

INFLUENCE MAXIMIZATION

Input: a social network G(V, E, p) in a stochastic diffusion model, a budget k.

Output: *k* seed nodes with the largest expected *influ*ence spread.

Applications: viral marketing, rumor control, etc.

ADAPTIVE INFLUENCE MAXIMIZATION

returns feedback information containing the local status. Feedback model

Round 2

Final State

Figure 2: Myopic Feedback

 $\Delta(u \mid \psi) \ge \Delta(u \mid \psi'), \psi \subseteq \psi'.$

The influence spread function is submodular under IC model [1], and it is adaptive submodular with fulladoption feedback [2].

Round 2

Final State

Figure 3: Full-adoption Feedback

CHALLENGE

The influence spread function is **not** adaptive submodular with **myopic feedback**.

• We consider the *adaptivity gap*, i.e., the supremum ratio between the optimal adaptive influence spread and the optimal non-adaptive influence spread, and show that the adaptivity gap is between $\left[\frac{e}{e-1}, 4\right]$.

• We show that the approximation ratio of both non-adaptive greedy and adaptive greedy algorithms are in $\left[\frac{1}{4}\left(1-\frac{1}{e}\right),\frac{e^2+1}{(e+1)^2}\right]$, which confirms an open conjecture of Golvin&Krause(2011) [2].

IDEA 1. Compare an adaptive policy π with the random walk non-adaptive policy $\mathcal{W}(\pi)$, which picks a random **IDEA 2.** Define *t*-th aggregate influence spread function $\sigma^t(S)$, in which seeds have *t* chance to activate neigh-

IDEA 3. Construct a fictitious hybrid policy $\bar{\pi}$ which runs in *three* independent realizations of the graphs, use coupling arguments to connect the fictitious hybrid policy $\bar{\pi}$ with the non-adaptive policy π . **FINALLY**. We pin down a constant upper bound via a chain of inequalities,

$$\sigma(\pi) \le \sigma(\bar{\pi}) = \sigma^3(\pi) \le 2\sigma^2(\mathcal{W}(\pi)) \le$$

FUTURE DIRECTION

1. The Adaptivity gap in the full-adoption feedback model is still open. 2. The approximation ratio of (adaptvie) greedy algorithm in the Linear Threstold model is still open.

REFERENCE

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In *Proceedings of the ninth ACM SIGKDD*, pages 137–146. ACM, 2003.

Daniel Golovin and Andreas Krause. Adaptive submodularity:theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

Second chance

Final State

Figure 6: Aggregate influence spread function $\sigma^2(u)$

 $4\sigma(\mathcal{W}(\pi)).$