W4281 - Introduction to Quantum Computing

Homework 5
due date: Thursday, 7/28/05

Exercise 1 (10 points):

Kitaev's algorithm: Let U be a unitary transformation with eigenvector $|u\rangle$ such that

$$
U|u\rangle=e^{2 \pi i \varphi}|u\rangle .
$$

Consider the following quantum circuit:

Show that $|m\rangle=|0\rangle$ with probability $p=\cos ^{2}(\pi \varphi)$.
Exercise 2 (10 points):
Shift-invariance property of the Fourier transform:
a.) Show that the transformation U_{k} acting on q qubits and defined as

$$
U_{k}|g\rangle=|g \oplus k\rangle=\left|g+k \quad \bmod 2^{q}\right\rangle
$$

is unitary for $g, k=0,1, \ldots, 2^{q}-1$.
b.) Show that for an arbitrary q qubit state

$$
|\psi\rangle=\sum_{j=0}^{2^{q}-1} \alpha_{j}|j\rangle
$$

the probabilities to measure the state $|g\rangle, g=0,1, \ldots, 2^{q}-1$, when measuring $\mathscr{F}_{2 q}|\psi\rangle$ and $\mathscr{F}_{2 q} U_{k}|\psi\rangle$ are the same.

Exercise 3 (10 points):

Write a program to simulate Grover's search algorithm to find the unique index x_{0} of a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ for which $f\left(x_{0}\right)=1$.
The input should be given as

- The number of input bits for the function f as $n \in \mathbb{N}$.
- The index $x_{0}=0,1, \ldots, 2^{n}-1$ for which $f\left(x_{0}\right)=1$ (the one we want to find).

Example: for $n=3$ and $x_{0}=2$ we consider the function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ defined as

$$
f(x)= \begin{cases}1 & \text { for } x=x_{0} \\ 0 & \text { otherwise }\end{cases}
$$

The function f now defines a $n+1$ qubit transformation

$$
O|x\rangle|q\rangle=|x\rangle|q \oplus f(x)\rangle .
$$

The complete algorithm can now be written as

$$
\left.\left(\left(H^{\otimes n} S_{0} H^{\otimes n}\right) \otimes I\right) O\right)^{\left\lceil\pi 2^{n / 2} / 4\right\rceil}\left(H^{\otimes n} \otimes(H X)\right)|0\rangle^{\otimes n}|0\rangle
$$

where S_{0} is the following transform

$$
S_{0}=2|0\rangle\langle 0|-I^{\otimes n}
$$

If we measure the final state of this algorithm, the first register should contain x_{0} with probability greater than $3 / 4$.

