W4281 - Introduction to Quantum Computing

Homework 3

due date: Thursday 06/30/2005

Exercise 1 (10 points): Consider projective measurements in the computational basis.
a.) A single qubit matrix U has the eigenvalues ± 1 and the orthonormal eigenvectors $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$, i.e. we can write it as,

$$
U=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|-\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|
$$

Consider the following circuit (the M in the circle is a measurement):

Find $\left|m_{\text {out }}\right\rangle$ and $\left|\psi_{\text {out }}\right\rangle$, and explain how they are related to $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$.
b.) Prove that measurement commutes with controls. That is, for an arbitrary single qubit unitary U we have

Exercise 2 (10 points):

Let f be a function $f:\left\{0,1, \ldots, 2^{n}-1\right\} \rightarrow\left\{0,1, \ldots, 2^{m}-1\right\}$ and

$$
U_{f}|j\rangle|k\rangle=|j\rangle|k \oplus f(j)\rangle
$$

with $|j\rangle|k\rangle \in \mathbb{C}^{2^{n}} \otimes \mathbb{C}^{2^{m}}$ and \oplus denoting addition modulo 2^{m}.
For an arbitrary integer $\ell \geq 0$ find the matrix representation of

$$
U_{f}^{\ell}=\underbrace{U_{f} U_{f} \ldots U_{f}}_{\ell \text { times }} .
$$

Exercise 3 (10 points):

a.) Write a program to simulate the Deutsch-Josza quantum algorithm. Here "simulate" means that your algorithm actually does the same steps as in the quantum algorithm and not only returns a precomputed answer.
b.) Suppose that a Boolean function $f:\left\{0,1, \ldots, 2^{n}-1\right\} \rightarrow\{0,1\}$, with $n \geq 2$, is constant, i.e., $f(j)=f(0)$, or $\frac{3}{4}$-balanced, i.e., $|\{j \mid f(j)=1\}|=\frac{3}{4} 2^{n}$.
Modify the Deutsch-Josza algorithm to check that f is constant with probability $p>\frac{1}{2}$.
c.) Write a program to simulate the quantum algorithm of b.).

