W4281 - Introduction to Quantum Computing

Homework 2

due date: Thursday 6/16/2005

Exercise 1 (10 points):

The swap gate is defined as

$$Q|a\rangle |b\rangle = |b\rangle |a\rangle$$
 for $a, b \in \{0, 1\}$,

and its circuit representation is

1. Find the matrix representation of Q (and prove its correctness).

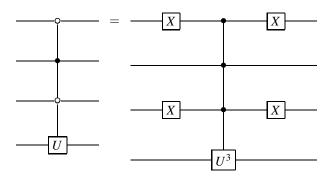
2. Prove that

3. The controlled-swap (Fredkin gate) is defined as

Find the matrix representation of this gate (and prove its correctness).

Exercise 2 (10 points):

Let $|\psi\rangle = H^{\otimes n} |0\rangle$, and let


$$A=I-2\left|\psi\right\rangle \left\langle \psi\right|.$$

Prove that

$$e^{i\pi A} = -I.$$

Exercise 3 (10 points):

Write a program which verifies whether the following circuits are equivalent:

The first circuit applies U if the first three qubits are $|0\rangle |1\rangle |0\rangle$ (the first and third dots should be empty).

Input: A 2×2 unitary matrix *U*:

$$U = \left[\begin{array}{cc} u_{11} & u_{12} \\ u_{21} & u_{22} \end{array} \right]$$

Output: YES or NO depending on whether the circuits are (approximately) equivalent. If you are using a symbolic program like Mathematica it should be easy to check whether they actually are equivalent. If you are using a numerical package like Matlab, check that the circuits C_1 and C_2 are *approximately* equivalent, which means that for all $|\psi\rangle \in \mathbb{C}^{2^4}$, $|||\psi\rangle|| = 1$

$$\left\|C_1 \left|\psi\right\rangle - C_2 \left|\psi\right\rangle\right\| < \varepsilon.$$

A good choice for ε would be proportional to the rounding unit.

Test your program for $U \in \{X, Y, Z, H, S, T\}$ and document these test runs.