W4281 - Introduction to Quantum Computing

Homework 1

due date: Thursday 6/2/2005

Note: for this homework we use the 6 single qubit gates X, Y, Z (Pauli matrices), H (Hadamard gate), S (phase gate), and T ($\pi / 8$ gate) as defined in class or in Nielsen and Chuang, p. 174.

Exercise 1 (10 points):

In this problem you compute the exponential e^{M} of a matrix M. The definition of the exponential of a matrix can be found in Nielsen and Chuang, p. 75.
Let X, Y, Z be the Pauli matrices and let α be a complex number. Compute

$$
e^{\alpha X}, e^{\alpha Y}, e^{\alpha Z}
$$

Exercise 2 (10 points):

Show that the Hadamard gate H can be written as

$$
H=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\langle 0|+\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\langle 1|
$$

and that the n-fold tensor product of H with itself is

$$
H^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{j, k=0}^{2^{n}-1}(-1)^{j \cdot k}|j\rangle\langle k|
$$

where $j \cdot k$ denotes

$$
j_{0} k_{0}+j_{1} k_{1}+\ldots+j_{n-1} k_{n-1}
$$

if the binary expansions of j and k are

$$
\begin{aligned}
& j=\left(j_{n-1} j_{n-2} \ldots j_{0}\right)_{2}=\sum_{l=0}^{n-1} 2^{l} j_{l} \\
& k=\left(k_{n-1} k_{n-2} \ldots k_{0}\right)_{2}=\sum_{l=0}^{n-1} 2^{l} k_{l}
\end{aligned}
$$

Exercise 3 (10 points):

Write a program to solve the following problem:
Input: Three integers j, k, m, with $m, j \in\left\{0,1, \ldots, 2^{k}-1\right\}$.
Output: The probability to measure the outcome j of the k-qubit state

$$
|\psi\rangle=U_{1} \otimes U_{2} \otimes \ldots \otimes U_{k}|m\rangle
$$

where the $U_{l}, l \in \mathbb{N}$, are the following matrices:

$$
\begin{aligned}
& U_{1}=U_{7}=\ldots=X \\
& U_{2}=U_{8}=\ldots=Y \\
& U_{3}=U_{9}=\ldots=Z \\
& U_{4}=U_{10}=\ldots=H \\
& U_{5}=U_{11}=\ldots=S \\
& U_{6}=U_{12}=\ldots=T
\end{aligned}
$$

Your algorithm should be linear in k.

Hint: You only have to compute the probability for the j given as input. This probability is given by

$$
\left.\left|\langle j| U_{1} \otimes U_{2} \otimes \ldots \otimes U_{k}\right| m\right\rangle\left.\right|^{2}
$$

Example: For $j=2, k=2, m=1$ this probability is

$$
\left.|\langle 2| X \otimes Y| 1\rangle\left.\right|^{2}=\left|\left\langle 10_{2}\right| X \otimes Y\right| 01_{2}\right\rangle\left.\right|^{2}=\left|-i\left\langle 10_{2} \mid 10_{2}\right\rangle\right|^{2}=|-i|^{2}=1
$$

