. We would like these func-
tions to be non-negative but otherwise arbitrary; so we will be satisfied with
specifying them up to a scaling constant. (Note: This is called the normalizing
constant, and will be an important quantity for much of this course.)

We need to define what we mean by “local”. This amounts to choosing the
arguments of each of the potential functions. The conditional independence
statements that we asserted imply that if two nodes X1 and X3 are separated by
a third X2 then X1 ?? X3 jX2. This implies that the conditional distribution
factorizes, which further implies that the three nodes cannot participate in a
single potential. If there were an arbitrary potential function  .x1; x2; x3/ in
the joint distribution, then it would be impossible for the conditional (which,
recall, is proportional to the joint) to factorize across x1 and x3.

Maximal cliques. This is suggestive that the potential functions should only
be defined on cliques, sets of nodes that are fully connected, or subsets of
cliques. As we argued above, if two nodes are not directly connected in the
graph then there is a conditional independence statement that one can make.
Thus, they should not appear together in a potential.
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In the theory around undirected graphical models, the joint is defined on the
set of maximal cliques, i.e., completely connected components of the graph that
cannot be expanded without breaking complete connectedness. Every node is
part of a maximal clique. Thus, we can write the joint as

p.x/ D
1

Z

Y
C2C

 .xC / (22)

Here, C is the set of maximal cliques and C is a particular clique (i.e., set of
nodes). The constant Z is the normalizing constant,

Z D
X
x

Y
C2C

 .xC / (23)

Note that this is difficult to compute. We’ll come back to that later in the
semester.

This joint distribution respects the set of conditional independence statements
implied by usual graph separability on the underlying graph.

Finally, in practice we often define undirected graphical models in terms of
other cliques, in addition to or instead of maximal cliques.

Interpreting potentials. The potential functions we set up are arbitrary posi-
tive valued functions. They are not conditional probabilities (necessarily) as in
the directed graphical models case. However, they can be interpreted as pro-
viding “agreement” to configurations of variables that have high probability. If
the potential on  .x1; x2/ is high then the configuration with those values has
higher probability. Though we will not discuss it in depth, this is how undirected
graphical models play a large role in statistical physics (the field in which they
were invented).

Hammersley-Clifford for undirected graphical models. We can state a sim-
ilar theorem for undirected graphical models as we did for directed graphical
models.

Fix an undirected graph G.

Define one family of distributions by ranging over all possible potential func-
tions over the maximal cliques of the graph, and calculating the joint distribution
in Equation 22.
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Define a second family of distributions by looking at all joint distributions over
the set of nodes in the graph and filtering out only those for which the set of
conditional independence statements—defined by graph separability—holds.

These two sets of distributions are the same.
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