W4281 - Introduction to Quantum Computing

Homework 4

due date: Thursday 7/14/2005

Exercise 1 (10 points):

In class we discussed the Quantum Fourier Transform

$$
|j\rangle \longrightarrow \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i j k / N}|k\rangle
$$

and its circuit, which is shown in figure 5.1 in the textbook.
Derive a circuit for the Inverse Quantum Fourier Transform and prove its correctness.

Exercise 2 (10 points):

Prove the convolution theorem for the Quantum Fourier Transform $\mathscr{F}_{2^{n}}$ defined as

$$
\mathscr{F}_{2^{n}} \sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle=\frac{1}{2^{n / 2}} \sum_{k=0}^{2^{n}-1} \sum_{j=0}^{2^{n}-1} \alpha_{j} e^{2 \pi i j k / 2^{n}}|k\rangle
$$

The convolution of two states $|\alpha\rangle=\sum_{k=0}^{2^{n}-1} \alpha_{k}|k\rangle$ and $|\beta\rangle=\sum_{k=0}^{2^{n}-1} \beta_{k}|k\rangle$ is defined as

$$
\frac{1}{2^{n / 2}} \sum_{j=0}^{2^{n}-1} \sum_{l=0}^{2^{n}-1} \alpha_{l} \beta_{j-l}|j\rangle
$$

where for $j-l<0$ we define $\beta_{j-l}:=\beta_{2^{n}+j-l}$. It is a way to compute how much two states $|\alpha\rangle$ and $|\beta\rangle$ "have in common" and is used widely in signal processing.
Convolution theorem: Let $|\alpha\rangle=\sum_{k=0}^{2^{n}-1} \alpha_{k}|k\rangle$ and $|\beta\rangle=\sum_{k=0}^{2^{n}-1} \beta_{k}|k\rangle$ be arbitrary n qubit states with Fourier transforms

$$
\mathscr{F}_{2^{n}}|\alpha\rangle=\sum_{k=0}^{2^{n}-1} \gamma_{k}|k\rangle \text { and } \mathscr{F}_{2^{n}}|\beta\rangle=\sum_{k=0}^{2^{n}-1} \delta_{k}|k\rangle .
$$

Then

$$
\begin{equation*}
\mathscr{F}_{2^{n}}\left[\frac{1}{2^{n / 2}} \sum_{j=0}^{2^{n}-1} \sum_{l=0}^{2^{n}-1} \alpha_{l} \beta_{j-l}|j\rangle\right]=\sum_{j=0}^{2^{n}-1} \gamma_{j} \delta_{j}|j\rangle \tag{1}
\end{equation*}
$$

Hint: instead of (1) show

$$
\frac{1}{2^{n / 2}} \sum_{j=0}^{2^{n}-1} \sum_{l=0}^{2^{n}-1} \alpha_{l} \beta_{j-l}|j\rangle=\mathscr{F}_{2^{n}}^{-1}\left[\sum_{j=0}^{2^{n}-1} \gamma_{j} \delta_{j}|j\rangle\right]
$$

Exercise 3 (10 points):

Write a program to simulate the Quantum Phase Estimation algorithm.
The input should be given as

- The number of qubits $m \in \mathbb{N}$.
- A matrix U given by $2^{m} \times 2^{m}$ complex numbers.
- An eigenvector $|u\rangle$ of U, given by 2^{m} complex numbers (you do not have to check that it actually is an eigenvector).
- A precision 2^{-n} for the result given by an integer n. The phase φ_{u} of the eigenvalue $e^{2 \pi i \varphi_{u}}$ of $|u\rangle$, i.e. $e^{2 \pi i \varphi_{u}}|u\rangle=U|u\rangle$, should differ from the output $\widetilde{\varphi_{u}}$ of your algorithm by less than 2^{-n}, i.e.

$$
\begin{equation*}
\left|\varphi_{u}-\widetilde{\varphi}_{u}\right|<2^{-n} \tag{2}
\end{equation*}
$$

- A probability $\varepsilon>0$ of failure for which equation (2) does not have to hold.

